next up previous contents
Next: Theorem 22 Up: Formal Proofs Previous: Formal Proofs   Contents

Theorem 21

1. $K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to
\langle F_i \rangle K_i\beta$

(1) $K_i\alpha \to [F_i]K_i\alpha$ (DE2)
(2) $K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to
[F_i]K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta)$ (1)
(3) $[F_i]K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta)
\to \langle F_i \rangle K_i\beta$ K$_t$4
(4) $K_i\alpha \land \langle F_i \rangle K_i(\alpha\to \beta) \to
\langle F_i \rangle K_i\beta$ (2), (3)

2. $K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle F_i
\rangle K_i(\alpha\land \beta)$

(1) $K_i\alpha \to [F_i]K_i\alpha$ (DE2)
(2) $K_i\alpha \land \langle F_i \rangle K_i\beta \to [F_i]K_i\alpha
\land \langle F_i \rangle K_i\beta$ (1)
(3) $[F_i]K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle F_i
\rangle K_i(\alpha\land \beta)$ K$_t$4
(4) $K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle F_i
\rangle K_i(\alpha\land \beta)$ (2), (3)

3. $K_i\alpha \land K_i\beta\to \langle F_i \rangle K_i(\alpha\land
\beta)$

(1) $K_i\beta \to \langle F_i \rangle K_i\beta$ (MON$_{de}$)
(2) $K_i\alpha \land K_i\beta \to K_i\alpha \land \langle F_i
\rangle K_i\beta$ (1)
(3) $K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle F_i
\rangle K_i(\alpha\land \beta)$ Th. 21.2.
(4) $K_i\alpha \land K_i\beta\to \langle F_i \rangle K_i(\alpha\land
\beta)$ (2), (3)

4. $K_i(\alpha\land \beta) \to \langle F_i \rangle (K_i\alpha\land
K_i\beta)$

(1) $K_i(\alpha \land \beta) \to \langle F_i \rangle K_i\alpha$ (MON$_{de}$)
(2) $K_i(\alpha\land \beta) \to [F_i]K_i(\alpha\land \beta)$ (DE2)
(3) $K_i(\alpha\land \beta) \to \langle F_i \rangle K_i\alpha \land
[F_i]K_i(\alpha\land \beta)$ (1), (2)
(4) $K_i(\alpha\land \beta) \to \langle F_i \rangle(K_i\alpha \land
K_i(\alpha\land \beta))$ (3), K$_t$4
(5) $K_i\alpha \to [F_i]K_i\alpha$ (DE2)
(6) $K_i(\alpha\land \beta) \to \langle F_i \rangle K_i\beta$ (MON$_{de}$)
(7) $K_i\alpha \land K_i(\alpha\land \beta) \to
[F_i]K_i\alpha \land \langle F_i \rangle K_i\beta$ (5), (6)
(8) $[F_i]K_i\alpha \land \langle F_i \rangle K_i\beta \to \langle
F_i \rangle (K_i\alpha \land K_i\beta)$ K$_t$4
(9) $K_i\alpha \land K_i(\alpha\land \beta) \to \langle F_i
\rangle (K_i\alpha \land K_i\beta)$ (7), (8)
(10) $\langle F_i \rangle(K_i\alpha \land K_i(\alpha\land \beta)) \to
\langle F_i \rangle \langle F_i \rangle (K_i\alpha \land K_i\beta)$ (9), K$_t$4
(11) $K_i(\alpha\land \beta) \to \langle F_i \rangle \langle F_i
\rangle (K_i\alpha \land K_i\beta)$ (4), (10)
(12) $K_i(\alpha\land \beta) \to \langle F_i \rangle (K_i\alpha\land
K_i\beta)$ (11), K$_t$4

5. $\langle F_i \rangle K_i(\alpha\land \beta) \to \langle F_i
\rangle (K_i\alpha\land K_i\beta)$

(1) $K_i(\alpha\land \beta) \to \langle F_i \rangle (K_i\alpha\land
K_i\beta)$ Th. 21.4.
(2) $\langle F_i \rangle K_i(\alpha\land \beta) \to \langle F_i
\rangle \langle F_i \rangle (K_i\alpha\land K_i\beta)$ (1), K$_t$4
(3) $\langle F_i \rangle K_i(\alpha\land \beta) \to \langle F_i
\rangle (K_i\alpha\land K_i\beta)$ (2), K$_t$4


next up previous contents
Next: Theorem 22 Up: Formal Proofs Previous: Formal Proofs   Contents
2001-04-05