next up previous contents
Next: Theorem 28 Up: Formal Proofs Previous: Theorem 21   Contents

Theorem 22

1. $\langle F_i \rangle
K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to \langle
F_i \rangle K_i\beta$.

(1) $\langle F_i \rangle K_i(\alpha\to \beta) \to \langle F_i \rangle
[F_i] K_i(\alpha\to \beta)$ (DE2), K$_t$4
(2) $\langle F_i \rangle K_i(\alpha\to \beta) \to [F_i] \langle F_i
\rangle K_i(\alpha\to \beta)$ (1), (TL3)
(3) $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle K_i(\alpha\to
\beta) \t...
...ngle F_i \rangle K_i\alpha \land [F_i] \langle F_i \rangle
K_i(\alpha\to \beta)$ (2)
(4) $\langle F_i \rangle K_i\alpha \land [F_i] \langle F_i \rangle
K_i(\alpha\to \be...
... \langle F_i \rangle (K_i\alpha \land \langle F_i
\rangle K_i(\alpha\to \beta))$ K$_t$4
(5) $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle K_i(\alpha\to
\beta) \to \langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i(\alpha\to \beta))$ (3), (4)
(6) $K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to
\langle F_i \rangle K_i\beta$ Th. 21
(7) $\langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i(\alpha\to \beta)) \to \langle F_i \rangle \langle F_i \rangle
K_i\beta$ (6), K$_t$4
(8) $\langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i(\alpha\to \beta)) \to \langle F_i \rangle \langle F_i \rangle
K_i\beta$ (5), (7)
(9) $\langle F_i \rangle \langle F_i \rangle K_i\beta \to \langle
F_i \rangle K_i\beta$ K$_t$4
(10) $\langle F_i \rangle
K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to \langle
F_i \rangle K_i\beta$ (8), (9)

2. $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle
K_i\beta \to \langle F_i \rangle K_i(\alpha\land \beta)$

(1) $\langle F_i \rangle K_i\beta \to \langle F_i \rangle [F_i]
K_i\beta$ (DE2), K$_t$4
(2) $\langle F_i \rangle K_i\beta \to [F_i] \langle F_i \rangle
K_i\beta$ (1), (TL3)
(3) $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle
K_i\beta \to \langle F_i \rangle K_i\alpha \land [F_i] \langle F_i
\rangle K_i\beta$ (2)
(4) $\langle F_i \rangle K_i\alpha \land [F_i] \langle F_i \rangle
K_i\beta \to \langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i\beta)$ K$_t$4
(5) $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle
K_i\beta \to \langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i\beta)$ (3), (4)
(6) $K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle F_i
\rangle (K_i\alpha \land K_i\beta)$ Th. 21
(7) $\langle F_i \rangle (K_i\alpha \land \langle F_i \rangle
K_i\beta) \to \langle F_i \rangle \langle F_i \rangle (K_i\alpha \land
K_i\beta)$ (6), K$_t$4
(8) $\langle F_i \rangle K_i\alpha \land \langle F_i \rangle
K_i\beta \to \langle F_i \rangle \langle F_i \rangle (K_i\alpha \land
K_i\beta)$ (5), (7)
(9) $\langle F_i \rangle \langle F_i \rangle (K_i\alpha \land
K_i\beta) \to \langle F_i \rangle (K_i\alpha \land K_i\beta)$ K$_t$4
(10) $\langle F_i \rangle
K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to \langle
F_i \rangle K_i\beta$ (8), (9)


next up previous contents
Next: Theorem 28 Up: Formal Proofs Previous: Theorem 21   Contents
2001-04-05