Technische Informatik I Elektrotechnische Grundlagen

Prof. Dr. U. Kebschull
Technische Informatik
kebschull@informatik.uni-leipzig.de

Übersicht

- O Geschichtliche Übersicht
- Physikalische Grundlagen
 - **⇒** Elektrische Ladung
 - **⇒** Gleichstrom, Ohmsches Gesetz, Kirchhoffsche Gesetze
 - **⇒** Elektromagnetisches Feld
 - **⇒** Wechselstromkreis
 - **⇒** Schaltvorgänge
- Halbleitertechnologie
 - **⇒** Dioden
 - **⇒** Bipolare und FET- Technologie
 - **⇒ NMOS- und CMOS-Schaltkreise**
 - **⇒** Der Transistor als Schalter
 - **⇒** CMOS-Grundschaltungen
 - \Rightarrow PLA
 - **⇒** Herstellung elektronischer Schaltungen

Übersicht

- Schaltnetze
 - **⇒** Boolesche Algebren
 - **⇒** Normalformen
 - **⇒** Darstellung Boolescher Funktionen
- Minimierung von Schaltnetzen
 - **⇒** KV-Diagramme
 - **⇒** Minimierung nach Quine MC-Cluskey
 - **⇒** Bündelminimierung
- Speicherglieder
 - **⇒** RS-Flipflop
 - **⇒ D-Flipflop**
 - **⇒** JK-Flipflop
 - **⇒** T-Flipflop

Übersicht

- Schaltwerke
 - **⇒** Darstellung endlicher Automaten
 - **⇒** Minimierung der Zustandszahl
 - **Zustandskodierung**
- Spezielle Schaltnetze und Schaltwerke
 - **⇒** Multiplexer, Demultiplexer, Addierer
 - ⇒ Register, Schieberegister, Zähler

Literatur

Die Vorlesung basiert auf den beiden Lehrbüchern:

- R.J. Smith, R.C. Dorf: "Circuits, Devices and Systems"
 5. Auflage, John Wiley & Sons (1992)
- W. Schiffmann, R. Schmitz: "Technische Informatik 1 Grundlagen der digitalen Elektronik."
 Springer-Lehrbuch, Springer-Verlag (1992).

Weitere Empfehlungen:

Technische Informatik

Hütte: "Die Grundlagen der Ingenieurwissenschaften."
 29. Auflage, Springer (1992).
 Die "Hütte" ist ein sehr empfehlenswertes
 Nachschlagewerk für die Gebiete Mathematik, Physik und

- O Griechenland 6. Jh. v.Chr.
 - ⇒ Mit Seidentuch geriebener Bernstein zieht Staubteilchen,
 Wollfäden u.a. Körper an. Name: Elektron = Bernstein
 Magneteisenstein zieht Eisen an
- **Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimination Olimi**
 - ⇒ führt den Begriff *Elektrizität* ein
- **O** Coulomb Charles 1736-1806
 - ⇒ Coulombsches Gesetz.
- **O Galvani Luigi 1737-1798**
 - ⇒ Galvanische Elemente: Stromquellen deren Energie durch chemische Vorgänge frei wird

- O Volta Alessandro 1745-1827
 - ⇒ führt die Arbeit Galvanis fort. Konstruiert die Voltaische Säule, die erste brauchbare Elektrizitätsquelle. Von ihm stammt der Begriff des stationären elektrischen Stromes
- Oerstedt Hans Christian 1777-1851
 - ⇒ entdeckt 1820 die Ablenkung der Magnetnadel durch elektrischen Strom (Elektromagnetismus)
- **○** Ampere Andre Marie 1775-1836
 - ⇒ entdeckt die mechanische Wirkung stromdurchflossener Leiter aufeinander (Elektrodynamisches Gesetz). Nach ihm wurde die Einheit der Basisgröße Stromstärke benannt
- **○** Faraday Michael 1791-1867 Elektromagnetische Induktion
- Ohm Georg Simon 1787-1854 Ohmsches Gesetz

- **O** Siemens Werner 1816-1892
 - **⇒** Elektrische Maschinen (dynamoelektrisches Prinzip)
- Kirchhoff Gustav Robert 1824-1887
 - ⇒ entdeckt die Gesetze der Stromverzweigung.
- Maxwell James Clerk 1831-1879
 - ⇒ Maxwellsche Gleichungen: Beschreiben alle Erscheinungen, bei denen Elektrizität und Magnetismus miteinander verknüpft sind
- Hertz Heinrich 1857-1894
 - ⇒ entdeckt experimentell die elektromagnetischen Wellen
- O Edison Thomas Alva 1847-1931
 - ⇒ Erfinder verschiedener Elektrogeräte: Telegraph, Kohlemikrophon, Glühlampe, u.a. Baut 1882 das erste Elektrizitätswerk

1886 Lochkarte

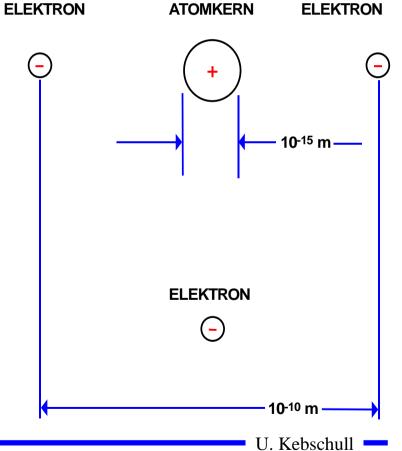
⇒ Herman Hollerith (1860-1929) benutzt die Lochkartentechnik zur Datenverarbeitung. Es handelt sich dabei um ein elektromechanisches Verfahren.

O 1941 Z 3

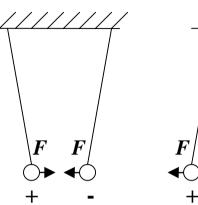
- **O** 1946 Eniac
 - ⇒ Die erste Computergeneration basiert auf der Röhrentechnik Die Erfinder sind J. Presper Eckert und J. William Mauchly und die logischeKonzeption stammt von J. von Neuman
- **○** 1955 Die zweite Computergeneration
 - ⇒ Shockley, Bardeen und Brattain entdecken 1948 die Transistorwirkung und legen damit den Grundstein für die Mikroelektronik
- **○** 1960 Integrierte Schaltkreise (IC)
 - ⇒ Die Funktionen von Transistoren, Widerständen und Dioden werden in Planartechnik auf ein Halbleiter-Plättchen aufgebracht

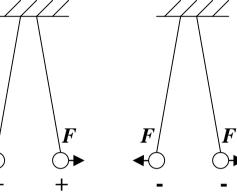
1 Physikalische Grundlagen

1.1 Elektrische Ladung

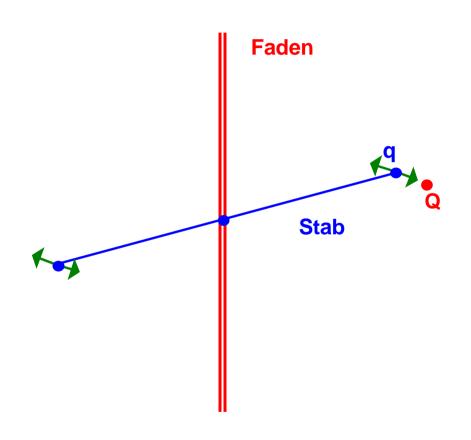

ELEKTRON

Die Einheit der elektrischen **Ladung ist**


$$1C = 1As$$


Die Elektrische Ladung eines Elektrons beträgt

$$e_0 = 1,602 \times 10^{-19} \text{ C}$$


Elektrische Kraft

- O Elektrische Ladungen üben Kräfte aufeinander aus
 - ⇒ ungleiche Ladungen ziehen sich an
 - ⇒ gleiche Ladungen stoßen sich ab

Messung der Kraft

Torsionswaage (Coulomb, 1785)

- Für zwei Punktladungen Q und q im Vakuum und im Abstand d gilt:
 - \Rightarrow Die Kraft ist proportional dem Produkt der beiden Ladungen $F \sim Q \cdot q$
 - ⇒ Die Kraft ist umgekehrt proportional zum Quadrat des Abstands

$$F \sim \frac{1}{d^2}$$

⇒ Zusammengefaßt ergibt sich

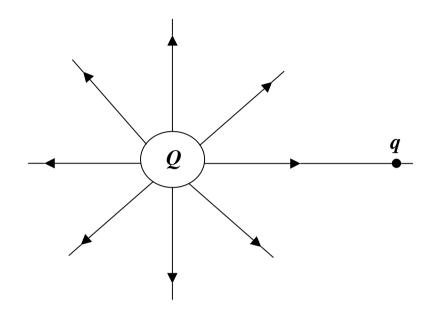
$$F \sim \frac{Q \cdot q}{d^2}$$

U. Kebschull

Coulombsches Gesetz

○ Kraft ist eine vektorielle Größe

$$\vec{F} = f \cdot \frac{qQ}{d^2} \cdot \vec{r}_0$$

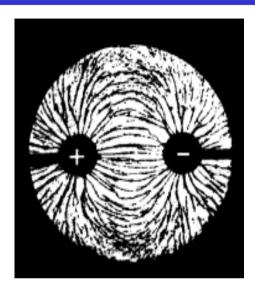

$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{qQ}{d^2} \cdot \vec{r}_0$$

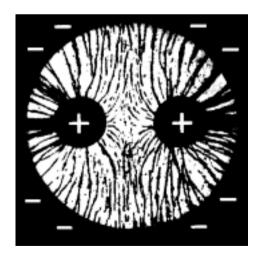
elektrische Feldkonstante

$$\varepsilon_0 = 8,859 \times 10^{-12} \frac{C^2}{Nm^2}$$

- **O** Einheiten
 - \Rightarrow Kraft F in Newton [N]
 - \Rightarrow Anstand *d* in Meter [m]
 - \Rightarrow Ladung Q in Coulomb [C]

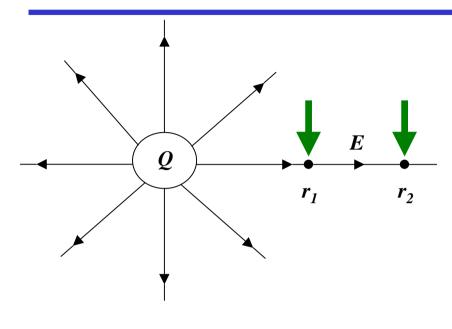
Elektrisches Feld


Jedem Punkt des Raumes um eine vorgegebene Ladung Q wird eine vektorielle Größe zugeordnet, die um die Probeladung q normiert wird


$$\vec{F} = q \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{d^2} \cdot \vec{r}_0$$
$$= q \cdot \vec{E}$$

$$\vec{E} = \lim_{q \to 0} \frac{\vec{F}}{q}$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{d^2} \cdot \vec{r}_0$$


Elektrische Feldlinien

- O Elektrische Feldlinien sind ein Hilfsmittel zur Beschreibung von elektrischen Feldern
 - ⇒ sie zeigen immer in Richtung der wirkenden Kraft
 - ⇒ sie erfüllen den Raum kontinuierlich
 - ⇒ sie beginnen mit einer positiven Ladung und enden mit einer negativen Ladung
 - **⇒** sie sind nicht geschlossen
- O Sie sind keine physikalische Realität
 - ⇒ können jedoch sichtbar gemacht werden

Die elektrische Spannung

Wird eine Ladung in einem elektrischen Feld bewegt, so muß Arbeit verrichtet werden

$$W = \vec{F} \cdot \Delta \vec{r}$$

- O In einem elektrischen Feld wirkt die Kraft $\vec{F} = \vec{E} \cdot q$
- O Damit beträgt die Arbeit um eine Ladung q von r₁ nach r₂ zu bewegen

bewegen
$$W_{r_1 \to r_2} = \int_{r_1}^{r_2} \vec{F} \cdot dr = q \int_{r_1}^{r_2} \vec{E} \cdot dr$$

Die elektrische Spannung

O Die Spannung zwischen r_1 und r_2 wird definiert als die Arbeit, die verrichtet werden muß, um die Elementarladung q von r_1 nach r_2 zu bewegen, normiert um die Ladung q

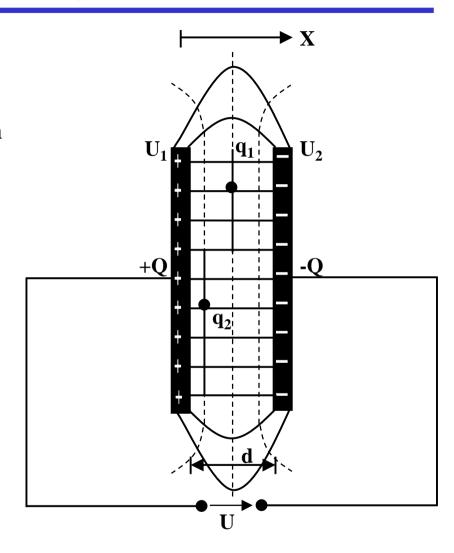
$$U_{r_1 \to r_2} = \frac{W_{r_1 \to r_2}}{q} = \int_{r_1}^{r_2} \vec{E} \cdot dr$$

$$Spannung = \frac{Arbeit}{Ladung}$$

$$1 V = 1 \frac{Nm}{C}$$

Das elektrische Potential

O Normiert man die Energie auf einen Bezugspunkt, so erhält man das elektrische Potential ϕ


$$\varphi(\vec{r}) = \frac{Q}{4\pi\varepsilon_0 r} \cdot \frac{1}{\vec{r}_0}$$

O Die Spannung ergibt sich als Potentialdifferenz

$$U_{12} = \varphi(\vec{r}_1) - \varphi(\vec{r}_2)$$

Elektrische Ladung auf Leitern

- Auf metallischen Leitern sind Ladungen frei beweglich
 - ⇒ sie stoßen sich ab und verteilen sich gleichmäßig an der Oberfläche
- Alle Feldlinien stehen senkrecht zur Oberfläche
 - ⇒ im Innern eines metallischen Hohlraums ist ein feldfreier Raum (Faradayscher Käfig)
- O Stehen sich zwei Metallflächen gegenüber, so entsteht ein Plattenkondensator
 - \Rightarrow Die Flächen bilden Potentialflächen $\varphi_1\varphi_2$

Elektrische Flußdichte

- Flußdichte *D* ist die Ladungsmenge pro Flächeneinheit $D = \frac{Q}{A}$
- O Für eine beliebige Fläche

$$\iint_{A} \vec{D} \cdot d\vec{A} = Q$$
 wenn Q innerhalb der von A umschlossenen
Fläche liegt
sonst

O Für eine Kugelfläche bei der die Ladung im Mittelpunkt steht:

$$\iint \vec{D} \cdot d\vec{A} = Q \qquad \text{mit} \quad \vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{d^2} \cdot \vec{r_0} \quad \text{folgt}$$

$$D \cdot 4\pi r^2 = Q \qquad \qquad \vec{D} = \varepsilon_0 \vec{E} \qquad \qquad D = \frac{1}{4\pi} \cdot \frac{Q}{r^2} \qquad \qquad [\varepsilon_0] = \frac{[D]}{[E]} = \frac{C}{m^2} \cdot \frac{m}{V} = \frac{C}{V \cdot m}$$

Wirkung eines Dielektrikum

- \circ ϵ_0 gilt für Vakuum
- O Die Kraft auf eine Probeladung q verändert sich, wenn der Raum ausgefüllt ist
 - \Rightarrow Dielektrizitätskonstante ϵ_{r}

$$\vec{D} = \varepsilon_{0} \cdot \varepsilon_{r} \cdot \vec{E}$$

 \bigcirc Beispiele für ε_r

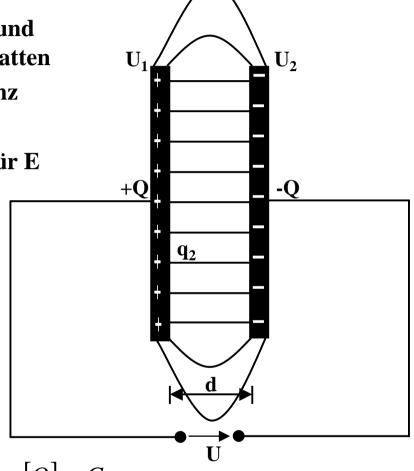
Material	Er
Vakuum	1,0
Luft	1,006
Papier	5,4
Porzellan	5,5
Glas	315
Marmor	8,414
Ethylalkohol	25,1
Glycerin	41,1
Wasser	81,0
Bariumtitanat	10009000

Kapazität eines Plattenkondensators

- Näherung d << A
 - ⇒ alle Feldlinien laufen parallel und befinden sich innerhalb der Platten
- damit gilt mit der Potentialdifferenz

$$U = E \cdot d$$

o mit der vereinfachten Gleichung für E


$$E = \frac{Q}{\varepsilon_0 \cdot A}$$

$$\mathbf{gilt} \ U = \frac{Q}{\varepsilon_0 \cdot A} \cdot d$$

O Kapazität C ist

$$C = \frac{Q}{U} = \frac{\varepsilon_0 \cdot A}{d}$$

O Einheit der Kapazität: Farad

$$[C] = \frac{[Q]}{[U]} = \frac{C}{V} = F$$

1.2 Elektrischer Strom

- Elektrischer Strom ist der Fluß von Elektronen
- O Ladung eines Elektrons $e_0 = 1.602 \ 10^{-19} \ C$

$$1C = \frac{1}{1,602} \cdot 10^{19}$$
 Elektronenladungen

O Die Stromstärke I entspricht der bewegten Ladungsmenge pro Zeiteinheit

$$I = \frac{Q}{t}$$

○ Fließen durch einen Leiter pro Sekunde n Coulomb, so messen wir einen Strom von n Ampere [A]

$$1 A = 1 \frac{C}{s} = \frac{1}{1,602} \cdot 10^{19} \frac{Elektronen}{s}$$

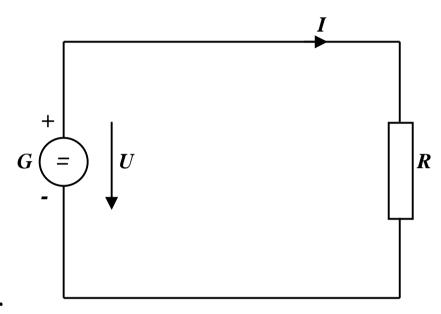
Variabler elektrischer Strom

○ Ist die Stromstärke von der Zeit abhängig, benutzt man die differentielle Schreibweise

$$i(t) = \frac{dQ}{dt}$$

O daraus folgt

$$dQ = i(t) \cdot dt$$


$$Q = \int_{t_0}^{t_1} (i) \cdot dt$$

O in Einheiten

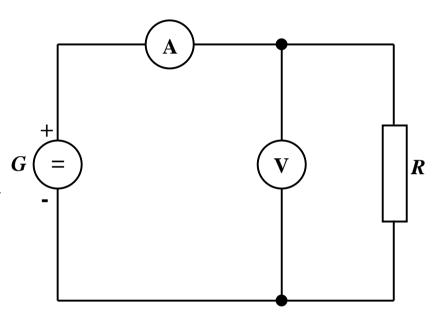
$$1C = 1As$$

Elektrischer Stromkreis

- O Ein elektrischer Stromkreis ist eine Anordnung aus
 - ⇒ Stromerzeuger *G* (Generator)
 - \Rightarrow Verbraucher R
 - **⇒** Verbindungsleitungen
- In *G* wird Energie aufgewendet
 - \Rightarrow (W<0)
- O In R wird Energie verbraucht
 - \Rightarrow (W>0)
- O Der elektrische Strom fließt (per Definition) von Plus (+)nach Minus (-)
- O Spannung im Stromerzeuger *G* bewirkt im Verbraucher R einen Stromfluß von von Plus nach Minus (Pfeilrichtung)

Leitwert und Widerstand

- **○** Zahlenmäßiger Zusammenhang zwischen Spannung und Strom an einem Verbraucher
 - \Rightarrow Der gemessene Strom I ist proportional zur Spannung U


$$I \sim Q$$
$$I = G \cdot U$$

- O Der Proportionalitätsfaktor G wird Leitwert genannt
- O Die Einheit von G ist Siemens

$$1S = 1\frac{A}{V}$$

in der Praxis verwendet man den Kehrwert von G, den Widerstand R

$$R = \frac{1}{G}$$

Ohmsches Gesetz

- igcup Es gibt einen festen Zusammenhang zwischen dem Strom I und der Spannung U
 - **⇒** Ohmsches Gesetz

$$I = \frac{1}{R} \cdot U$$

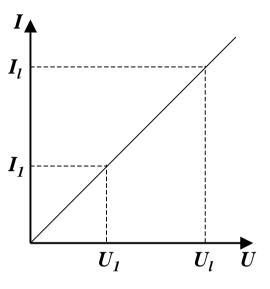
$$U = R \cdot I$$

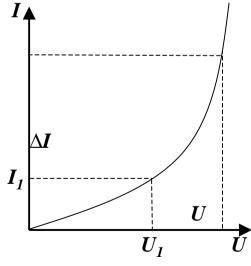
$$R = \frac{U}{I}$$

igcup Die Einheit für den Widerstand ist Ohm Ω

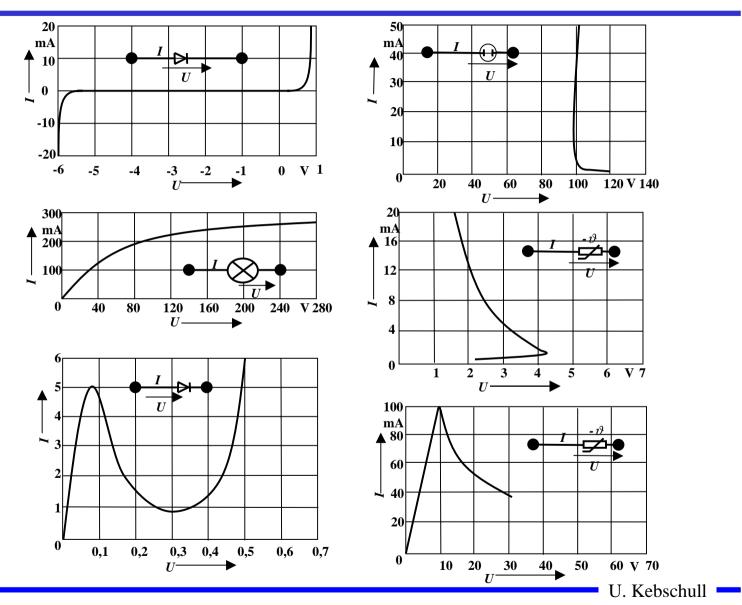
$$1\Omega = 1\frac{V}{A}$$

Kennlinienfeld


O Der Zusammenhang zwischen dem Strom I und der Spannung U kann in einem Kennlinienfeld dargestellt werden


 \Rightarrow X-Achse: Spannung U

 \Rightarrow Y-Achse: Strom I


- Ist der Proportionalitätsfaktor *G* konstant, so spricht man von einem *linearen* Widerstand
- O Beispiel: metallische Leiter sind lineare Widerstände; er ist
 - \Rightarrow proportional zur Länge l
 - ⇒ umgekehrt proportional zur Fläche *A*
 - **⇒** abhängig vom Material

$$R = \rho \frac{l}{A}$$
 $[\rho] = \Omega \frac{\text{mm}^2}{\text{m}}$

Kennlinien verschiedener Bauelemente

Arbeit und Leistung des elektrischen Stroms

O Elektrische Arbeit W wird verrichtet, wenn eine Ladung Q von einem Potential φ_1 zu einem Potential φ_2 transportiert wird

$$W = q \cdot (\varphi_1 - \varphi_2) = Q \cdot U$$
$$= I \cdot t \cdot U$$
$$= I^2 \cdot R \cdot t$$

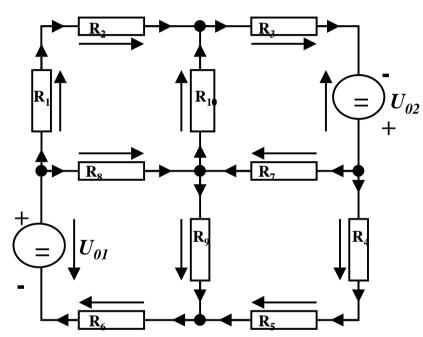
O Die Einheit der elektrischen Arbeit ist Joule (J)

$$1J = 1Ws = 1AVs$$

○ Mit [V]=Nm/C und [A]=C/s gilt

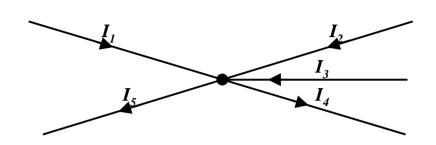
$$1J = 1AVs = 1\frac{N \cdot m}{C} \cdot \frac{C}{s} \cdot s = 1 Nm$$

O Die elektrische Leistung *P* entspricht der (elektrischen) Arbeit pro Zeiteinheit


$$P = \frac{W}{t} = U \cdot I = I^2 R = \frac{U^2}{R}$$

O Die Einheit der elektrischen Leistung ist Watt (W)

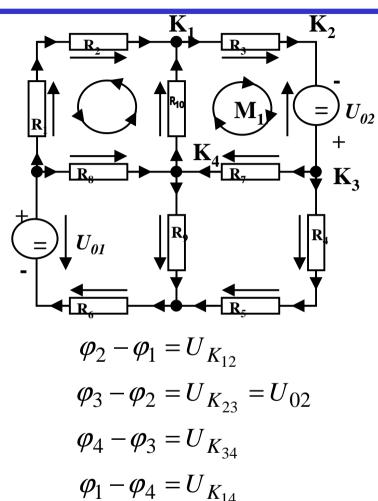
$$1W = 1VA$$


Die Kirchhoffschen Sätze

- O Nur selten wird an einem Stromerzeuger G nur ein einzelner Verbraucher R angeschlossen
- O Eine Anordnung aus Spannungsquellen und Verbrauchen heißt Netz
- O Es besteht aus Knoten und Maschen
 - **⇒** Knoten: Verzweigungspunkte
- O Richtung der Pfeile (Vorzeichen)
 - ⇒ Spannung ist von Plus nach Minus gerichtet
 - ⇒ Strom fließt von Plus nach Minus

Knotenregel (1. Kirchhoffscher Satz)

- O In einem Knoten ist die Summe aller Ströme Null
 - ⇒ An keiner Stelle des Netzes werden Ladungen angehäuft
- O Definition der Stromrichtung für die mathematische Formulierung
 - ⇒ zufließende Ströme werden mit einem positiven Vorzeichen behaftet
 - ⇒ abfließende Ströme werden mit einem negativen Vorzeichen behaftet


$$0 = I_{1} - I_{2} + I_{3} - I_{4} - I_{5}$$
oder
$$I_{2} + I_{4} + I_{5} = I_{1} + I_{3}$$
allgemein
$$\sum_{i=0}^{n} I_{i} = 0$$

Maschenregel (2. Kirchhoffscher Satz)

- O Bei einem geschlossenen Umlauf einer Masche ist die Summe aller Spannungen Null
 - $\begin{tabular}{l} \Leftrightarrow die Spannungsquellen\\ erzeugen die Spannungen U_{01}\\ und U_{02}\\ \end{tabular}$
 - ⇒ durch die Widerstände fließt ein Strom
 - ⇒ nach dem Ohmschen Gesetz gilt für die Spannung

$$U = R \cdot I$$

⇒ die Knotenpunkte K₁, K₂, K₃ und K₄ können deshalb unterschiedliches Potential besitzen

Maschenregel (2. Kirchhoffscher Satz)

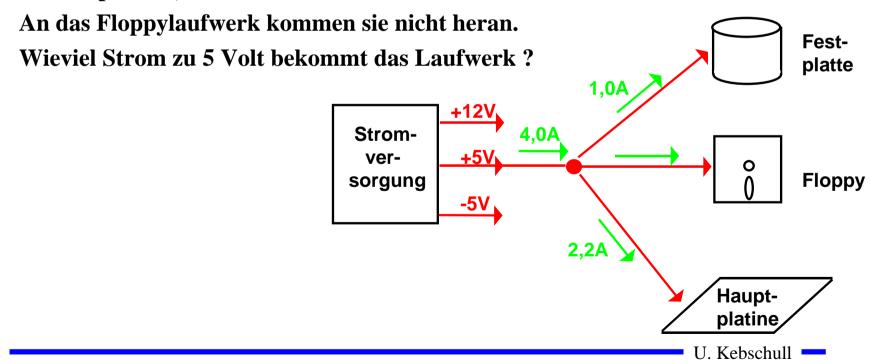
○ Werden die Potentialdifferenzen addiert, so folgt:

$$\varphi_2 - \varphi_1 + \varphi_3 - \varphi_2 + \varphi_4 - \varphi_3 + \varphi_1 - \varphi_4 = 0$$

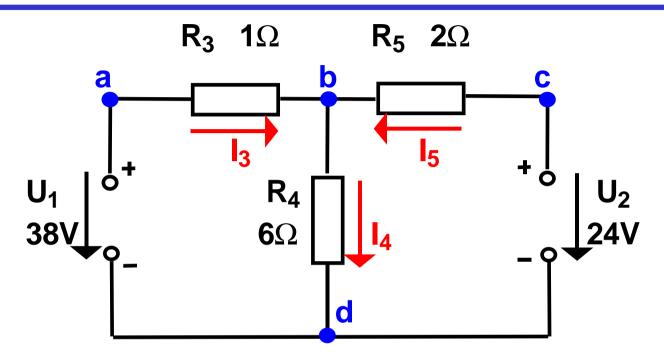
$$U_{K_{12}} + U_{K_{23}} + U_{K_{34}} + U_{K_{14}} = 0$$

- O Vorzeichen der Spannung
 - ⇒ die Spannungsrichtung der Quellen ist vorgegeben (von + nach -)
 - **⇒** Umlaufrichtung der Masche wird festgelegt
 - ⇒ Spannungspfeile gegen die Umlaufrichtung werden negativ gezählt
 - ⇒ Spannungspfeile mit der Umlaufrichtung werden positiv gezählt

$$U_{K_{12}} - U_{02} + U_{K_{34}} + U_{K_{14}} = 0$$


$$U_{K_{12}} + U_{K_{34}} + U_{K_{14}} = U_{02}$$

Anwendung 1: Knotenregel


Sie haben einen neuen Personal Computer gekauft.

Sie benutzen ein Strommeßgerät (Ampere-Meter) und stellen damit fest, daß die 5 Volt Stromversorgung Ihres PC im eingeschalteten Zustand 4,0 A liefert. Versorgt wird damit die Hauptplatine, das Festplattenlaufwerk und das Floppy Laufwerk.

Sie messen, daß der Strom in die Hauptplatine 2,2 A beträgt und der Strom in die Festplatte 1,0 A.

Anwendung 2: Knoten- und Maschenregel

- \bigcirc Gesucht sind I_3 , I_4 und I_5
- Knotenregel: $\sum I_b = +I_3 I_4 + I_5 = 0$
- O Maschenregel: $\sum U_{abd} = U_1 I_3 R_3 I_4 R_4 = 0$ $1 \cdot I_3 + 6 \cdot I_4 = 38$ $\sum U_{cbd} = U_2 - I_5 R_5 - I_4 R_4 = 0$

$$I_3 - I_4 + I_5 = 0$$

$$1 \cdot I_3 + 6 \cdot I_4 = 38$$

$$2 \cdot I_5 + 6 \cdot I_4 = 24$$

Substitutionsmethode

$$I_3 + I_5 = I_4$$

$$1 \cdot I_3 + 6 \cdot (I_3 + I_5) = 38$$

$$2 \cdot I_5 + 6 \cdot (I_3 + I_5) = 24$$

$$(1+6) \cdot I_3 + 6 \cdot I_5 = 38$$

$$6 \cdot I_3 + (6+2) \cdot I_5 = 24$$

$$I_3 = \frac{38 - 6 \cdot I_5}{7}$$

$$6 \cdot \frac{38 - 6 \cdot I_5}{7} + 8 \cdot I_5 = 24$$

$$6 \cdot 38 - 36 \cdot I_5 + 56 \cdot I_5 = 24 \cdot 7$$
$$20 \cdot I_5 = 168 - 228$$

$$I_5 = -\frac{60}{20} = -3$$

$I_4 = 8 - 3 = 5$

$$I_3 = \frac{38 - 6 \cdot I_5}{7}$$
 $I_3 = \frac{38 - (6 \cdot -3)}{7} = \frac{38 + 18}{7} = \frac{56}{7} = 8$

Negatives Vorzeichen, da falsche Annahme der **Stromrichtung**

U. Kebschull

Lösung über Determinaten

System von n linearen Gleichungen mit n Unbekannten

$$a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + \cdots + a_{1n}X_n = b_1$$

 $a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + \cdots + a_{2n}X_n = b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{n1}X_1 + a_{n2}X_2 + a_{n3}X_3 + \cdots + a_{nn}X_n = b_n$

Determinate der Koeffizienten des Gleichungssystems

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

Cramersche Regel

$$X_{1} = \frac{1}{D} \cdot \begin{vmatrix} b_{1} & a_{12} & a_{13} & \cdots & a_{1n} \\ b_{2} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = \frac{D_{1}}{D}$$

U. Kebschull

Berechnung von Determinaten

O Determinante 2. Ordnung

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

O Determinate 3. Ordnung

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}$$
$$-a_{13}a_{22}a_{31} - a_{12}a_{23}a_{31} - a_{21}a_{32}a_{13}$$

Berechnung von Determinaten

Determinate 4. Ordnung

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{31} & a_{31} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{41} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix}$$

Für das Beispiel

Gleichungssystem

$$I_3 - I_4 + I_5 = 0$$
$$I_3 + 6 \cdot I_4 = 38$$
$$6 \cdot I_4 + 2 \cdot I_5 = 24$$

Operation Description

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 6 & 0 \\ 0 & 6 & 2 \end{vmatrix} = 1 \cdot 6 \cdot 2 + (-1) \cdot 0 \cdot 0 + 1 \cdot 6 \cdot 1$$

$$= 12 + 6 + 2 = 20$$

$$= 0 \cdot 0 \cdot 0 - (-1) \cdot 1 \cdot 24 - 38 \cdot 6 = 144$$

$$= 6 \cdot 24 + 24 - 38 \cdot 6 = 144$$

$$= 15 = \frac{D_5}{D} = \frac{-60}{20} = -3$$

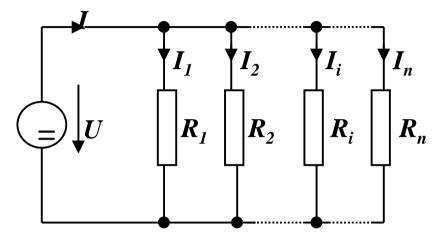
O Für I₅

$$D_5 = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 6 & 38 \\ 0 & 6 & 24 \end{vmatrix}$$
$$= 1 \cdot 6 \cdot 24 + (-1) \cdot 38 \cdot 0 + 1 \cdot 6 \cdot 0$$
$$-0 \cdot 6 \cdot 0 - (-1) \cdot 1 \cdot 24 - 38 \cdot 6 \cdot 1$$
$$= 6 \cdot 24 + 24 - 38 \cdot 6 = 144 + 24 - 228 = -60$$

$$I_5 = \frac{D_5}{D} = \frac{-60}{20} = -3$$

Sonderfall 1: Parallelschaltung von Widerständen

\bigcirc Für die Teilströme $I_1, I_2,...,I_n$ gilt:


$$I_1 = \frac{U}{R_1}, I_2 = \frac{U}{R_2}, ..., I_n = \frac{U}{R_n}$$

O Nach der Knotenregel ist der Gesamtstrom:

$$I = I_1 + I_2 + \dots + I_n$$

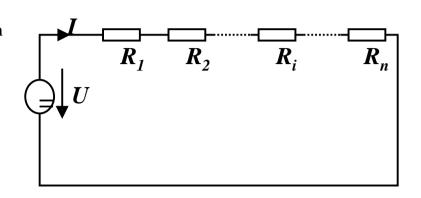
$$= \frac{U}{R_1} + \frac{U}{R_2} + \dots + \frac{U}{R_n}$$

$$= U \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)$$

O Der Ersatzwiderstand der gesamten Schaltung berechnet sich durch:

$$R_{gesamt} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

U. Kebschull —


Sonderfall 2: Serienschaltung von Widerständen

○ Für die Spannungen U₁, U₂,...,U_n an den Widerständen gilt:

$$U_1 = I \cdot R_1, U_2 = I \cdot R_2, ..., U_n = I \cdot R_n$$

O Nach Maschenregel ist die Gesamtspannung:

$$U = U_1 + U_2 + ... + U_n$$

= $I \cdot R_1 + I \cdot R_2 + ... + I \cdot R_n$
= $I \cdot (R_1 + R_2 + ... + R_n)$

O Der Ersatzwiderstand der gesamten Schaltung berechnet sich durch:

$$R_{gesamt} = R_1 + R_2 + \dots + R_n$$

Sonderfall 3: Spannungsteiler

- O Reihenschaltung von zwei Widerständen
- Für das Verhältnis der Spannungen U₁ und U₂ gilt:

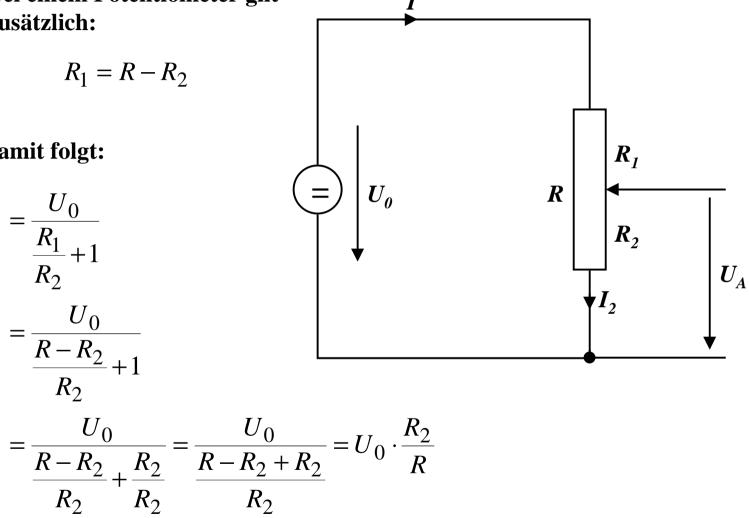
$$I = \frac{U_1}{R_1} = \frac{U_A}{R_2} \Rightarrow \frac{U_1}{U_A} = \frac{R_1}{R_2}$$

 R_1 R_2 U_A O Ist U_0 , R_1 und R_2 gegeben, so folgt für U_A :

$$\begin{split} \frac{U_1}{U_A} &= \frac{R_1}{R_2}, \ U_1 = U_0 - U_A \ \Rightarrow \frac{U_0 - U_A}{U_A} = \frac{R_1}{R_2} \\ &\Rightarrow \frac{U_0}{U_A} - \frac{U_A}{U_A} = \frac{R_1}{R_2} \\ &\Rightarrow \frac{U_0}{R_1} + 1 \end{split}$$

$$\Rightarrow \frac{U_0}{U_A} = \frac{R_1}{R_2} + 1$$

Sonderfall 4: Potentiometerschaltung

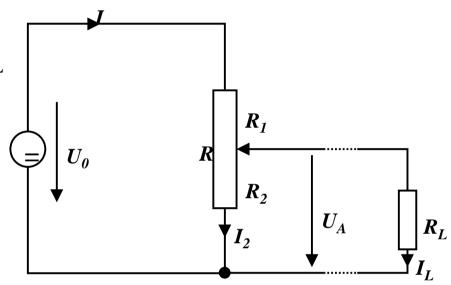

O Bei einem Potentiometer gilt zusätzlich:

$$R_1 = R - R_2$$

O Damit folgt:

$$U_{A} = \frac{U_{0}}{\frac{R_{1}}{R_{2}} + 1}$$

$$= \frac{U_{0}}{\frac{R - R_{2}}{R_{2}} + 1}$$



U. Kebschull

Sonderfall 5: Belastete Potentiometerschaltung

 Wird die Potentiometerschaltung durch einen Lastwiderstand belastet, so entsteht eine Parallelschaltung von R₂ und R_L

Es gelten: $I = I_2 + I_L$ $U_0 = I \cdot R_1 + I_2 \cdot R_2$ $I_L \cdot R_L = I_2 \cdot R_2$ $R_{gesamt} = R_1 + \frac{R_2 \cdot R_L}{R_2 + R_L}$

O Damit folgt:

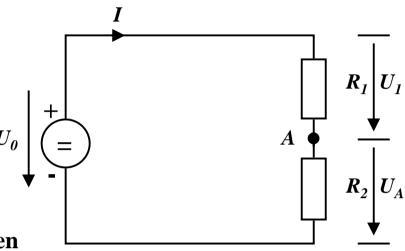
$$I = \frac{U_0}{R_{gesamt}} = \frac{U_0}{R_1 + \frac{R_2 \cdot R_L}{R_2 + R_L}}$$

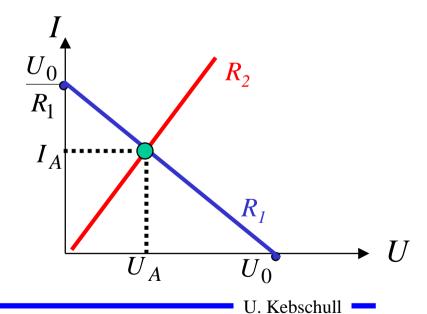
$$I_{L} = \frac{U_{0} - I \cdot R_{1}}{R_{L}}$$

$$U_{L} = I_{L} \cdot R_{L}$$

U. Kebschull

Graphische Bestimmung des Arbeitspunkts


- Praktische Anwendung bei nichtlinearen Kennlinien
 - **⇒** Dioden, Transistoren
- **O** Vorgehen:
 - 1. Kennlinie für R2 einzeichnen
 - 2. Kennlinie für R1 in das selbe Diagramm einzeichnen

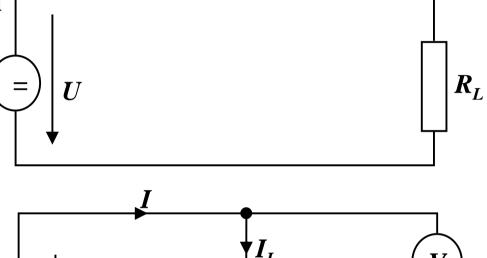

$$I = \frac{U_1}{R_1} = \frac{U_0 - U_A}{R_1}$$

2 Punkte:

$$U_A = 0 \Rightarrow I = \frac{U_0}{R_1}$$

 $U_A = U_0 \Rightarrow I = 0$

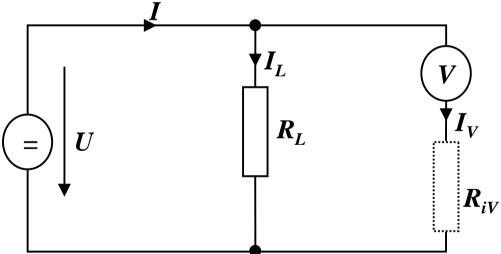
3. Schnittpunkt A ergibt den Arbeitspunkt mit Spannung U_A und Strom IA



Messen von Strom und Spannung

- O Ein Amperemeter besitzt einen (kleinen) Innenwiderstand
 - ⇒ der gemessene Strom wird verringert

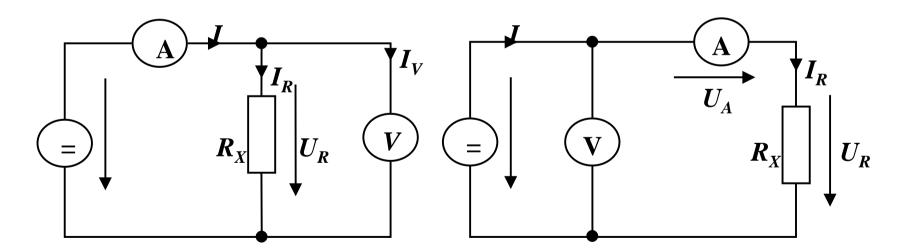
$$I = \frac{U}{R_{iA} + R_L}$$


⇒ R_{iA} sollte gegenüber R_Lmöglichst klein sein

- O Ein Voltmeter besitzt einen (großen) Innenwiderstand
 - ⇒ die gemessene Spannung wird verringert

$$\frac{I_V}{I} = \frac{R_L}{R_{iV} + R_L}$$

 \Rightarrow R_{iV} sollte gegenüber R_L möglichst groß sein


U. Kebschull —

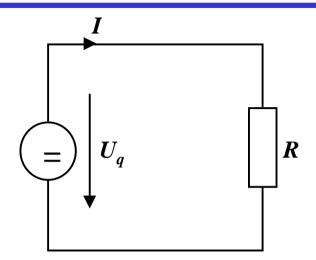
Messung eines Widerstands

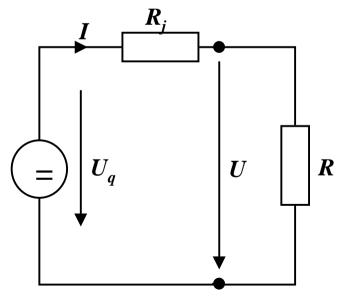
- \bigcirc Soll ein unbekannter Widerstand R_x bestimmt werden, so kann dies durch gleichzeitige Strom- und Spannungsmessung erreicht werden
 - **⇒** Eines der Meßgeräte ist mit einem Fehler behaftet

Stromfehlerschaltung

Spannungsfehlerschaltung

Quellen- und Klemmenspannung


- **O** Ideale Spammungsquelle:
 - ⇒ nach dem Ohmschen Gesetz


$$\lim_{R\to 0} I = \infty$$

- O Eine reale Spannungsquelle kann durch Hinzufügen eines Innenwiderstands modelliert werden
 - ⇒ die abgreifbare Spannung heißt Klemmenspannung

$$U = U_q - I \cdot R_i$$

$$I = \frac{U_q}{R + R_i}$$

1.3 Elektromagnetisches Feld

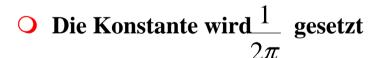
- O Versuch von Oerstedt (WS 1819/20)
 - in der Nähe eines stromdurchflossenen Leiters werden Magnetnadeln abgelenkt
 - ⇒ alle Magnetnadeln richten sich kreisförmig aus
 - ⇒ alle Magnetnadel haben den gleiche Drehsinn

Magnetische Feldlinien

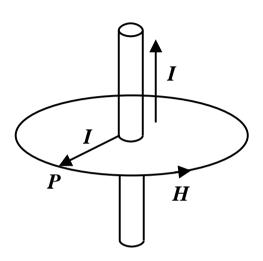
- O Das magnetische Feld wird wie das elektrische Feld anschaulich durch Feldlinien beschrieben
 - ⇒ die magnetischen Feldlinien umschließen den Leiter ringförmig
 - **⇒** Feldlinien sind konzentrisch um den Leiter angeordnet
- Für die Richtung der Feldlinien gilt die Rechte-Hand-Regel:
 - ⇒ zeig der Daumen der rechten Hand in Richtung des Stromes im Leiter, so zeigen die Finger, die den Leiter umfassen in Richtung der Feldlinien

Magnetische Feldstärke

- O Grad der Auslenkung der Magnetnadeln als Maß für die Kraft

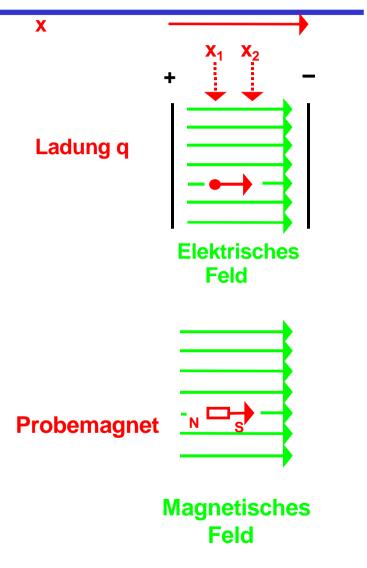

$$F \sim H$$

⇒ die magnetische Feldstärke *H* ist proportional zum Strom *I*


$$H \sim I$$

 ⇒ die magnetische Feldstärke H ist umgekehrt proportional zum
 Abstand r 1

$$H \sim \frac{1}{r}$$



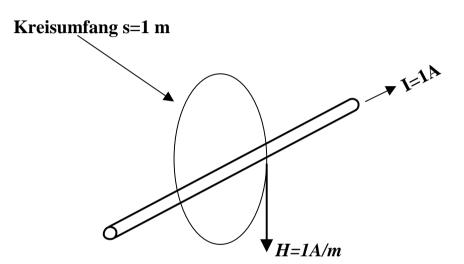
$$H = \frac{I}{2\pi r}$$

Magnetisches Potential

- Verschiebt man in einem elektrischen Feld eine Ladung q entlang der elektrischen Feldlinien von einem Punkt x₁ nach einen Punkt x₂, so wird hierbei Energie umgesetzt. Diese Energie ist proportional dem Potentialunterschied der elektrischen Feldstärke zwischen den Punkten x₁ und x₂
- O Verschiebt man in einem magnetischen Feld einen (kleinen) Magneten von einem Punkt x₁ nach einem Punkt x₂ entlang der magnetischen Feldlinien, so wird hierbei ebenfalls Energie umgesetzt. Diese Energie ist proportional dem Potentialunterschied der magnetischen Feldstärke (zwischen den Punkten x₁ und x₂)

U. Kebschull

Magnetische Spannung

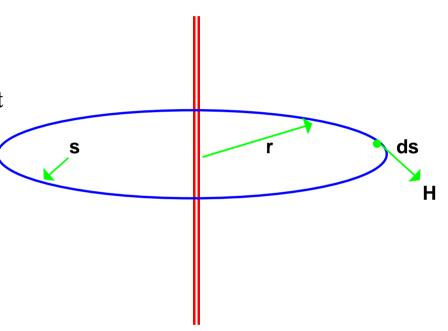

- Magnetische Spannung V entspricht dem magnetischen Potentialunterschied
 - ⇒ Produkt aus magnetischer Feldstärke H und Wegstrecke S

$$V_{12} = \int_{1}^{2} \vec{H} \cdot ds = I$$

O Einheit

$$[V] = A$$

$$[H] = \frac{A}{m}$$



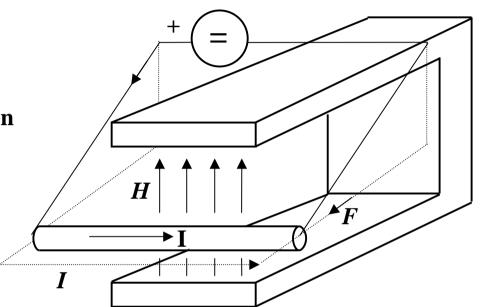
Das Durchflutungsgesetz

- Zusammenhang zwischen dem magnetischen Feld und dem verursachenden elektrischen Strom
 - ⇒ A = Kreisfläche mit dem Radius r
 - ⇒ j = Strom, der durch das Teilelement dA der Fläche A fließt (Stromdichte)
 - ⇒ s = geschlossener Weg (hier Kreisbahn, Radius r)
 - ⇒ ds =kleines Teilstück von s

$$\oint \vec{H}ds = \int_{A} jd\vec{A} = \sum_{k} I_{k} = I$$

O Linienintegral der magnetischen Feldstärke H längs des geschlossenen Weges s = ''magnetische Umlaufspannung''

Kraftwirkung magnetischer Felder auf stromdurchflossene Leiter


- Wechselwirkung zweier Magnetfelder
 - **⇒** Leiter
 - **⇒** Hufeisenmagnet
- Quantitative Untersuchungen ergeben:

$$F \sim I$$

$$F \sim l$$

$$F \sim H$$

$$F = \mu \cdot I \cdot l \cdot H$$

- l Länge des DrahtstücksH magnetisches Feld
- F Kraft
- **Strom**

Magnetische Induktion

- O Man definiert die magnetische Induktion *B* über die Kraft *F*
- Wenn der Draht senkrecht zur Feldrichtung steht:
 - ⇒ Die magnetische Induktion B beträgt genau 1 Tesla (T), wenn ein 1m langer Draht die Kraft von 1N erfährt

$$\vec{F} = I \cdot l \cdot \vec{B}$$

In Einheiten

$$[B] = \frac{[A]}{[I] \cdot [l]} = \frac{N}{A \cdot m}$$

- O Die magnetische Feldstärke *H* beschreibt die Ursache des magnetische Felds
 - □ unabhängig von
 Materialeigenschaften
 - ⇒ wird verursacht durch einen
 Strom
- O Die magnetische Induktion B beschreibt die Wirkung des magnetische Felds
 - **⇒** Kraft auf Eisenteile
- O Es gilt

$$\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$$

Permeabilität

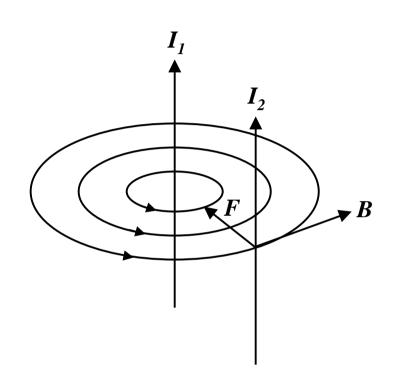
O Proportionalitätsfaktor $\mu = \mu_0 \cdot \mu_r$

\bigcirc Permeabilitätszahl μ_r beschreibt die magnetische Eigenschaft von Stoffen

Stoff	Eigenschaft	Permeabilitäts- zahl μ_r	Verhalten	Anwendung
Cu, Si, Bi, H ₂ O	diamagnetisch	< 1	Abstoßung vom Magnetfeld	technisch nicht verwendbar
Al, Pt, Luft	paramagnetisch	> 1	Anziehung vom Magnetfeld	technisch nicht verwendbar
Cr, FeO ₂	antiferro- magnetisch	= 1	unmagnetisch	technisch nicht verwendbar
Fe, Stähle, Legierungen	ferro- magnetisch	101106	l magnetisch	Transformatoren, elektrische Maschi- nen, magnetische Kreise
Ferrite	ferri- magnetisch	bis 3*10 ³	stark magnetisch	Permanentmagnete, HF-Spulkerne

Kraft zwischen stromdurchflossenen Leitern

- O Parallele Ströme ziehen sich an
- Antiparallele Ströme stoßen sich ab
- Kraft auf Leiter 2 imMagnetfeld des Leiters 1

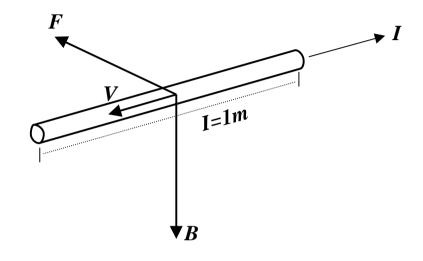

$$F = I_2 \cdot l \cdot B$$
$$= I_2 \cdot l \cdot \mu_0 \cdot \mu_r \cdot H$$

O Das elektromagnetisch Feld *H* beträgt

$$H = \frac{I_1}{2\pi \cdot d}$$

O Daraus folgt

$$F = \frac{\mu_0 \mu_r l}{2\pi d} I_1 I_2$$



Lorenzkraft

- Kraft auf den stromdurchflossenen Leiter entsteht durch die Bewegung der Elektronen
 - \Rightarrow positive Ladung $p = -e_0$
 - **⇒** Stromdichte auf dem Leiter

$$j = \frac{I}{A}$$

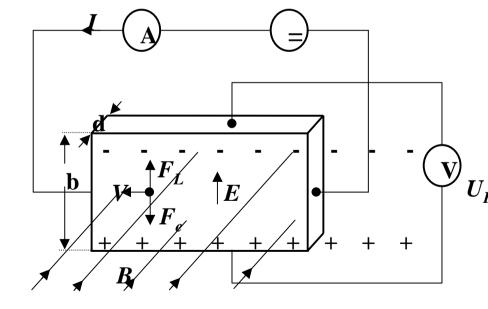
$$j = -e_0 \cdot \frac{N}{l \cdot A} \cdot v$$

O Dann gilt

$$\vec{F}_{Leiter} = -e_0 \cdot \frac{N}{l \cdot A} \cdot v \cdot A \cdot \vec{l} \times \vec{H}$$

$$= -e_0 \cdot \frac{N}{l \cdot A} \cdot l \cdot A \cdot \vec{v} \times \vec{H}$$

$$= -e_0 \cdot N \cdot \vec{v} \times \vec{H}$$

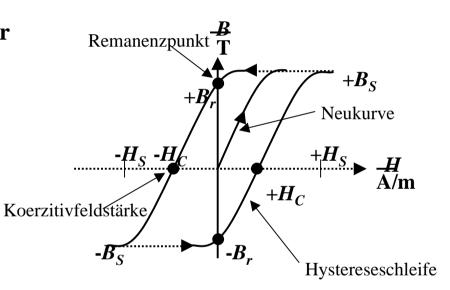

Auf eine positive Ladung p wirkt die Kraft

$$\vec{F} = \frac{\vec{F}_{Leiter}}{N} = p \cdot \vec{v} \times \vec{H}$$

Halleffekt

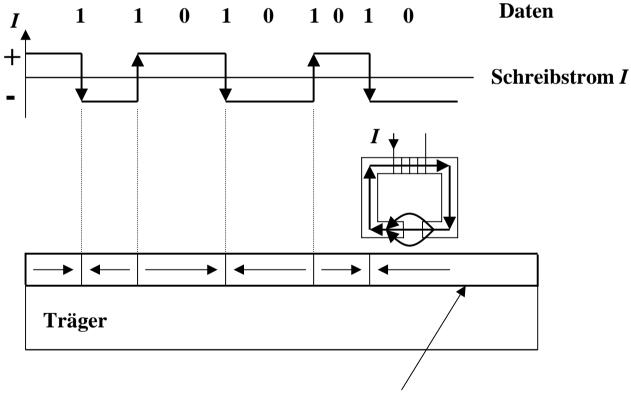
- O Gleichspannung U_H kann gemessen werden, wenn ein stromdurchflossenens Plättchen der Dicke d in ein magnetisches Feld gebracht wird
- O Es gilt:

$$U_H = R_H \frac{I \cdot B}{d}$$


O RH ist die materialabhängige Hall-Konstante

Element	$R_{\rm H}$ in 10^{-11} m ³ /C		
Kupfer	-5,4		
Silber	-9,0		
Antimon	-19,8		
Bismut	-54000		
Zink	3,3		
Aluminium	10,2		
Indium	16,0		
Arsen	450		
Halbleiter	$R_{\rm H}$ in 10^{-11} m ³ /C		
InAs	50100 · 105		
InAsP	200 · 10 ⁵		
InSb	200300 · 105		

Ferromagnetische Stoffe im Magnetfeld


- O Die Permeabilität ist in Ferromagnetischen Stoffen nicht konstant
 - **⇒** Hysterese
- O Erklärung: Drehprozesse kleiner Elementarmagneten im ferromagnetischen Material

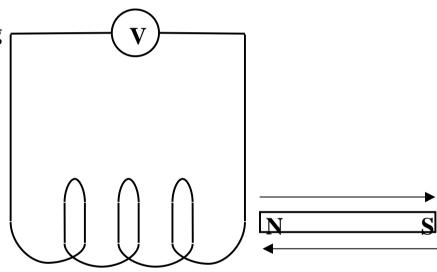
 - $\Rightarrow B_s$ entspricht der Sättigung
 - \Rightarrow Auch nach Wegnahme des magnetischen Felds H bleibt der ein magnetische Induktion B_r bestehen
 - \Rightarrow Erst bei $-H_c$ wird B wieder 0

Anwendung

- O Speicherung binärer Daten auf einem magnetischen Träger
- **O** FM-Verfahren
 - ⇒ bei jeder "1" wird die Schreibstromrichtung geändert

magnetisierbares Speichermedium

Elektromagnetische Induktion


- O Wird ein Stabmagnet in eine Spule eingebracht, so sieht man während der Bewegung einen Ausschlag am Voltmeter
- Wird der Stabmagnet wieder herausgezogen, schlägt das Voltmeter in die Gegenrichtung aus
 - \Rightarrow Eine Spannung U_i wird induziert

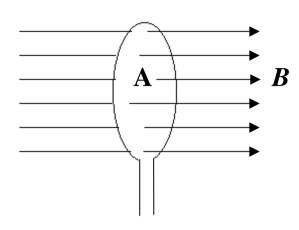
$$U_{i} \sim \frac{1}{\Delta t}$$

$$U_{i} \sim B$$

$$U_{i} \sim A$$

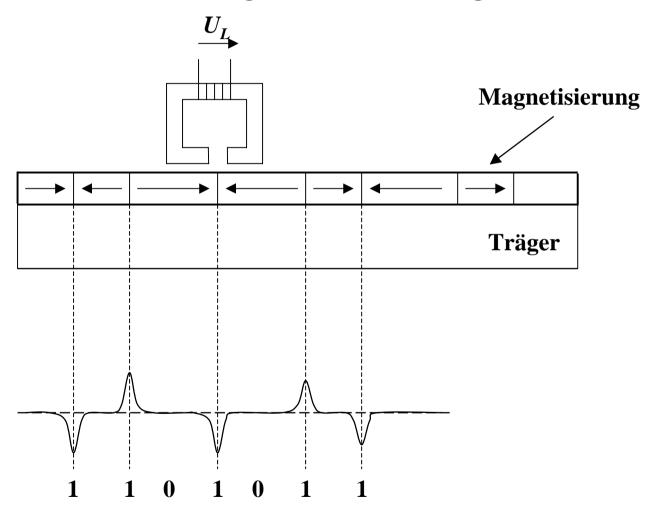
$$U_{i} \sim \frac{B \cdot A}{\Delta t}$$

Magnetischer Fluß

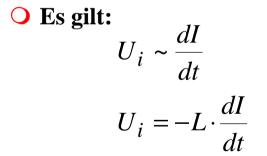

- O Der magnetische Fluß Φ entspricht anschaulich der Anzahl der Feldlinien, die durch eine Fläche gehen
- O Die magnetische Induktion *B* ist ist die Dichte der Feldlinien

$$\Phi = B \cdot A$$

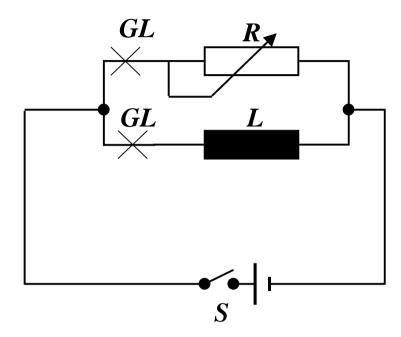
O Daraus folgt


$$U_i = -\frac{d\Phi}{dt}$$

O Das Minuszeichen entspricht der Lenzschen Regel: Die induzierte Spannung ist so gepolt, daß sie durch einen von ihr erzeugten Strom der Ursache des Induktionsvorgangs entgegen wirken kann


Anwendung

O Lesen von Daten auf magnetischen Datenträgern

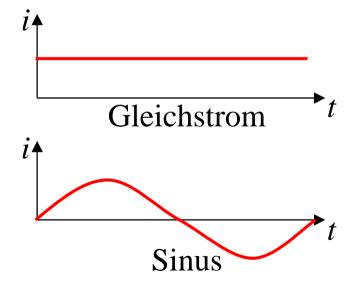


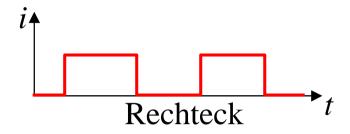
Selbstinduktion

- O In einer Spule ändert sich beim Einschalten der Fluß
 - ⇒ Die Flußänderung induziert in der selben Spule eine Gegenspannung
 - **⇒** Selbstinduktion
 - ⇒ Die Glühlampe im Stromkreis der Spule L erreicht ihre Helligkeit merklich später

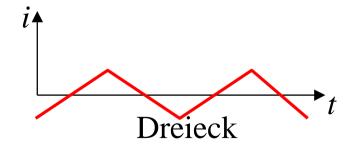
○ *L* ist die Induktivität der Spule

O L hängt ab von der Windungszahl N, der Spulenlänge l, der Fläche A und der Permeabilität μ


Permeabilität
$$\mu$$

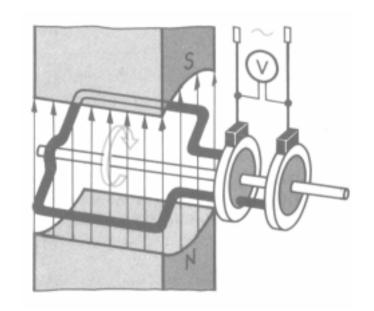

$$L = \mu_0 \cdot \mu_r \cdot \frac{N^2 \cdot A}{l}$$

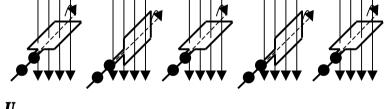
$$[L] = \frac{V \cdot s}{l} = H$$

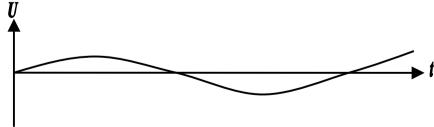

1.4 Wechselstromkreis

- Unterschied zum bisher betrachteten Gleichstrom
 - ⇒ Die Richtung und Stärke des Stroms ändert sich periodisch
 - ⇒ Hier: Wechselstrom mit Mittelwert null (kein Gleichstromanteil)

U. Kebschull


Wechselspannung und Wechselstrom


- Anwendung des Induktionsgesetzes
 - ⇒ In einem homogenen
 Magnetfeld dreht sich eine
 Schleife mit konstanter
 Winkelgeschwindigkeit w
 - ⇒ Der magnetische Fluß durch die Schleife beträgt


$$\Phi = B \cdot A \cdot \cos(\alpha)$$

 α entspricht dem Winkel der Feldlinien mit der Flächennormalen der Leiterschleife

$$\alpha = \omega \cdot t$$

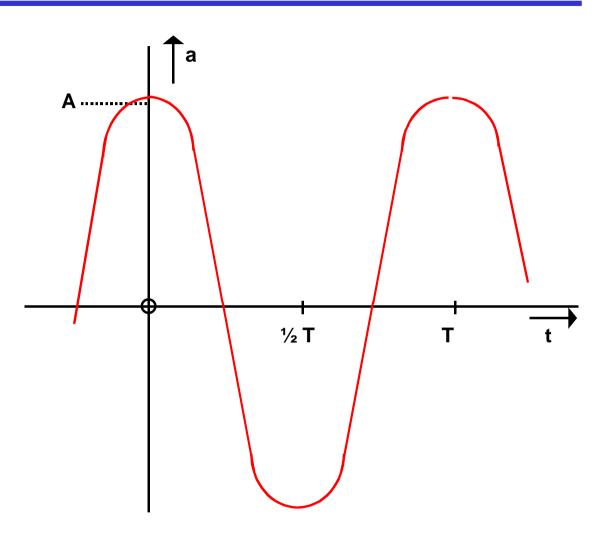
Kennwerte einer Wechselgröße

 $a = A \cos \omega t$

 $\omega = 2\pi f$

f = 1/T

a = Funktionswert

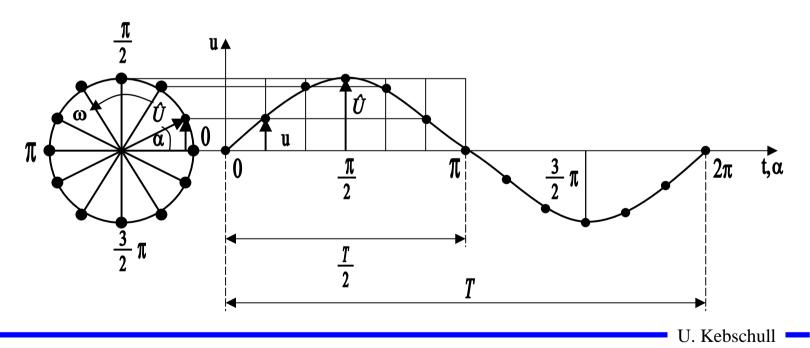

A = Scheitelwert

 ω = Kreisfrequenz

t = Zeit (Sekunden)

f = Frequenz (Hertz)

T = Periodendauer

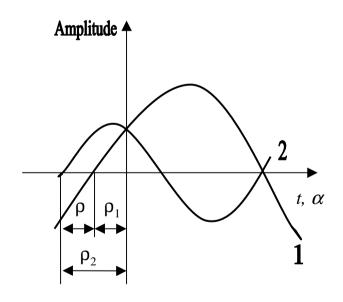


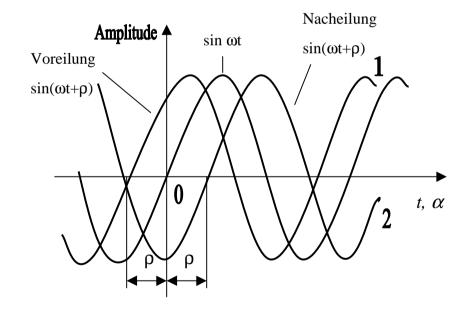
U. Kebschull

Zeiger- und Liniendiagramm

O Ein mit konstanter Winkelgeschwindigkeit im Gegenuhrzeigersinn umlaufender Zeiger bildet den Augenblickswert sinusförmiger Wechselgrößen ab

O Entstehung des Liniendiagramms aus dem Zeigerdiagramm

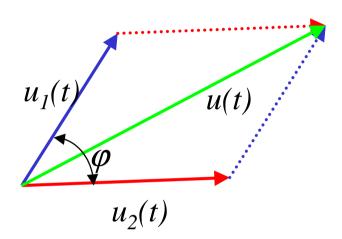



Phasenverschiebung

O Differenz der Nullphasenwinkel zwischen mehreren Wechselgrößen

$$\varphi = \varphi_2 - \varphi_1$$

O Positiver Phasenwinkel oder Voreilung bedeutet die Verschiebung der Sinuswelle in negativer Richtung der Zeitachse


U. Kebschull

Addition phasenverschobener Wechselspannungen

- Überlagerung zweierWechselspannungen oderWechselströme
 - ⇒ Der resultierende Zeiger ist gleich der Diagonalen des aus den beiden Komponenten gebildeten Parallelogramms

$$\vec{u}(t) = \vec{u}_2(t) + \vec{u}_1(t)$$

- O Das Ergebnis ist wieder eine Sinuskurve
 - \Rightarrow sind die Komponenten gleich groß, so beträgt der Phasenwinkel der Resultierenden φ

Wechselspannung und Wechselstrom

O Durch die Flußänderung wird eine Spannung induziert

$$u_{i} = -\frac{\mathbf{d}\Phi}{\mathbf{d}t} = -\frac{\mathbf{d}}{\mathbf{d}t}(B \cdot A \cdot \cos \omega t)$$
$$u_{i} = B \cdot A \cdot \omega \cdot \sin \omega t$$

Mit der maximalen Spannung

$$\hat{u} = B \cdot A \cdot \omega$$

Folgt für die Spannung u(t)

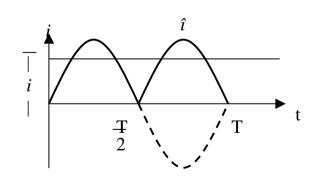
$$u(t) = u = \hat{u} \cdot \sin \omega t$$

- Wird ein Widerstand R an die Wechselspannung angeschlossen, so entsteht ein Wechselstromkreis.
- In ihm fließt der Strom i

$$i = \frac{u(t)}{R} = \frac{\hat{u}}{R} \cdot \sin \omega t = \hat{i} \cdot \sin \omega t$$

Kennwerte von Wechselgrößen

- O Beschreibung der mittleren Wirkung, unabhängig von der Kurvenform
- **○** Linearer Mittelwert (Gleichstromanteil)


$$\bar{i} = \frac{1}{T} \int_{0}^{T} i(t) dt$$

- Gleichrichtwert
 - **➡** Mittelwert des Betrags der der Wechselspannung
 - **⇒ Integral über die Absolutwerte des Stroms**

$$|\bar{i}| = \frac{1}{T} \int_{0}^{T} |i(t)| \mathrm{d}t$$

O Für einen sinusförmigen Wechseltrom gilt

$$|\bar{t}| = \frac{1}{T} \int_{0}^{T} |\hat{t} \cdot \sin(\omega t)| \mathbf{d}t = \frac{\hat{t} \cdot 2}{\pi} = 0.64 \cdot \hat{t}$$

Kennwerte von Wechselgrößen

- **O** Leistung des Gleichstroms $P_{=} = U \cdot I = I^2 \cdot R$
- O Effektivwert I_{eff} des Wechselstroms i(t): Wert eines Gleichstroms I der an einem Widerstand R die gleiche Leistung freisetzt, wie i(t)
 - ⇒ Es gilt

$$P_{=} = I^{2} \cdot R = R \cdot \frac{1}{T} \int_{0}^{T} i^{2}(t) dt$$

- \Rightarrow Daraus folgt $I^2 = \frac{1}{T} \int_0^T i^2(t) dt$ $I_{eff} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$
- O Für einen sinusförmigen Wechselstrom gilt

$$I_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} \hat{i}^{2} \sin^{2}(\omega t) dt} = \frac{\hat{i}}{\sqrt{2}}$$

O Entsprechend gilt für eine sinusförmige Wechselspannung

$$U_{eff} = \frac{\hat{u}}{\sqrt{2}}$$

Formfaktor

- O Formfaktor ist der Verhältnis des Effektivwerts zum Gleichrichtwert
 - ⇒ Maß für die Kurvenform

$$k_f = \frac{U_{eff}}{|\overline{u}|}$$

⇒ Für eine Sinusfunktion gilt:

$$k_f = \frac{\frac{\hat{u}}{\sqrt{2}}}{\frac{\hat{u} \cdot 2}{\pi}} = \frac{\hat{u}}{\sqrt{2}} \cdot \frac{\pi}{\hat{u} \cdot 2} = \frac{\pi}{2\sqrt{2}} \approx 1,111$$

Wirkwiderstand

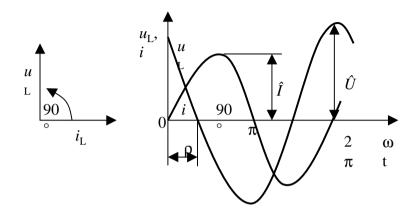
- O Der Wirkwiderstand setzt die einem Leiter zugeführte Energie vollständig in nichtelektrische Energie um.
 - **⇒** Er verursacht einen Leitungsverlust
 - ⇒ Der Leiter verhält sich bei diesem Vorgang als Wirkwiderstand (Ohmscher Widerstand)
- Es gilt das Ohmsche Gesetz
 - □ Im Wirkwiderstand sind Spannung und Strom in jedem Zeitpunkt in gleicher Phase

$$p(t) = u(t) \cdot i(t)$$

Induktiver Widerstand

- O Der induktive Widerstand ist der Induktivität und der Kreisfrequenz proportional und führt zu keinem Leitungsverlust
 - ⇒ Betrachtung ohne

 Wirkwiderstand der Spule
- Nach der Selbstinduktion gilt:


$$u_L = L \cdot \frac{di}{dt} = L \cdot \frac{d(\hat{I} \cdot \sin \omega t)}{dt}$$

O Mit dem Differentialquotienten

$$\frac{di}{dt} = \omega \cdot \hat{I} \cdot \cos \omega t = \omega \cdot \hat{I} \cdot \sin(\omega t + 90^{\circ})$$

ergibt sich die Spannung

$$u_L = L \cdot \omega \cdot \hat{I} \cdot \sin(\omega t + 90^\circ)$$

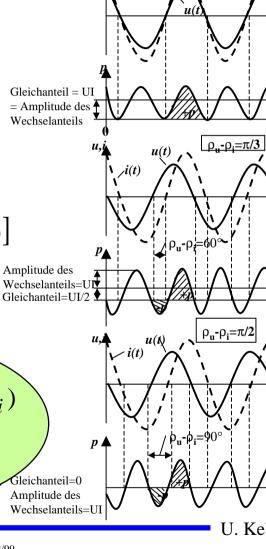
Die an einer Induktivität liegende Spannung eilt dem Strom um 90 ° voraus

○ Für die Effektivwerte gilt

$$U_{Leff} = \omega \cdot L \cdot I_{eff}$$

 \bigcirc Der Blindwiderstand X_L ist

$$X_L = \omega \cdot L$$


Momentanwert der Leistung

Allgemein gilt gilt für die Leistung p(t)

$$p(t) = u(t) \cdot i(t)$$

O Das Produkt kann umgeformt werden in

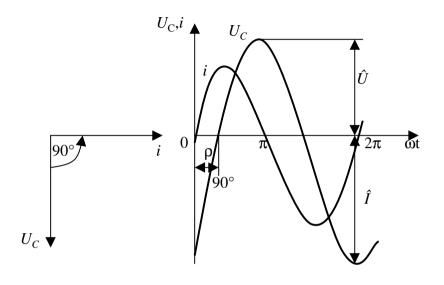
$$\begin{split} p(t) &= \hat{U} \cdot \sin(\omega t + \varphi_u) \cdot \hat{I} \cdot \sin(\omega t + \varphi_i) \\ &= \frac{\hat{U} \cdot \hat{I}}{2} \big[\cos(\varphi_u - \varphi_i) - \cos(2\omega t + \varphi_u + \varphi_i) \big] \end{split}$$

 $U_{eff} \cdot I_{eff} \cdot \cos \varphi + U_{eff} \cdot I_{eff} \cdot \cos(2\omega t + \varphi_u + \varphi_i)$ zeitlich konstant

mit doppelter Frequenz schwankend

U. Kebschull

 ρ_u - ρ_i =0


Kapazitiver Widerstand

- O Der kapazitive Widerstand ist der Kapazität und der Kreisfrequenz umgekehrt proportional und führt zu keinem Leitungsverlust

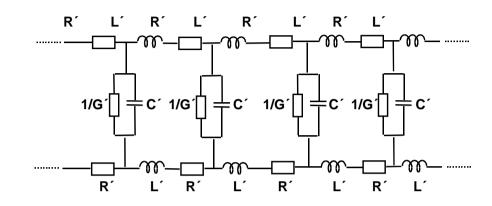
 Mit der Gleichung für die
- Kapazität gilt:

$$i(t) = C \cdot \frac{du}{dt} = C \cdot \frac{d(\hat{U}\sin\omega t)}{dt}$$
$$= C \cdot \hat{U} \cdot \cos\omega t$$
$$= C \cdot \hat{U} \cdot \sin(\omega t + 90^{\circ})$$

Die an einer Induktivität liegende Spannung eilt dem Strom um 90 $^{\circ}$ voraus

○ Für die Effektivwerte gilt

$$I_{eff} = \omega \cdot C \cdot U_{Ceff}$$


 \bigcirc Der Blindwiderstand X_C ist

$$X_C = -\frac{1}{\omega \cdot L}$$

U. Kebschull

1.5 Schaltvorgänge

- O Ein- und Ausschalten einer Spannungsquelle
 - □ Rechteckform oder Rechteckimpuls
- Anwendung
 - ⇒ Übertragung von Signalen auf Leitungen
- O Problem:
 - ⇒ Leitungswiderstände, Leitungsinduktivitäten und Leitungskapazitäten sind in der Regel nicht zu vernachlässigen
 - ⇒ insbesondere bei hohen Frequenzen!

Ersatzschaltbild für ein Leiterstück

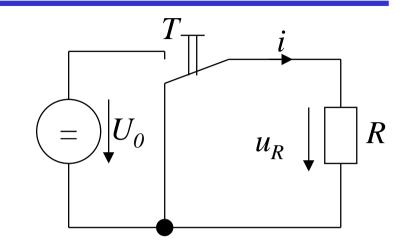
R' = Längswiderstand pro Meter Leitungslänge

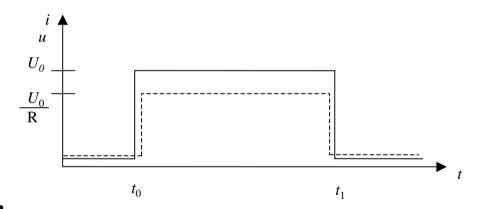
L' = Induktivität pro Meter Leitungslänge

C' = Kapazität pro Meter Leitungslänge

1/G' = Querwiderstand pro Meter Leitungslänge

R', L', C' = Widerstands-, Induktivitäts-, Kapazitätsbelag


Schaltverhalten an einem Widerstand

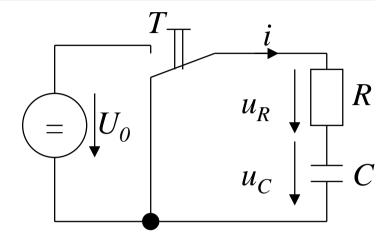

- Stromkreis mit einem reinen Widerstand
- O Zum Zeitpunkt t_0 wird der Taster losgelassen
- O Nach der Maschenregel gilt

$$U_0 = i \cdot R$$

$$i = \frac{U_0}{R}$$

- O Daraus folgt:
 - \Rightarrow Der Strom ändert sich sprunghaft, wenn die Spannung den Wert U_{θ} annimmt
 - \Rightarrow Der Strom ist sofort null, wenn die Spannung U_{θ} abgeschaltet wird

Schaltverhalten an einer Kapazität


- Reihenschaltung einer Kapazität C mit einem Widerstand R
- **O Zum Zeitpunkt** t_0 wird der Taster T losgelassen
 - \Rightarrow die Spannung steigt sprunghaft auf den Wert U_{ρ}
 - **⇒** Nach der Maschenregel gilt

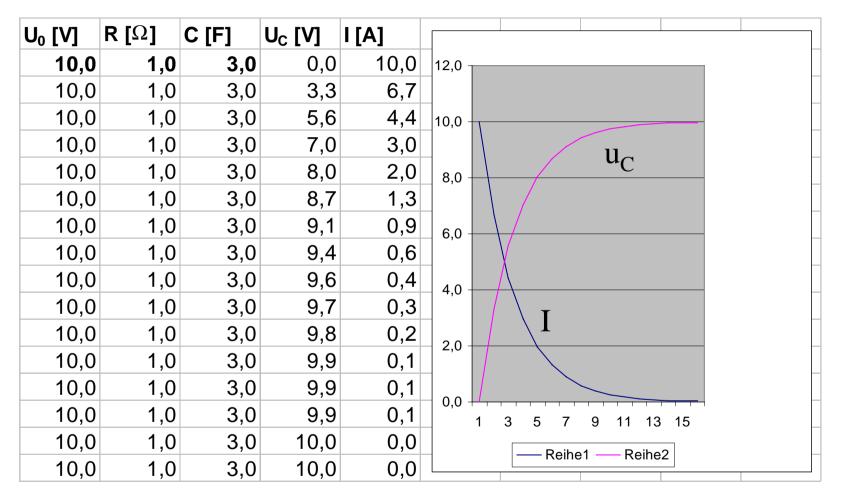
$$U_0 = u_R + u_C = i \cdot R + u_C$$

O Der Ladestrom zum Zeitpunkt t_0 ist dann

$$U_0 = i_{t_0} \cdot R + 0$$

$$\Rightarrow i_{t_0} = \frac{U_0}{R}$$

Damit wird der Kondensator geladen,
 u_C wird ungleich Null und es
 folgt:


$$i_{t_i} = \frac{U_0 - u_{C_{t_{i-1}}}}{R}$$

Für die Spannung u_C am Kondensator gilt:

$$u_{c_{t_i}} = u_{c_{t_{i-1}}} + \frac{1}{C} \cdot i_{t_{i-1}} \cdot \Delta t$$

Sofern Δt hinreichen klein ist

Simulation der Spannung und des Stroms am Kondensator

87

Schaltverhalten an einer Kapazität: Strom

O Der Ladestrom ist immer von der Differenz $(U_0$ - $u_C)$ abhängig:

$$U_0 = i \cdot R + \frac{1}{C} \cdot i \cdot \Delta t$$

$$\Rightarrow i = \frac{U_0}{R} - \frac{1}{R \cdot C} \cdot i \cdot \Delta t$$

O Die erste Ableitung ergibt

$$\frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{1}{R \cdot C} \cdot i$$

oder

$$\frac{\mathrm{d}i}{i} = -\frac{1}{R \cdot C} \cdot \mathrm{d}t$$

Die Lösung dieser Differentialgleichung ist:

$$\ln i = -\frac{t}{RC} + \text{const.}$$

O Die Konstante ergibt sich durch die Anfangsbedingung

$$i_{t_0} = i_0 = \frac{U_0}{R}$$

O Damit gilt

$$\ln i = -\frac{t}{RC} + \ln \frac{U_0}{R}$$

oder
$$i = i_0 \cdot e^{-\frac{t}{R \cdot C}} = \frac{U_0}{R} \cdot e^{-\frac{t}{R \cdot C}}$$

Schaltverhalten an einer Kapazität: Spannung

O Für die Spannung gilt nach der Maschenregel

$$\begin{split} u_C &= U_0 - i \cdot R \\ &= U_0 - i_0 \cdot e^{-\frac{t}{R \cdot C}} \cdot R \\ &= U_0 - \frac{U_0}{R} \cdot e^{-\frac{t}{R \cdot C}} \cdot R \\ &= U_0 \left(1 - \cdot e^{-\frac{t}{R \cdot C}}\right) \end{split}$$

Schaltverhalten an einer Kapazität: Abschalten

O Für die Spannung gilt nach der Maschenregel

$$0 = i \cdot R + u_C$$

O Es gilt

$$i = \frac{\mathrm{d}Q}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}u_C}{\mathrm{d}t}$$

O Damit gilt

$$0 = C \cdot \frac{\mathrm{d}u_C}{\mathrm{d}t} \cdot R + u_C$$

oder

$$\frac{\mathrm{d}u_C}{u_C} = -\frac{1}{R \cdot C} \cdot \mathrm{d}t$$

O Die Lösung der Gleichung lautet

$$u_C = U_0 \cdot e^{-\frac{t}{R \cdot C}}$$


O Für den Strom gilt

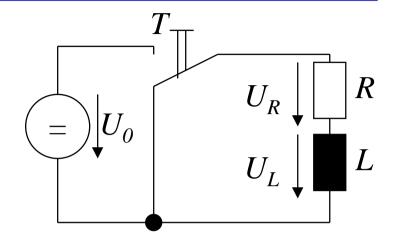
$$0 = i \cdot R + U_0 \cdot e^{-\frac{t}{R \cdot C}}$$

$$\Rightarrow i = -\frac{U_0}{R} \cdot e^{-\frac{t}{R \cdot C}}$$

$$= -i_0 \cdot e^{-\frac{t}{R \cdot C}}$$

Simulation der Spannung und des Stroms am Kondensator

Schaltverhalten an einer Induktivität


- Eine Spule und ein Widerstand werden in Reihe geschaltet
- O Zum Zeitpunkt t_0 wird der Taster T losgelassen
 - \Rightarrow Die Spannung steigt sprunghaft auf den Wert U_{θ}
 - ⇒ Der Innenwiderstand der Spule wird vernachlässigt
- O Nach der Maschenregel gilt:

$$U_0 = u_R + u_L = i \cdot R + u_L$$

O Die Stromquelle verursacht einen veränderlichen Stromfluß

$$\frac{\mathrm{d}i}{\mathrm{d}t}$$

der die Spannung $u_i = -L \frac{di}{dt}$ induziert

O Damit folgt:

$$u_{L} = L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$\Rightarrow i = \frac{1}{L} \int u_{L} \cdot \mathrm{d}t$$

O Mit der Maschenregel gilt:

$$u_L = U_0 - \frac{R}{L} \int u_L \cdot \mathrm{d}t$$

Schaltverhalten an einer Induktivität

Spannung an der Spule nach der Zeit ist

$$\frac{\mathrm{d}u_L}{\mathrm{d}t} = -\frac{R}{L} \cdot u_L$$

oder

$$\frac{\mathrm{d}u_L}{u_L} = -\frac{R}{L} \cdot \mathrm{d}t$$

O Analog zum Kondensator ist die Lösung dieser Gleichung

$$u_L = U_0 \cdot e^{-\frac{R}{L} \cdot t}$$

○ Für den Strom *i* gilt:

$$i = \frac{U_0}{R} - \frac{U_0}{R} \cdot e^{-\frac{R}{L} \cdot t}$$

$$= \frac{U_0}{R} \left(1 - e^{-\frac{R}{L} \cdot t} \right)$$

$$= I \left(1 - e^{-\frac{R}{L} \cdot t} \right)$$

Schaltverhalten an einer Induktivität: ausschalten

O Nach Öffnen des Schalters gilt:

$$0 = u_R + u_L = i \cdot R + u_L$$

O Damit gilt:

$$u_L = i \cdot R$$

und nach dem Induktionsgesetz

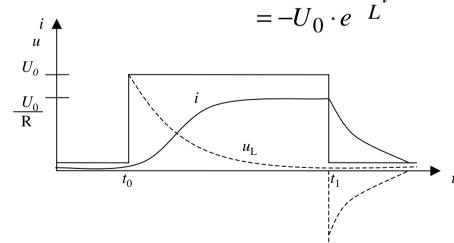
$$u_L = -i \cdot R = L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

O Daraus folgt:

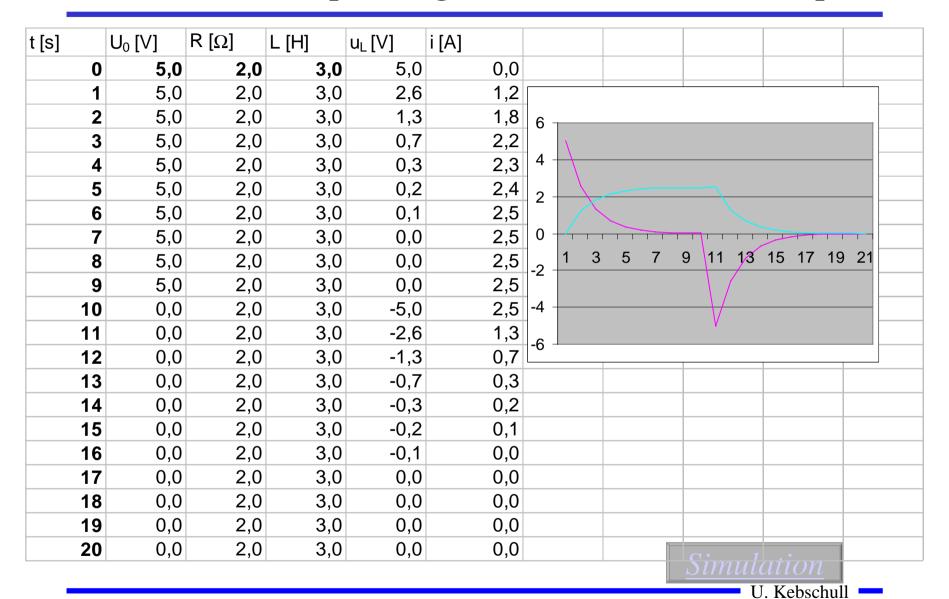
$$-i \cdot R = L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

oder

$$\frac{\mathrm{d}i}{i} = -\frac{R}{L} \cdot \mathrm{d}t$$


O Die Lösung der Gleichung lautet

$$i = I \cdot e^{-\frac{R}{L}t}$$


○ Für den Spannungsverlauf gilt:

$$u_L = -I \cdot e^{-\frac{R}{L}t} \cdot R$$

$$=-U_0\cdot e^{-\frac{R}{L}t}$$

Simulation der Spannung und des Stroms an einer Spule

1.6 Datenübertragung

O Darstellung von Daten im Binärformat

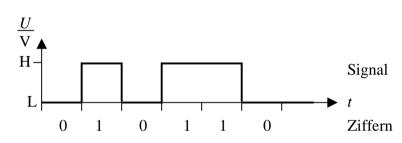
⇒ Ziffern Dual, BCD

⇒ Zeichen ASCII, EBCDIC

- O Zuordnung der "0" und "1" zu physikalischen Größen
 - **⇒** elektrische Spannung
 - **⇒** elektrischer Strom
 - **⇒** magnetische Induktion
 - ⇒ Lichtstärke
 - **⇒** Frequenzen
- O Physikalische Größen werden durch die Übertragung/Speicherung verändert werden
 - **⇒** elektrische Bauteile
 - **⇒** Leitungen
- Daten können durch die Übertragung/Speicherung verfälscht werden

U. Kebschull —

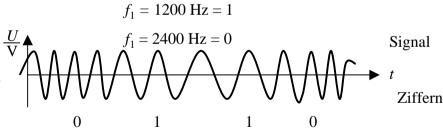
Physikalische Darstellung


- Im Computer
 - **⇒** Amplitudenmodellierte Wechselspannung
 - **⇒** Rechteckspannung
 - **⇒ Willkürliche Zuordnung des** Signalpegels zu Binärziffern

• H-Pegel, 5 V

≘ ,,1"

• L-Pegel, 0 V

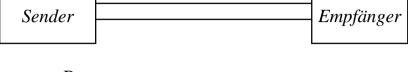

≘ ,,0"

- O Bei Datenübertragung durch **Telefon**
 - **⇒** Frequenzmodulation
 - **⇒** Modem
 - **⇒ Willkürliche Zuordnung der** Frequenz zu Binärziffern

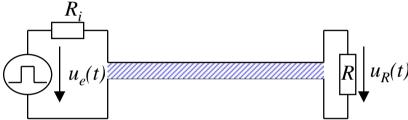
• f1 = 2400 Hz = ..0"

Zweidrahtleitungen

- O Innerhalb des Computers werden die Daten von einen Schaltkreis zum nächsten übertragen
 - ⇒ Leiterbahnen auf Isolierflächen
 - **⇒** Flachbandkabel
 - **⇒** Länge beträgt einige cm
 - ⇒ Induktivität und Kapazität der Leiterbahn oder des Kabels können vernachlässigt werden
- O Einfluß des Kabels ist nur der Ohmsche Widerstand
 - **⇒** Reduktion der Amplitude
 - **⇒** Dämpfung
 - **⇒** Wird durch die Toleranz der Schaltkreise aufgefangen


U. Kebschull 💳

Übertragung auf langen Leitungen

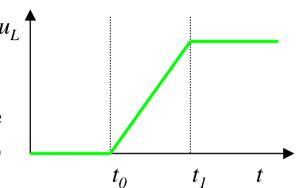

Open Definition: Lange Leitung

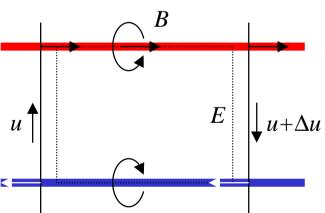
 ⇒ Die doppelte Länge ist größer als die Zeit für den 0-1- oder (1-0) Übergang mal Geschwindigkeit der Signalausbreitung

$$2 \cdot l > \Delta t \cdot v$$



Leitung


O Beispiel:


Am Ausgang eines logischen Schaltkreises wird ein Experimentierkabel von ca. 2 m Länge angebracht. Der Ausgang des Schaltkreises wechselt mit etwa 1 MHz

Entstehung überlagerter Schwingungen

- O Ursachen
 - **⇒** Endliche Ausbreitungsgeschwindigkeit
 - **⇒** Kein idealer Rechteckimpuls
- Modell
 - \Rightarrow Einschalten einer Gleichspannungsquelle auf einer Doppelleitung zum Zeitpunkt t_0
 - \Rightarrow Die Spannung steigt bis zum Zeitpunkt t_1
 - ⇒ Zunehmende Spannung verursacht einen zunehmenden Strom und damit ein Magnetfeld
 - ⇒ Aufbau des Magnetfelds induziert ein elektrisches Feld zwischen zwei Punkten auf der Leitung
 - **⇒** Die Ladungen verschieben sich
- Der Vorgang wandert über die gesamte Leitung
- Es entsteht eine elektromagnetische Welle

U. Kebschull

Reflexion

- **○** Was passiert bei inhomogenen Stellen (z.B. offenes Leitungsende)
 - ⇒ Die Ladungsträger können sich nicht mehr weiterbewegen, aber

$$u_L = L \cdot \frac{\mathbf{d}i}{\mathbf{d}t}$$

kann nicht schlagartig 0 werden

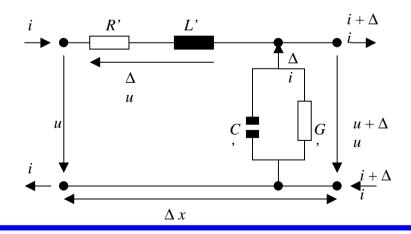
- ⇒ Die Welle (Energie) wird reflektiert und läuft in entgegengesetzter Richtung zurück
- Ahnliches, wenn auch in abgeschwächter Form tritt auf, wenn am Leitungsende die abschließende Impedanz für die Strom/Spannungsverhältnisse auf der Leitung eine Inhomogenität darstellt
 - □ In diesem Fall wird ein Teil der elektromagnetischen Welle (Energie) reflektiert

Reflexion

O Die Zeit für den Hin- und Rücklauf der Welle ist

$$T = \frac{2 \cdot l}{v}$$

- \Rightarrow *v* ist die Ausbreitungsgeschwindigkeit
- Ist die Zeit T für den Hin- und Rücklauf größer als die Impulsflankensteilheit Δt , dann können sich stehende Wellen ausbilden $l > l_{krit} = \frac{1}{2} \Delta t \cdot v$
- O Beispiel
 - ⇒ Bei Standard-TTL Schaltgliedern beträgt die Impulsflankensteilheit etwa 10 ns
 - \Rightarrow Die Wellengeschwindigkeit einer Doppelleitung im Vakuum beträgt etwa $3\cdot 10^8$ m/s
 - **⇒** daraus folgt


$$l_{krit} \approx \frac{1}{2} \cdot 10 \cdot 10^{-9} \mathbf{s} \cdot 3 \cdot 10^8 \frac{\mathbf{m}}{\mathbf{s}} = 1,5\mathbf{m}$$

Entstehung von elektromagnetischen Wellen

- O Berechnung über Kirchhoffsche Sätze
 - **⇒** Homogene Leitung:

R'	$[\Omega/\mathbf{m}]$	Widerstandsbelag
L'	[H/m]	Induktionsbelag
C'	[F / m]	Kapazitätsbelag
G'	[S/m]	Leitwertsbelag

- \Rightarrow Am Anfang des Längenelements liegt zwischen den Doppelleitungen die Spannung u und es fließt der Strom i
- \Rightarrow Am Ende herrscht die Spannung $u+\Delta u$ und es fließt der Strom $i+\Delta i$
- \Rightarrow Δu durch den ohmschen und den induktiven Widerstand
- \Rightarrow Stromänderung Δi durch den kapazitiven Widerstand und die Leitfähigkeit der Isolation

Entstehung von elektromagnetischen Wellen

• Es gilt

$$(u + \Delta u) - u - \Delta u = 0$$
$$(i + \Delta i) - i - \Delta i = 0$$

O Daraus folgt:

$$-\Delta u = R' \cdot i \cdot \Delta x + L' \cdot \frac{\mathbf{d}i}{\mathbf{d}t} \cdot \Delta x = (R' \cdot i \cdot + L' \cdot \frac{\mathbf{d}i}{\mathbf{d}t}) \cdot \Delta x$$
$$-\Delta i = G' \cdot u \cdot \Delta x + C' \cdot \frac{\mathbf{d}u}{\mathbf{d}t} \cdot \Delta x = (G' \cdot u + C' \cdot \frac{\mathbf{d}u}{\mathbf{d}t}) \cdot \Delta x$$

OGeht man zum Differentialoperator über folgt:

$$-\frac{\partial u}{\partial x} = R' \cdot i + L' \cdot \frac{\partial i}{\partial t}$$
$$-\frac{\partial i}{\partial x} = G' \cdot u + C' \cdot \frac{\partial u}{\partial t}$$

○ Annahme: R'=G'=0

Entstehung von elektromagnetischen Wellen

O Es folgt aus der Ableitung nach x bzw. t:

$$-\frac{\partial^2 u}{\partial x^2} = L' \cdot \frac{\partial^2 i}{\partial t \partial x}$$
$$-\frac{\partial^2 i}{\partial x \partial t} = C' \cdot \frac{\partial^2 u}{\partial t^2}$$

O Setzt man die Gleichungen ineinander ein, so folgt:

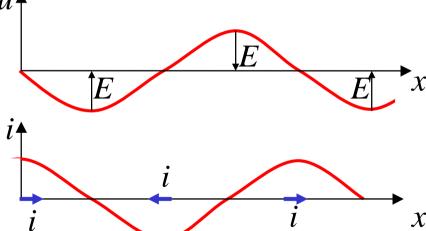
$$-\frac{\partial^2 u}{\partial x^2} = L' \cdot C' \cdot \frac{\partial^2 u}{\partial t^2}$$
$$-\frac{\partial^2 i}{\partial x^2} = L' \cdot C' \cdot \frac{\partial^2 i}{\partial t^2}$$

- O Diese beiden Gleichungen beschreiben den Spannungs- und Stromverlauf auf der Doppelleitung in Abhängigkeit von x und t
- O Sie werden auch Telegraphengleichungen oder Wellengleichungen genannt

U. Kebschull 💳

Harmonische Wellen

O Eine Lösung dieser Gleichungen ist die harmonische Welle


$$u = U_0 \sin \omega (t - \frac{x}{v})$$

$$i = I_0 \cos \omega (t - \frac{x}{v})$$

$$mit \quad v = \frac{1}{\sqrt{L' \cdot C'}}$$

O Entlang der Doppelleitung wandert eine Spannungs- und eine

Stromwelle wie folgt: $u \uparrow$

- ODie Doppelleitung dient der Führung der Welle
 - **⇒** Die gesamte Energie der Welle steckt im umgebenden Feldraum

U. Kebschull —

Ausbreitungsgeschwindigkeit auf Leitern

O Es gilt:

$$v = \frac{1}{\sqrt{L' \cdot C'}}$$

O Mit Berücksichtigung der Geometrie zweier Leiter und der Definition von L' und C' gilt:

$$L'\cdot C' = \frac{L}{m} \cdot \frac{C}{m} = \varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r$$

O Daraus folgt:

$$v = \frac{1}{\sqrt{\varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r}}$$

Ausbreitungsgeschwindigkeit auf Leitern

○ Im Vakuum gilt:

$$\varepsilon_r = \mu_r = 1$$

O Daraus folgt:

$$v = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}} \approx \frac{1}{\sqrt{8,85 \cdot 10^{-12} \cdot 1,25 \cdot 10^{-6}}} = 3,00 \cdot 10^8 \frac{m}{s} = c$$

○ In Leiterplatten oder Koaxialkabeln gilt:

$$\varepsilon_r \approx 2.5 \text{ und } \mu_r \approx 1$$

O Daraus folgt:

$$v = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}} \approx \frac{1}{\sqrt{8,85 \cdot 10^{-12} \frac{\mathbf{Vs}}{\mathbf{Am}} \cdot 2,5 \cdot 1,25 \cdot 10^{-6} \frac{\mathbf{As}}{\mathbf{Vm}} \cdot 1}} = \mathbf{1,90} \cdot \mathbf{10^8} \frac{m}{s}$$

Wellenwiderstand

O Benutzt man

$$u = U_0 \sin \omega (t - \frac{x}{v})$$

$$i = I_0 \cos \omega (t - \frac{x}{v})$$

und

$$v = \frac{1}{\sqrt{L' \cdot C'}}$$

als Lösungsansatz für die Ausgangsgleichung

$$-\frac{\partial u}{\partial x} = R' \cdot i + L' \cdot \frac{\partial i}{\partial t}$$

Mit der Annahme des GrenzfallesR' = 0, erhält man

$$U_0 = I_0 \sqrt{L' \cdot C'}$$

oder für die Impedanz

$$\frac{U_0}{I_0} = \sqrt{L' \cdot C'} = Z$$

wobei Z der Wellenwiderstand der Leitung ist

• Für jeden Punkt der Leitung gilt

$$u = i\sqrt{L' \cdot C'}$$

O Die Spannung u setzt sich aus einem hinlaufenden Teil u_h und einem rücklaufenden Teil u_r zusammen

$$u = u_h + u_r$$

Das gleiche gilt f
ür den Strom

$$i = i_h + i_r$$

Ourch die Überlagerung gilt

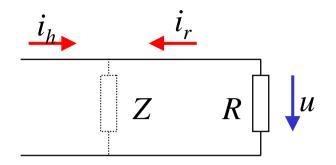
$$u = Z \cdot (i_h + i_r)$$

Wellenwiderstand

O Befindet sich am Ende der Leitung ein Empfänger mit dem Widerstand R, so gilt nach dem ohmschen Gesetz:

$$u = R \cdot (i_h - i_r)$$

Setzt man beide Teile am Widerstand gleich, so erhält man:


$$Z \cdot (i_h + i_r) = R \cdot (i_h - i_r)$$

$$Z \cdot i_h + Z \cdot i_r = R \cdot i_h - R \cdot i_r$$

$$R \cdot i_r + Z \cdot i_r = R \cdot i_h - Z \cdot i_h$$

$$i_r \cdot (R + Z) = i_h \cdot (R - Z)$$

$$\frac{i_r}{i_h} = \frac{(R - Z)}{(R + Z)} = r$$

- O Der ohmsche Widerstand kann Werte zwischen 0 und unendlich annehmen
- Ist der Abschlußwiderstand *R* gleich dem Wellenwiderstand *Z*, ist *r*=0
 - **⇒** Es findet keine Reflexion statt
 - ⇒ Abschlußwiderstand

• r bezeichnet man als Reflexionsfaktor

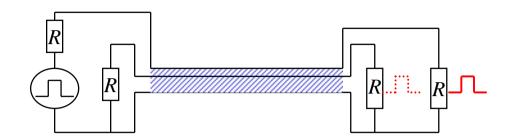
Abschlußwiderstände

 \bigcirc ISDN 100 Ω

 \bigcirc Ethernet 50 Ω

Fernsehkabel

 \Rightarrow früher 60 Ω


 \Rightarrow heute 75 Ω

O Token Ring 100-150 Ω

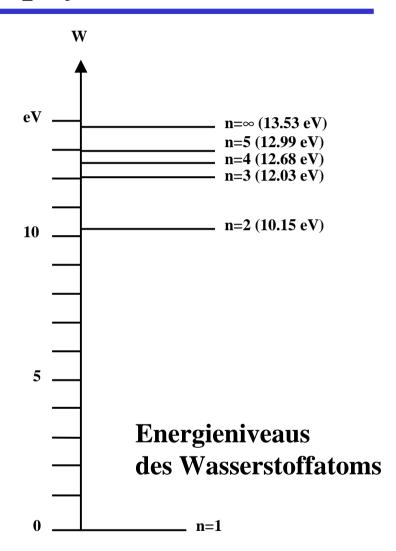
 \bigcirc Flachbandkabel 240 Ω

Übersprechen

O Neben einer stromdurchflossenen Leitung läuft ein zweiter Leiter parallel

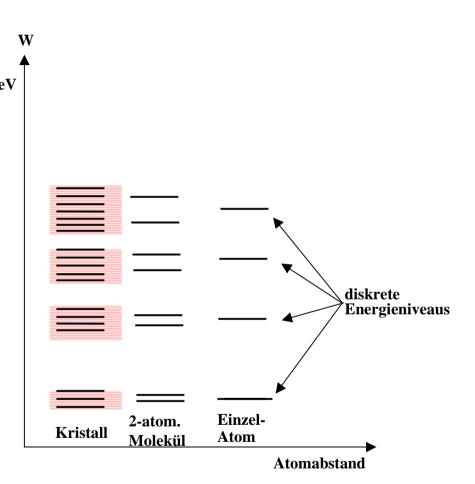
- **⇒** elektrische Kopplung
- **⇒** magnetische Koppelung
- O Bei Impulsen können diese in abgeschwächter Form als Störimpuls an der zweiten Leitung gemessen werden
 - **⇒** Übersprechen

2 Halbleiterbauelemente

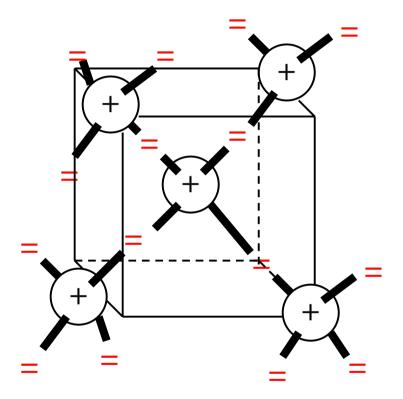

- O Halbleiter besitzen einen kristallinen Aufbau ohne Metallbindung
- O Die Leitfähigkeit von Halbleitern schwankt mit der Temperatur
 - ⇒ bei 0 K ist sie null
 - ⇒ bei höheren Temperaturen ist sie zwischen Metallen und Nichtleitern

Material	Widerstand (Ω /m)	Einordnung
Hartgummi	10^{16}	Nichtleiter
Glas	10^{10}	Nichtleiter
Galliumarsenid (rein)	10 ³	Halbleiter
Silizium (rein)	100	Halbleiter
Silizium (dotiert)	1 bis 100	Halbleiter
Germanium (rein)	1	Halbleiter
Germanium (dotiert)	1 bis 10 ⁻⁵	Halbleiter
Eisen	10 ⁻⁷	Leiter
Silber	10 ⁻⁸	Leiter

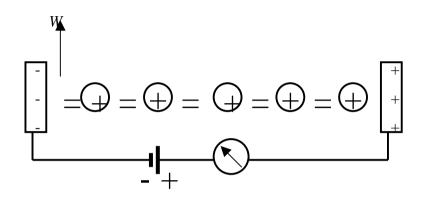
2.1 Halbleiterphysik

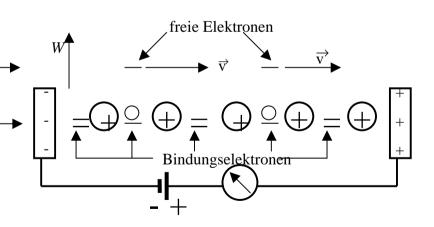

O Bohrsches Atommodell:

- ⇒ Atom besteht aus einem
 Atomkern und einer in
 Schalen aufgeteilten
 Atomhülle
- ⇒ Elektronen bewegen sich auf Bahnen (Schalen)
- ⇒ Jeder Schale mit der Nummer n entspricht ein Energieniveau
- \Rightarrow Übersteigt die Energie einen bestimmten Wert, so ist es nicht mehr an das Atom gebunden $(n=\infty)$

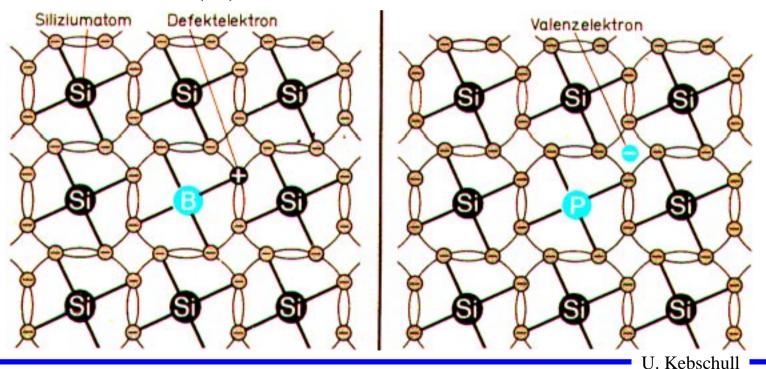

Energiebändermodell

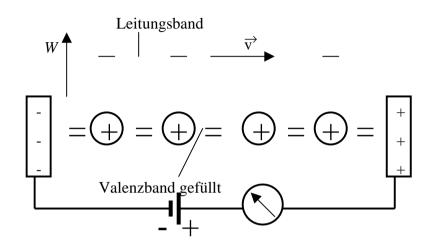
- In dicht gepackten
 Kristallstrukturen findet eine
 Wechselwirkung zwischen den
 Atomen statt
 - ⇒ erlaubte und verbotene Bereiche
 - ⇒ die diskreten Energieniveaus verschmelzen zu Energiebändern

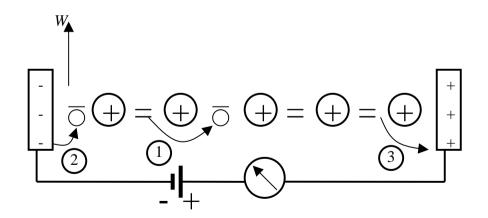

Kristallstruktur in Germanium und Silizium


- Kristallstruktur
 - □ regelmäßig angeordnetes
 Atomgefüge
- Amorphe Struktur
 - ⇒ kein regelmäßiges Atomgefüge
- Mischkristalle
 - ⇒ Fremdatome sind in die Kristallstruktur eingebaut
- O Polykkristalle
 - ⇒ Mehrere Kristalle bilden ein Gefüge
- O Einkristall
 - ⇒ der Körper besteht aus einem einzigen Kristall
- In Siliziumkristallen sind die Atome in einer Tetraederstruktur aufgebaut

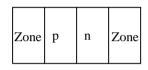
Valenz- und Leitungsband

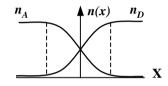

- O In voll besetzten oder in leeren Bändern ist ein Elektronenfluß nicht möglich
- Valenzband: Elektronen im obersten Energieband
 - ⇒ ist dies voll besetzt, findet kein Ladungstransport statt
- O Leitungsband: das nächste Energieband über dem Valenzband
 - ⇒ Werden Elektronen durch Energiezufuhr in das Leitungsband Leitungsband gehoben, können sie sich in diesem frei Valenzbandbewegen


Dotierte Halbleiter

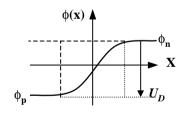

- O Gezielter Einbau von Fremdatomen in Silizium- oder Germaniumkristalle durch *Dotierung*
 - ⇒ zusätzliche Valenzelektronen durch Arsen (As), Antimon (Sb) oder Phosphor (P)
 - ⇒ fehlende Valenzelektronen durch Aluminium (AL), Bor (B) oder Indium (In)

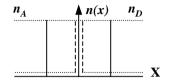
Leitfähigkeit durch Störstellen

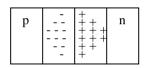

- Geringe Energie reicht aus, um das Elektron in das Leitungsband zu heben
- Onatoratom
 - ⇒ Das Atom gibt das zusätzliche Elektron leicht ab
 - **⇒** n-Dotierung
- Akzeptoratom
 - ⇒ Das Atom nimmt ein Elektron leicht auf
 - **⇒** p-Dotierung

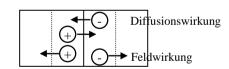


pn-Übergang

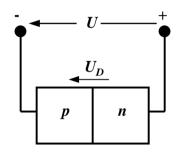

- Grenzschicht zwischen p- und ndotierten Schicht
- O Ein Ausgleich der Ladungsträger durch Diffusion über die Grenzchicht
 - ⇒ Es entsteht ein elektrisches Feld
- wenn Diffusionswirkung und Feldwirkung gleich sind
 - **⇒** Gleichgewicht
 - **⇒** Ladungsträgerfreie Zone
 - \Rightarrow Diffusionsspannung U_D
- O Bei Zimmertemperatur
 - \Rightarrow Germanium $U_D = 0.37 \text{ V}$
 - \Rightarrow Silizium $U_D = 0.75 \text{ V}$

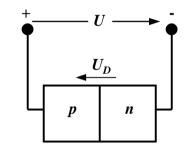

a) Grenzschicht mit n - dotierter und p - dotierter Zone


c) Konzentrationsdichte nach der Diffusion

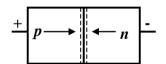

e) Potentialverlauf quer zur Grenzschicht

b) Konzentration der Donatoren n_D und Akzeptoren n_A ohne Ausgleich

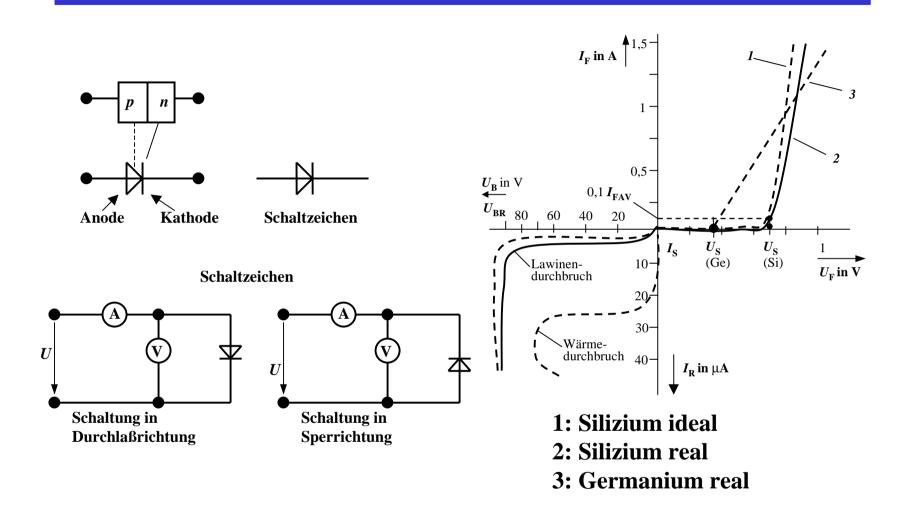

d) Raumladung

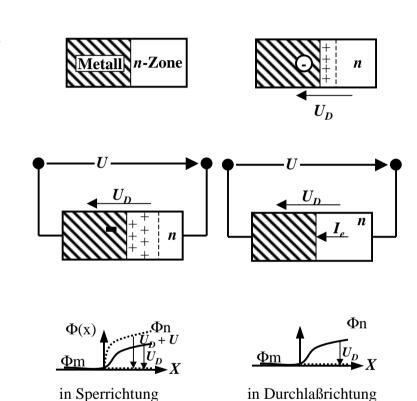


f) Kraftwirkung


2.2 Halbleiterdioden

- O Bauelemente, welche die Leitfähigkeitseigenschaften eines pn-Übergangs benutzen
- O pn-Übergang mit äußerer Spannung
- Sperrichtung
 - ⇒ Ladungsträgerfreie Zone wird größer
 - ⇒ Es fließt kein Strom
 - ⇒ Durchbruch, wenn die Feldstärke (Spannung) zu groß wird (Zener-Effekt)
- Ourchlaßrichtung
 - ⇒ Ladungsträgerfreie Zone wird kleiner
 - \Rightarrow Wenn $U > U_D$ wird, fließt ein Strom

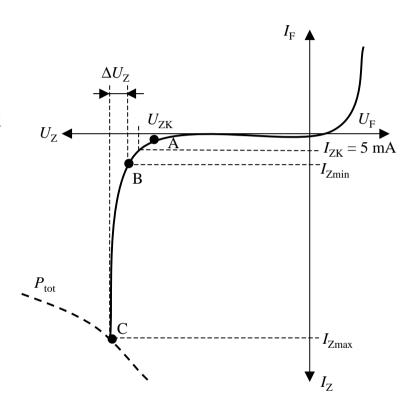




Kennlinie des pn-Übergangs

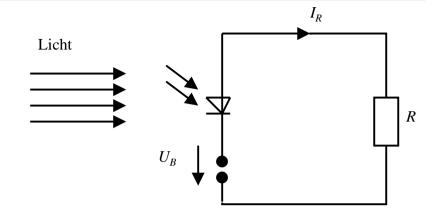
Halbleiterdioden mit besonderen Eigenschaften

- Schottky-Dioden
 - ⇒ Beruht auf dem von Schottky entwickelten Metall-Halbleiter Übergang
 - **⇒** Diffusion wie bei pn-Übergang
- Wirkung wie bei normaler Diode, aber wesentlich schneller
- Anwendung
 - **⇒** extrem schnelle Schaltdioden
 - **⇒** schnelle Bipolare Schaltkreise
 - **⇒** Gleichrichterdioden
 - ⇒ Mikrowellendioden
 (bis 15 GHz)

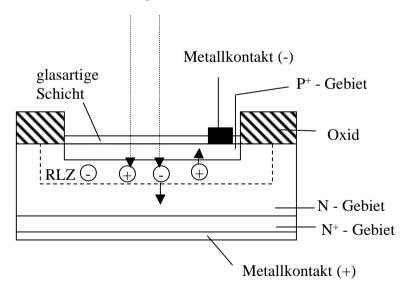

Halbleiterdioden mit besonderen Eigenschaften

Q Z-Dioden

- ⇒ Ausnutzung des Zener-Effekts
- **⇒** Steil abfallende Kennlinie
- \Rightarrow Strom darf einen Höchstwert I_{Zmax} nicht überschreiten

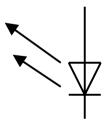

Anwendung

- ⇒ Spannungsbegrenzung bei Wechselspannungen
- ⇒ Referenzspannung in Gleichspannungsnetzteilen



Fotodioden

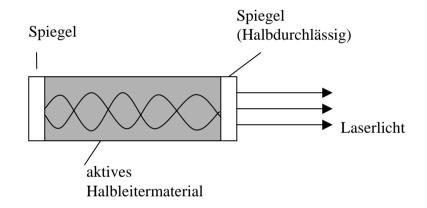
- O Fotodioden sind so konstruiert, daß Licht an den pn-Übergang gelangen kann
 - ⇒ Ein einfallendes Lichtquant erzeugt ein Elektron-Loch-Paar (Photoeffekt)
- O Fotodioden werden in Sperrichtung betrieben
 - ⇒ Ist kein Licht vorhanden, fließt kein Strom
 - ⇒ Bei Lichteinfall fließt durch den Photoeffekt ein Strom
- Anwendung
 - **⇒** Lichtschranken
 - ⇒ Datenübertragung mit Lichtwellenleitern



Lichtquanten

Halbleiterdioden mit besonderen Eigenschaften

- **○** Limeniszenzdioden (Light Emitting Diod, LED)
 - ⇒ pn-Übergang mit hoher Dotierung
 - **⇒** Betrieb in Durchlaßrichtung
 - ⇒ Durchlaßstrom injiziert Ladungsträger in den p- und n-Bereich
 - Durch die hohe Zahl der Überschußelektronen (n-Bereich) bzw. Löcher (p-Bereich) werden Ladungsträger aus dem Leitungsband in das Valenzband gezogen (Rekombination)
 - ⇒ Durch den Energieerhaltungssatz muß Energie abgegeben werden
 - **⇒** Es entsteht ein Lichtquant
- Anwendung
 - **⇒** Anzeigen
 - **⇒** Datenübertragung durch Lichtwellenleiter
 - **Optokoppler**

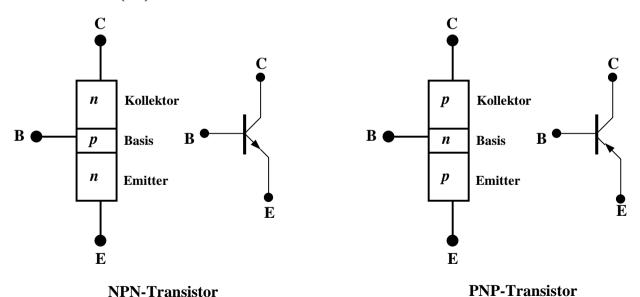

Halbleiterdioden mit besonderen Eigenschaften

O Laserdioden

- ➡ Elektronen können durch ein elektromagnetisches Strahlungsfeld in vom Leitungsband in das Valenzband übergehen
- ⇒ Dabei muß die Frequenz des Strahlungsfelds mit der Energiedifferenz ∆E übereinstimmen
- ⇒ Verstärkung des Effekts durch eine stehende Lichtwelle zwischen zwei Spiegeln (Laseroszillator)

Anwendung

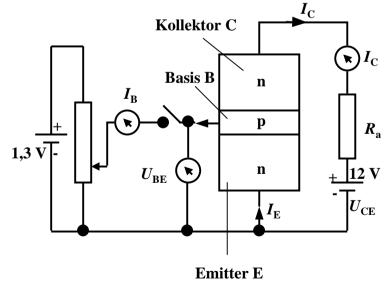
- **⇒** Sender für Lichtwellenleiter
- ⇒ Abtasten vonSpeichermedien (CD)

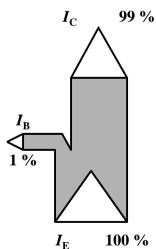


2.3 Bipolartransistoren

- O Ausnutzen der Eigenschaft zweier pn-Übergänge
 - **→ NPN-Transistor**
 - **⇒** PNP-Transistor
- Von jeder Zone wird ein Anschluß herausgeführt

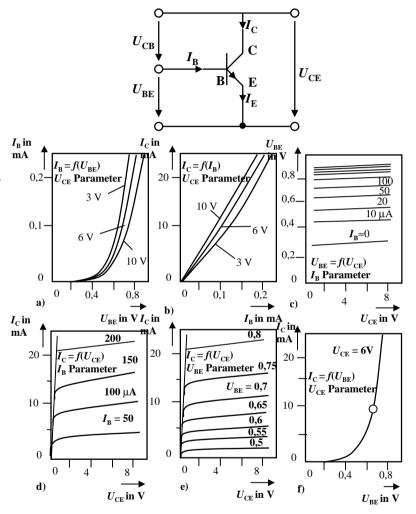
NPN-Transistor


- **⇒** Emitter (E)
- ⇒ Basis (B)
- ⇒ Collector (C)


Technische Informatik I Stand WS 98/99 128

Der Transistoreffekt

- O Basis des Transistors ist sehr dünn
 - ⇒ Die Emitter-Basis-Diode wird in Durchlaßrichtung gepolt
 - ⇒ Die meisten der Elektronen fließen jedoch nicht über die Basis ab, sondern werden vom Kollektor aufgenommen (starkes elektrisches Feld)
 - ⇒ Es fließt nur ein kleiner Basisstrom

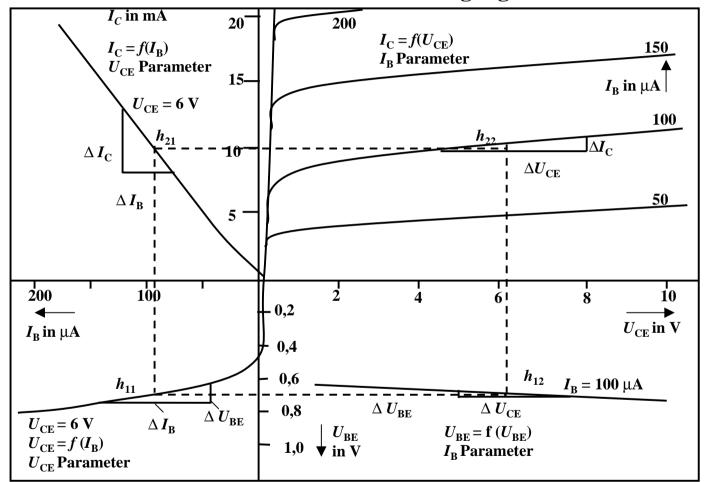

Der Transistoreffekt

- O Erhöht man die Spannung an der Basis, so bleibt der Basisstrom relativ klein, der Kollektorstrom wächst hingegen relativ stark
 - ⇒ Der Transistor ist ein stromgesteuerter Widerstand
- Stromverstärkung

$$B = \frac{I_C}{I_B}$$

O Der Basisstrom steuert den Kollektorstrom

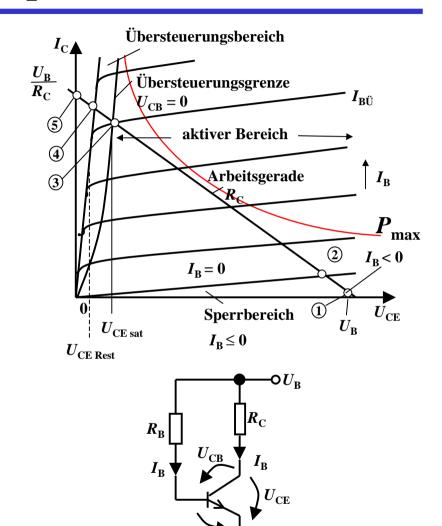
$$I_B \cdot B = I_C$$


- a) Eingangskennlinien, b) Übertragungskennlinien, c) Rückwirkungskennlinien,
- d) Ausgangskennlinien (Stromsteuerung), e) Ausgangskennlinien

(Spannungssteuerung), f) Strom-Spannungs-Steuerkennlinie

Kennlinienfeld

Ausgangskennlinienfeld

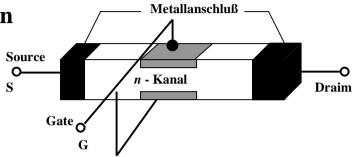


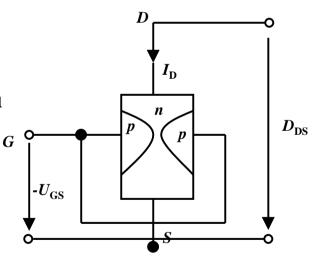
Eingangskennlinienfeld

Rückwirkung

Arbeitspunkt

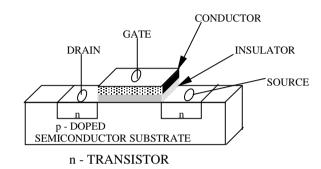
- O Die Arbeitspunkte können sich nur entlang der Arbeitsgeraden verschieben
- Sperrbereich
 - ⇒ AP 1 bis AP 2
 - $\Rightarrow I_B < 0, U_{CE} \approx U_B, I_C \approx 0$
 - **⇒** Schalter aus
- Aktiver Bereich
 - ⇒ AP 2 bis AP 3
 - **⇒** Transistor als Verstärker
- Sättigungsbereich
 - **⇒** Übersteuerung
 - AP 3 bis AP 4
 - $\Rightarrow I_C \approx U_B/R_C$
 - **⇒** Schalter ein

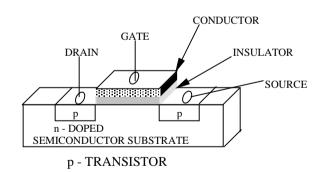

 $U_{
m BE}$


2.4 Unipolare Transistoren

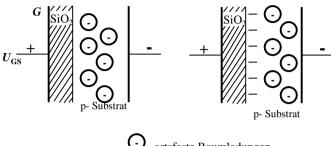
- Im Gegensatz zum Bipolartransistor wird bei unipolaren Transistoren der Strom durch eine Spannung gesteuert
 - **⇒** Elektrisches Feld
 - **⇒** Feldeffekt-Transistor (FET)
 - **⇒** Spannungsgesteuerter Widerstand
- Sperrschicht-FET
 - ⇒ Isolation des Gates durch gesperrten pn-Übergang
 - **⇒** Ausdehnung einer pn-Sperrschicht
- Isolierschicht-FET
 - ⇒ Isolation des Gates durch Isolator (Siliziumoxid, SiO₂)
 - **⇒** Beeinflussung der Leitfähigkeit durch Influenz
- Anschlüsse
 - \Rightarrow Source S (Quelle)
 - **⇒** Drain D (Senke)
 - \Rightarrow Gate G (Tor)
 - **⇒** Bulk B (Masse, Substrat)

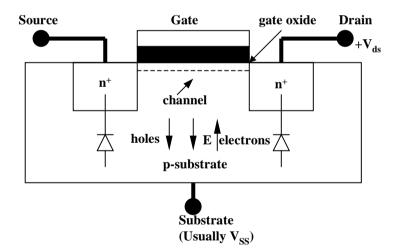
Sperrschicht-Feldeffekttransistor (FET)


- igodots Am Gate liegt eine negative Spannung U_{GS} an
 - ⇒ Sperrschichten um die p-Zonen dehnen sich aus
- Wird die Gatespannung negativer
 - **⇒** Querschnitt kleiner
 - **⇒** Widerstand höher
- Kanaleinschnürung
 - ⇒ Überlagerung der Gate- und Drainspannung
 - \Rightarrow Erhöhen der Drainspannung U_{DS} führt zu Berührung der Raumladungszonen
- Gatedurchbruch
 - **⇒** Elektrischer Durchschlag der Isolation
- Open Draindurchbruch
 - ⇒ Das elektrische Feld wird so stark, daß die Abschnürung überwunden wird
 - **⇒** Begrenzung der Drainspannung



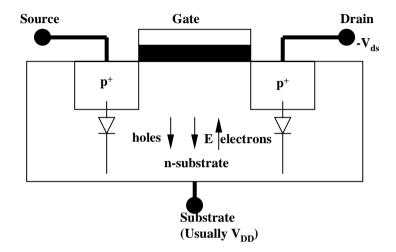
Isolierschicht-FET (MOS-FET)


- Oxidschicht getrennt
 - **⇒ MOS: Metal Oxide Semiconductor**
- o n-MOS
 - ⇒ Das gesteuerte Halbleiter-Substrat ist p-dotiert
 - ⇒ Die Anschlüsse sind stark n-dotiert
 - **⇒** n-Kanal-MOS-FET
- o p-MOS
 - ⇒ Der gesteuerte Halbleiter-Substrat ist n-dotiert
 - ⇒ Die Anschlüsse sind stark p-dotiert
 - **⇒** p-Kanal-MOS-FET
- O Da die n-Zonen (p-Zonen) weit auseinanderliegen, kommt es nicht zum Transistoreffekt

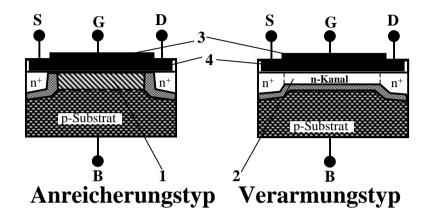


Der n-MOS-Transistor

- Anreicherungstyp
 - **⇒** enhancement
 - **⇒** selbstsperrend
- Funktionsweise
 - ⇒ Unter der Oxidschicht werden durch Influenz Ladungsträger angesammelt
 - ⇒ Die Raumladungen (Löcher) werden zurückgedrängt
 - **⇒** Es bildet sich ein n-Kanal
 - ⇒ Die Dicke des Kanals hängt von U_{GS} ab



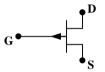
ortsfeste Raumladungen
– Ladungsträger $0 < U_{GS} < U_{th}$ $U_{GS} > U_{th}$


Der p-MOS-Transistor

- Alle Dotierungen sind umgekehrt
- Funktionsweise
 - **⇒** Wie bei n-MOS Tansistor
 - ⇒ Statt Ladungsträger werden Löcher unter der Oxidschicht durch Influenz angesammelt
 - ⇒ Es bildet sich ein leitender p-Kanal

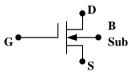
Selbstleitende MOS-Transistoren

- Verarmungstyp
 - **depletion**
- Funktionsweise
 - ⇒ Bei der Herstellung des Transistors wird bereits ein Kanal zwischen Source und Drain diffundiert
 - ⇒ Der Transistor ist auch ohne Gatespannung leitend, da dotiertes Halbleitermaterial leitet
 - ⇒ Elektrische Spannung am Gate schnürt den Kanal ein
- on-MOS und p-MOS-Verarmungstypen haben in elektronischen Schaltkreisen nur als Widerstände Bedeutung

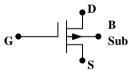

- 1: Anreicherungszone
- 2: Verarmungszone
- 3: Metall oder polykristallinies Silizium
- 4: SiO₂ Isolationsschicht

MOS-Transistorschaltbilder

O In deutschsprachigen Büchern

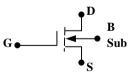

Sperrschicht FET

n - Kanal selbstleitend

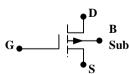


Sperrschicht FET

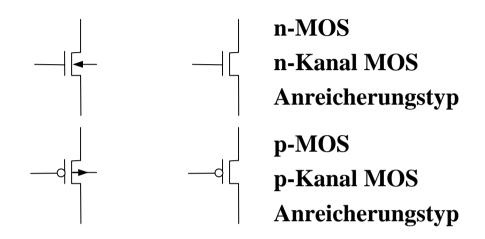
p - Kanal selbstleitend



n - Kanal Verarmungstyp (selbstleitend)


Isolierschicht FET

p - Kanal Verarmungstyp (selbstleitend)


Isolierschicht FET

n - Kanal Anreicherungstyp (selbstleitend)

Isolierschicht FET

○ In englischsprachigen Büchern

Achtung: Der n-MOS Verarmungstyp in deutschsprachigen Büchern sieht aus wie der n-MOS Anreicherungstyp in englischen Büchern

Der Body-Effekt

- O Bei integrierten Schaltungen sind zahlreiche Transistoren auf einem gemeinsamen Substrat aufgebaut
 - ⇒ Oft sind Transistoren so geschaltet, daß Source und Substrat nicht auf dem gleichen Potential liegen
 - **⇒** Source eines Transistors ist mit dem Drain eines anderen Transistors verbunden
 - ⇒ Dadurch vergrößert sich die Verarmungszone unter der Isolationsschicht
- O Die Folgen
 - **⇒** Der Strom unter dem Transistor wird behindert
 - **⇒** Die Schwellspannung wird höher

3.1 Der Transistor als Schalter

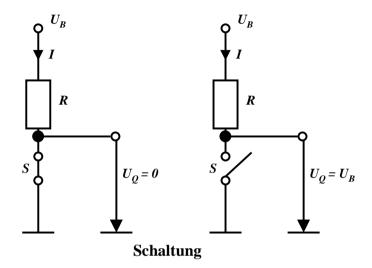
- O Elektronische Verknüpfungsglieder werden aus Halbleiterbauelementen aufgebaut
 - ⇒ Binäre Schaltvariablen werden nach den Gesetzen der Schaltalgebra miteinander verknüpft
 - **⇒** Werte entsprechen der Zweiwertigkeit von Schalterzuständen
- O Im folgenden gilt:
 - ⇒ "Ein" entspricht "1", 5 V, POWER oder VDD
 - ⇒ "Aus" entspricht "0", 0 V, GROUND oder VSS
- O Verknüpfungsglieder werden zu komplexen Schaltnetzen und Schaltwerken zusammengefaßt
 - **⇒** Die Schaltglieder müssen die gleichen Signalpegel besitzen

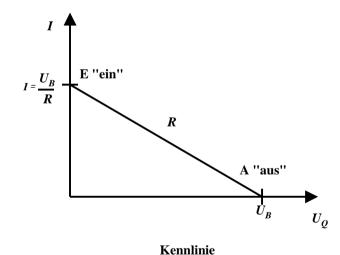
Idealer Schalter

- O Annahme: der Verknüpfungsvorgang
 - **⇒** erfordert keine Leistung
 - **⇒** benötigt keine Zeit
 - ⇒ Im Schalter fällt keine Spannung ab
- Im Schalterzustand "Ein"

$$R_i = \emptyset$$

$$I = \frac{U_B}{R}$$

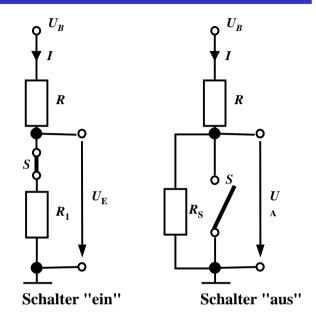

$$U_O = 0$$

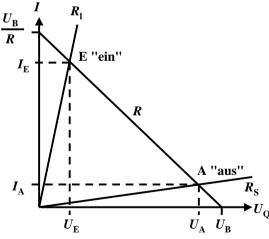

Im Schalterzustand "Aus"

$$R_S = \infty$$

$$I = 0$$

$$U_Q = U_B$$

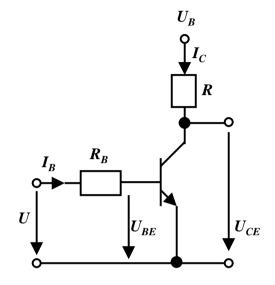

Realer Schalter

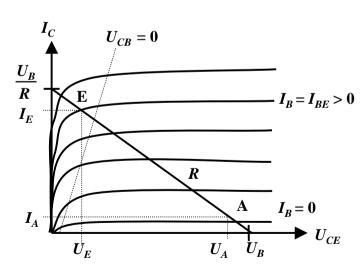

- \bigcirc R_i kann nicht 0 sein
- \bigcirc R_S kann nicht unendlich werden
 - \Rightarrow in der Praxis versucht man, R_i möglichst klein und R_S möglichst groß zu machen
- O Im Schalterzustand "Ein"

$$I_E = \frac{U_B}{R + R_i}; U_E = \frac{U_B \cdot R_i}{R + R_i}$$

O Im Schalterzustand "Aus"

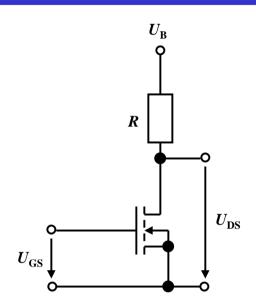
$$I_A = \frac{U_B}{R + R_S}; U_A = \frac{U_B \cdot R_S}{R + R_S}$$

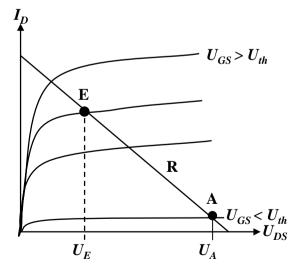




Kennlinie

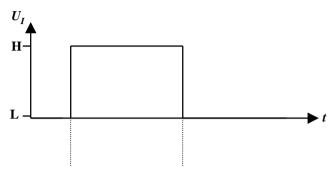
Bipolartransistor als Schalter


- O Schaltvorgang wird durch den Basisstrom I_B gesteuert
 - **⇒** Schalter Ein: Transistor leitet
 - **⇒** Schalter Aus: Transistor sperrt
- O Die Arbeitspunkte werden so berechnet, daß sich der Transistor im Übersteuerungsbereich befindet

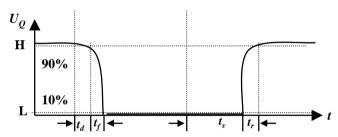


MOS-Transistor als Schalter

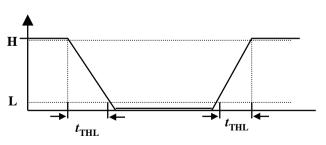
- O Hauptsächlich selbstsperrende Transistoren
 - **⇒** n-MOS und p-MOS
 - ⇒ Verwendung wie bei Bipolartransistoren
- O Vorteil gegenüber Bipolaren Transistoren
 - ⇒ Die Ansteuerung benötigt keine Leistung



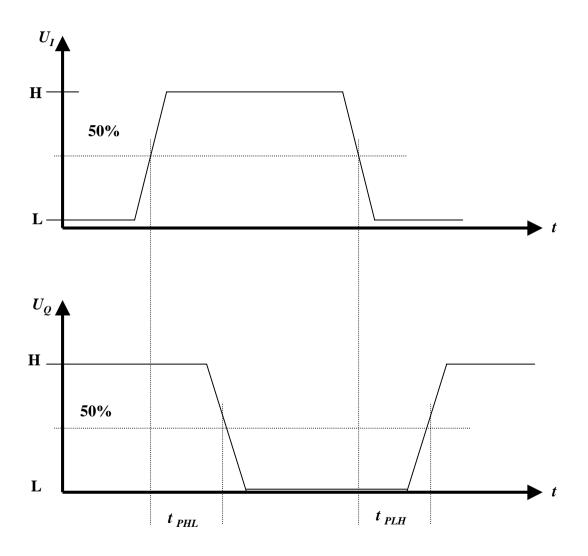
Kenngrößen: Signalpegel


- O Die Signale nehmen nie genau GND oder die Versorgungsspannunng an
 - **⇒** Ein Transistor ist kein idealer Schalter
 - **⇒** Übersprechen zwischen benachbarten Leitungen
 - ⇒ Der Eingang des nachfolgenden Transistors hat Auswirkungen auf den vorgehenden
- Störspannungen
- O Zur Eliminierung der Störspannungen definiert man Pegel
 - **⇒** High: die Spannung ist hoch
 - **⇒** Low: die Spannung ist nieder
- O Die Pegel werden willkürlich logischen Werten zugeordnet
 - ⇒ High ist logisch "1"
 - ⇒ Low ist logisch "0"
 - ⇒ bei negativer Logik sind diese Pegel umgekehrt

Kenngrößen: Signalübergangszeit und -laufzeit


- Signalübergangszeit
 - **⇒** Flankensteilheit
 - ⇒ Übergang von "H" nach "L" oder "L" nach "H"
- Signallaufzeit
 - ⇒ Zeit die ein Signalimpuls vom Eingang der Schaltung bis Ausgangbenötigt
- **O** Signalverformung
 - ⇒ Da der Transistor im Sättigungsbereich betrieben wird, dauert der "H" nach "L" Übergang länger als der "L" nach "H" Übergang

idealer Rechteckimpuls am Eingang

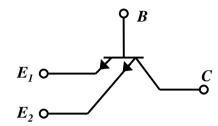


verformter Rechteckimpuls am Ausgang

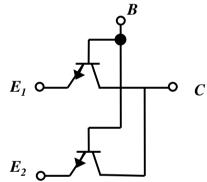
linearisierter Ausgangsimpuls

Schaltvorgang eines Inverters

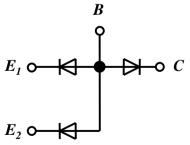
3.2 Verknüpfungsglieder mit Bipolaren Transistoren


- Schaltkreisfamilien
 - **⇒ TTL** Transistor-Transistor-Logic
 - Betrieb im Übersteuerungsbereich
 - **⇒** I²L Integrated Injection Logic
 - Betrieb im Übersteuerungsbereich
 - **⇒** ECL Emitter Coupled Logic
 - Betrieb im aktiven Verstärkerbereich
 - **⇒ STTL Schottky TTL**
 - Betrieb im aktiven Verstärkerbereich

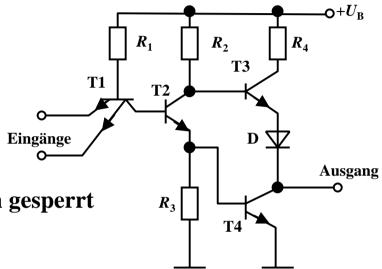
TTL-Schaltkreise


- 74xxx haben auch heute noch große Bedeutung
 - **⇒** geringe Schaltzeiten
 - **⇒** geringe Leistungsaufnahme
 - ⇒ große Zahl verschiedener Verknüpfungsglieder
 - ⇒ einheitliche Betriebsspannung (genormt auf +5V)
 - **⇒** genormte Signalpegel
- **○** Verwendung auch als Bibliothek in Schaltkreis-Entwurfssystemen

Multiemitter-Transistoren


- Transistor mit mehr als einem Emitter
 - ⇒ nur in integrierten Bausteinen realisiert
 - **⇒** Emitter sind Eingänge
- Normalbetrieb
 - ⇒ mind. 1 Eingang auf "L":
 - **⇒** Kollektor-Emitter-Strecke ist niederohmig
 - **⇒** BE-Diode leitend
- Inversbetrieb
 - ⇒ alle Eingänge auf "H"
 - **⇒** BE-Diode gesperrt
 - ⇒ BC-Diode in Durchlaßrichtung
- Wirkung als UND-Verknüpfung

Bei TTL-Schaltbildern

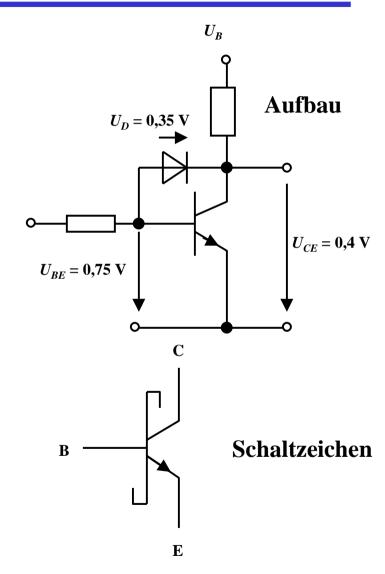

Ersatzschaltbild

Vergleich mit Diodengatter

Grundschaltung der Standard-TTL

- O Drei Ebenen
 - **⇒ UND-Einfächerung T1**
 - **⇒** Phasenumkehrstufe T2
 - **⇒** Gegentaktendstufe T3, T4
- Mindestens ein Emitter auf "L":
 - **⇒** BE-Diode von T1 ist leitend
 - **⇒** T2 wegen zu geringen Basistrom gesperrt
 - \Rightarrow Emitterpotential von T2 = 0
 - **⇒** T3 leitend, T4 gesperrt
 - \Rightarrow Ausgang = ,,H"
- Alle Emitter auf "H":
 - **⇒** BE-Diode von T1 gesperrt
 - **⇒** BC-Diode von T1 in Durchlaßrichtung
 - **⇒** T2 leitend
 - **⇒** T4 leitend, T3 wegen Spannungsabfall an D gesperrt
 - ⇒ Ausgang = ,,L"

Lastfaktoren


- Verknüpfungsglieder werden in Schaltnetzen miteinander verbunden
 - ⇒ von einem Schaltglied werden andere Schaltglieder gesteuert
- Typische TTL-Werte
 - \Rightarrow bei "L"-Pegel (0V $\leq U_{IL} \leq 0.8$ V)
 - es fließt ein Eingangsstrom von - $I_{IL} \le 1,6$ mA
 - der Ausgangsstrom darf 16mA betragen
 - \Rightarrow bei "H"-Pegel (+2V $\leq U_{IH} \leq$ 5V)
 - es fließt ein Eingangsstrom $I_{IH} \le 0.04 \text{ mA}$
 - der Ausgangsstrom darf 0,4 mA nicht übersteigen
- O Fan-out
 - **⇒** Belastbarkeit: Anzahl der ansteuerbaren Verknüpfungsglieder
 - ⇒ Bei TTL: Faktor 10
- O Fan-in
 - **⇒** Faktor zur typischen Eingangslast einer Baustenfamilie

Varianten von TTL-Schaltkreisen

- Unterschiedliche Dimensionierung der Widerstände beeinflusst die Eigenschaften der Schaltungen
- **O** Low-Power-TTL
 - **⇒** Widerstände sind hochohmig
 - ⇒ kleinerer Stromfluß
 - **⇒** geringere Leistungsaufnahme
 - **⇒** langsamer
- **O** High-Speed-TTL
 - **⇒** Widerstände sind niederohmig
 - **⇒** größerer Stromfluß
 - **⇒** höhere Leistungsaufnahme
 - **⇒** schneller

Schottky TTL

- O Transistoren werden nicht im Übersteuerungsbereich betrieben
 - ⇒ Schottky-Diode zwischen Basis und Kollektor
 - ⇒ Schwellenspannung der Schottky-Diode bei 0,35 V
 - \Rightarrow nach der Maschenregel beträgt die Spannung U_{CE} 0,4 V
 - ⇒ die steile Kennlinie der Diode verhindert ein weiteres Durchsteuern

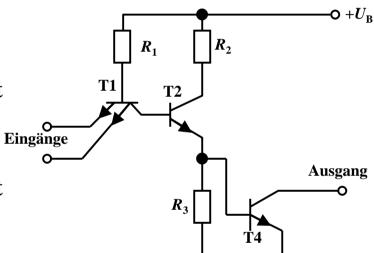
Vergleich der TTL-Baureihen

TTL - Baureihe	Verzögerungszeit je Gatter $t_{\rm p}$ in ns	$\begin{array}{c} \text{Verlustleistung} \\ \text{je Gatter } P_{\text{V}} \text{ in mW} \end{array}$	Leistungs-Zeit- Produkt $P_{ m V} t_{ m P}$ in pJ
74ALS	4,5	1,2	5,4
74F	2,3	4	9,2
74LS	9,5	2	19
74AS	1,5	22	33
74L	33	1	33
74S	3,5	19	66,5
74	10	10	100

- 74ALS Advanced-Low-Power-Schottky-TTL (weiterentwickelte LS-TTL)
- 74F Fast-TTL (schnelle S-TTL)
- 74LS Low-Power-Schottky-TTL (S-TTL mit niedriger Verlustleitung)
- 74AS Advanced-Schottky-TTL (weiterentwickelte S-TTL)
- 74 L Low-Power-TTL (TTL mit niedriger Verlustleitung)
- 74 S Schottky-TTL (schnelle TTL)
- 74 TTL (Standard-TTL)

Vergleich der TTL-Baureihen

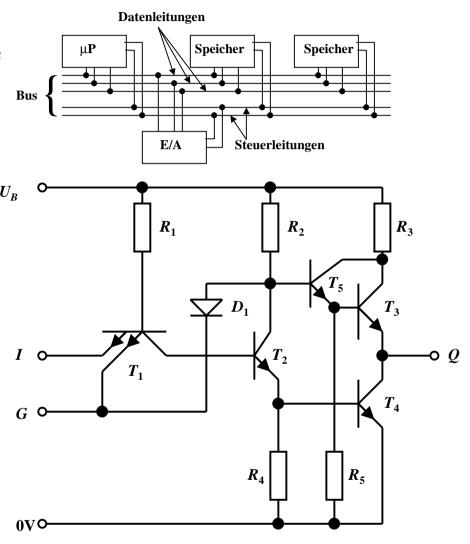
Vergleich zwischen TTL-Baureihen und Lastfaktoren


1 TTL-Gatter der Baureihe treibt max.	Anzahl 74ALS		TL-Ein 74AS	P 0	n der 74L		eihe 74
74ALS	20	20	10	20	40	10	10
74F	25	25	10	25	48	10	12
74AS	50	50	10	50	100	10	10
74LS 74L	20 10	50 50 10	8	20 10	40 20	10 10 1	5 2
74S	50	50	10	50	100	10	12
74	20	20	8	40	40	8	10

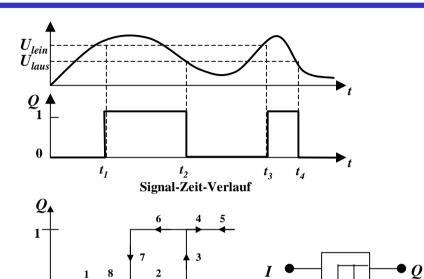
Stromgrenzwerte von TTL-Gattern verschiedener Baureihen

TTL-Baureihe	-IOH in μA	<i>I</i> OL in μA	ΠΗ in μΑ	-/IL in μA
74LS	400	8000	20	400
74L	200	3600	10	180
74S	1000	20000	50	2000
74	400	16000	40	1600

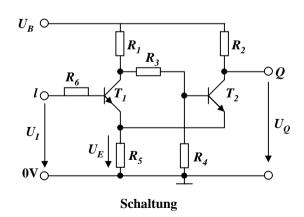
Open-Collector


- O Der Kollektor des Transistors T₄ wird direkt nach Außen geführt
 - ⇒ Anschluß des Verbrauchers an die Betriebsspannung über einen Arbeitswiderstand
- Anwendung
 - ⇒ Schalten von Verbrauchern mit höheren Lasten
 - ⇒ Relais, Leuchtdioden, Lampen
 - ⇒ Schalten von Verbrauchern mit höheren Betriebsspannungen

Tri-State Ausgang


- O Spezielle Ansteuerung der Gegentaktendstufe so daß beide Transistoren sperren
 - ⇒ der Ausgang wird hochohmig
- O Zusammenschaltung mehrerer UB Ausgangsleitungen an einer gemeinsamen Leitung
 - **⇒** Busse

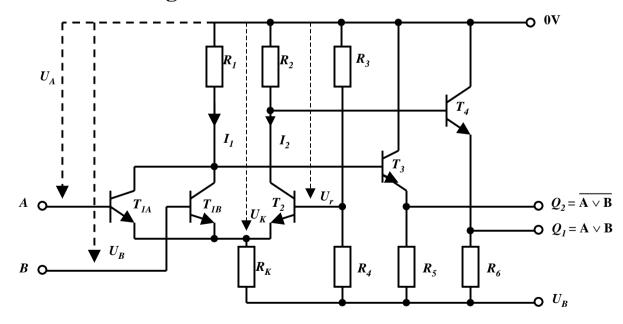
G	I	Q
Н	L	Н
H	H	L
${f L}$	${f L}$	hochohmig
${f L}$	H	hochohmig



Schmitt-Trigger

- Schaltungen mit einem Analogeingang und einem Digitalausgang
- Prinzip
 - ⇒ die Arbeitspunkte der beiden Transistoren beeinflussen sich gegenseitig
- Anwendungen
 - **⇒ Impulsformung und** Signalregenerierung
 - ⇒ Erhöhung der Flankensteilheit
 - ⇒ Unterdrückung von Störsignalen

Übertragungskennlinie und Schaltzeichen



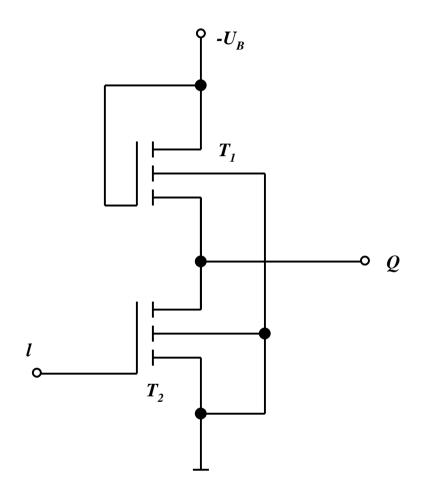
 \dot{U}_{laus}

ECL-Schaltkreise

- O Emitter-gekoppelte Logik
 - **Emitterfolger**
 - **⇒** Differenzverstärker
 - → Transistoren arbeiten nicht im Übersteuerungsbereich
 - **⇒** kleine Schaltzeiten
 - **⇒** hoher Leistungsverbrauch

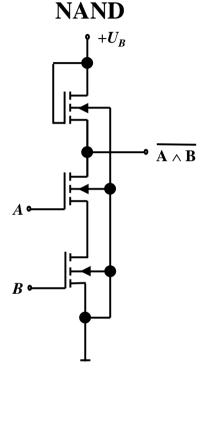
- Geringer Störabstand
 - ⇒ ,,H" 0,8V bis 0,7V
 - ⇒ ,,L" 1,7V bis 1,5V
- Anwendung
 - **⇒** Großrechnertechnik

I²L-Schaltkreise


- Integrierte Injektionslogik
 - **⇒** Widerstände werden durch Transistoren ersetzt
 - **⇒** Konstantstromquellen
 - ⇒ extrem kleiner Flächenbedarf, da Transistoren weniger Fläche benötigen als Widerstände
 - **⇒** kleine Leistungsaufnahme
 - **⇒** geringe Versorgungsspannung (< 1V)
 - ⇒ Spannungshub und Störsicherheit sind sehr klein (< 0,6V)
- Anwendung
 - **⇒** hochintegrierte Schaltung
 - ⇒ heute kaum Bedeutung, da CMOS inzwischen noch besser integrierbar ist

3.3 Verknüpfungsglieder mit unipolaren Tansistoren

- O Bausteine mit hochintegrierten digitalen Schaltungen werden heute meist in MOS-Technologie realisiert
 - **⇒** hohe Integration
 - **⇒** einfache Herstellung
 - **⇒** geringere Leistungsaufnahme (speziell CMOS)
- Verknüpfungsglieder
 - **⇒ PMOS Schaltkreise** mit p-Kanal FET
 - **→ NMOS Schaltkreise** mit n-Kanal FET
 - **⇔** CMOS Schaltkreise mit p-Kanal und n-Kanal FET

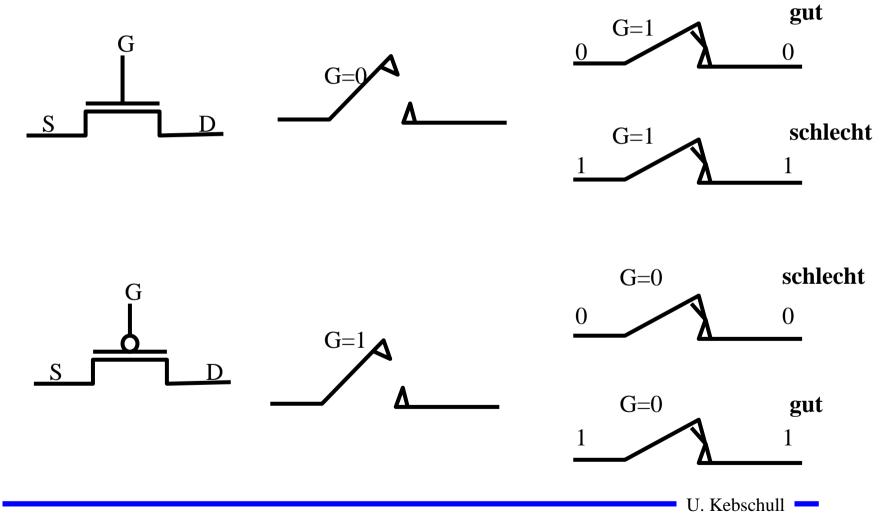

PMOS Schaltkreise

- Selbstsperrender PMOS-Transistor (T₂)
 - ⇒ der Transistor T1 wirkt wie ein Widerstand
- **O** Vorteile
 - **⇒** einfache Herstellbarkeit
- Nachteile
 - ⇒ hohe Schwellspannung (5V)
 - ⇒ hohe Versorgungsspannung (-9 bis -20V)
 - ⇒ relativ große Schaltzeit
- O Realisierung der Logik durch Parallel- und Serienschaltung der Transistoren

NMOS Schaltkreise

- **O** Selbstsperrender NMOS-FET
- Vorteile
 - **⇒** geringere Schaltzeiten
 - **⇒** höhere Packungsdichte
 - **⇒** geringere Betriebsspannung
 - **⇒** geringerer Leistungsverbrauch
- O Realisierung der Logik durch Parallel- und Serienschaltung der Transistoren

 $+U_B$

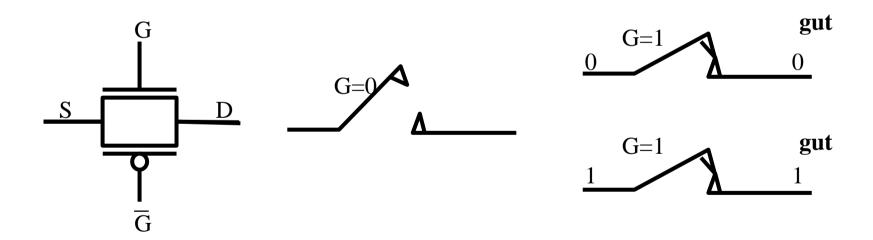

 $\overline{\mathbf{A} \vee \mathbf{B}}$

NOR

CMOS Schaltkreise

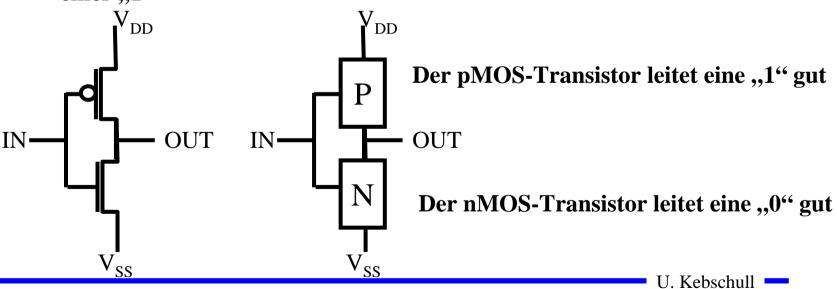
- Complementary Metal Oxide Transistor
 - **⇒** Selbstsperrende NMOS und PMOS FET
- O NMOS und PMOS-FETs können nicht beliebig an die Versorgungsspannung bzw. an GND geschaltet werden
 - ⇒ die Stärke der "0" und der "1" kann variieren
 - ⇒ die Stärke entspricht der "Fähigkeit" als Quelle oder Senke von Elektronen zu dienen
 - ⇒ POWER und GND sind die stärksten Quellen bzw. Senken
- **NMOS- und PMOS-Transistoren schalten unterschiedlich**
- O der Schalter ist unterschiedlich gut, je nachdem ob zwischen Source und Drain eine "1" oder eine "0" geschaltet wird. Der Grund dafür ist der Spannungsabfall beim Übergang
- ACHTUNG: In den folgenden Folien wird die amerikanische Notation der Transistoren verwendet!

Der MOS-Transistor als Schalter



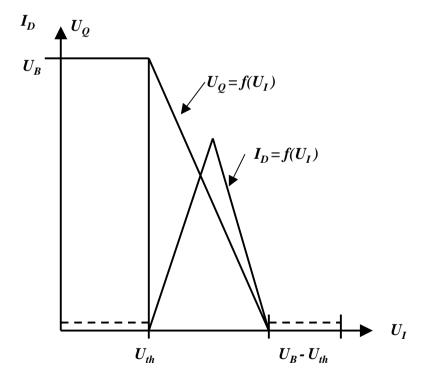
Technische Informatik I

Stand WS 98/99

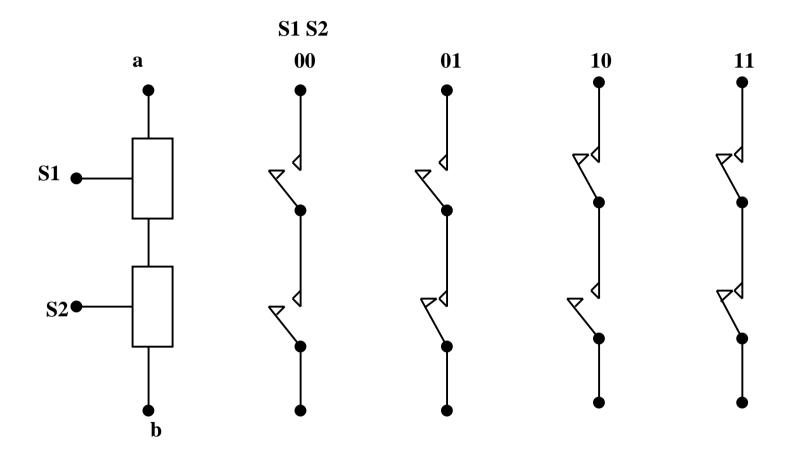

Komplementärschalter (Transmission Gate)

- O Die Übertragungscharakteristika bei Transmission Gates sind jetzt in beiden Fällen gut
- Trotzdem sollte man nicht mehrere Komplementärschalter hintereinanderschalten
- O Zur Steuerung benötigt man beide Signale G und G.

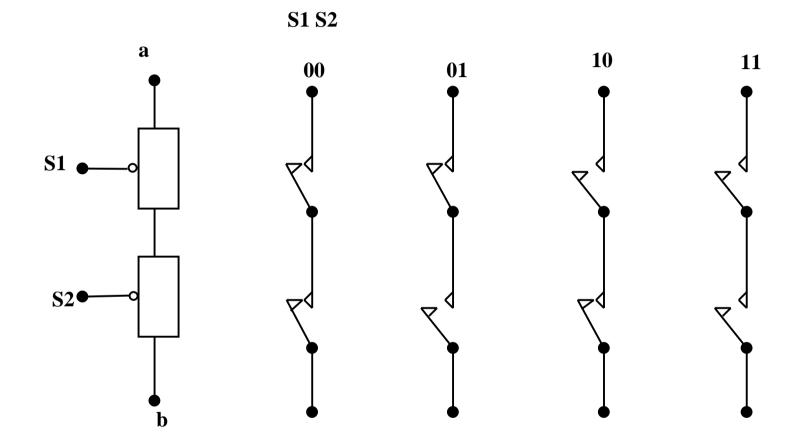
CMOS-Logik


- O CMOS steht für Complementary MOS und bedeutet, daß immer ein Transistor von POWER nach GROUND gesperrt ist
 - ⇒ Es fließt ein minimaler Strom.
- CMOS-Inverter
- O Ein nMOS und ein pMOS Transistor werden in Reihe geschaltet.
 - ⇒ Der pMOS-Transistor leitet, wenn eine "0"anliegt und sperrt bei einer "1"
 - ⇒ Der nMOS-Transistor sperrt, wenn eine "0" anliegt und leitet bei einer "1"

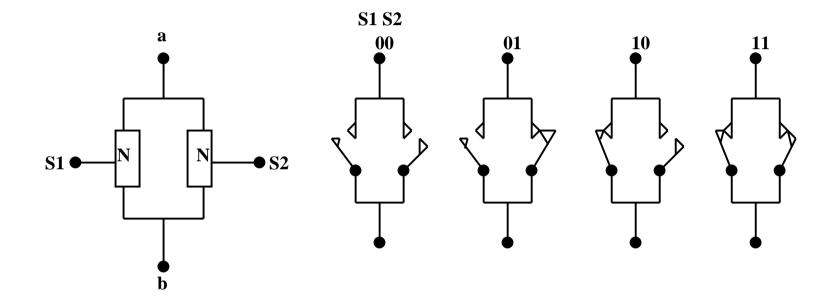
Technische Informatik I

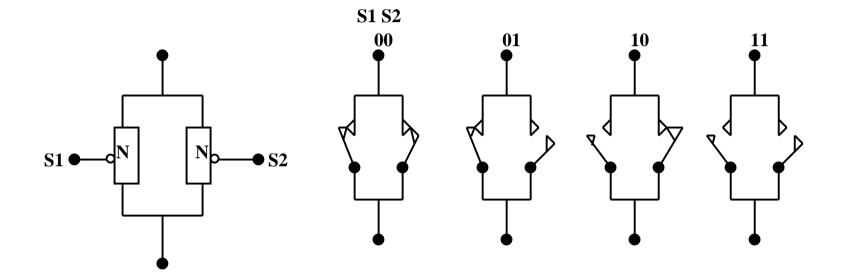

Schaltverhalten eines CMOS-Gatters

- bei CMOS Schaltkreisen ist die statische Verlustleistung sehr gering
 - \Rightarrow bei U_B = 5V und I_D <10 nA gilt P < 50 nW
- O beim Umschalten ist ein Transistor noch nicht voll gesperrt, während ein Transistor bereits leitend wird

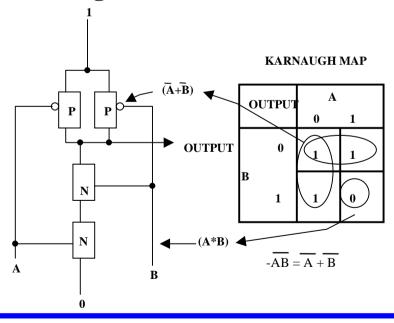


nMOS und pMOS-Grundschaltungen

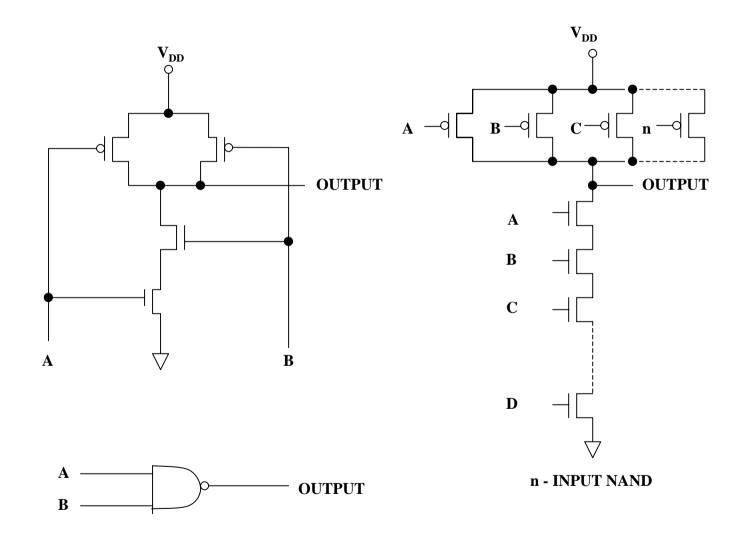

O Reihenschaltung von nMOS-Transistoren


Reihenschaltung von pMOS-Transistoren

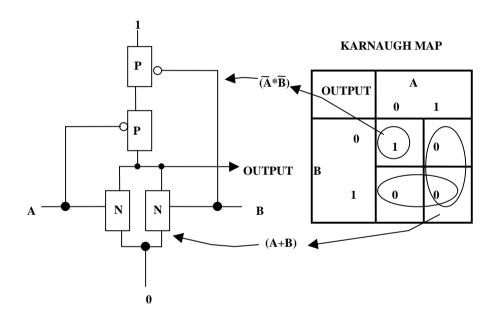
Parallelschaltung von nMOS-Transistoren

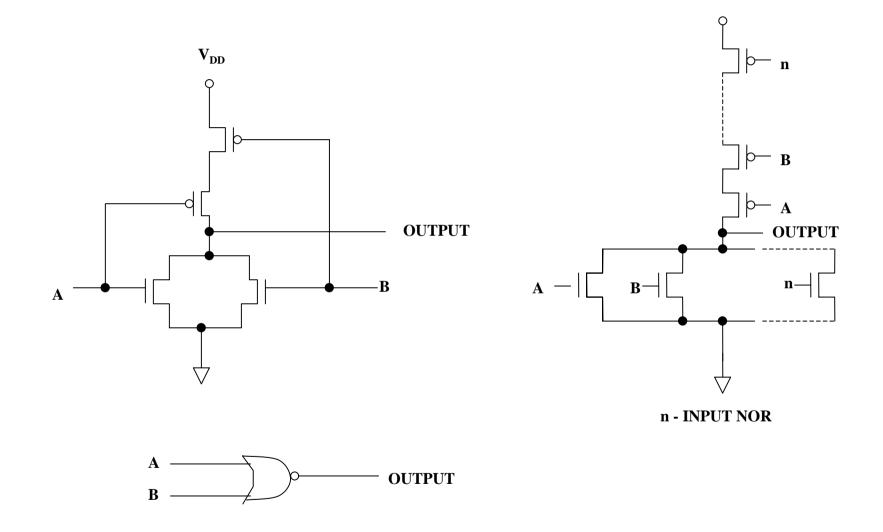


Parallelschaltung von pMOS-Transistoren

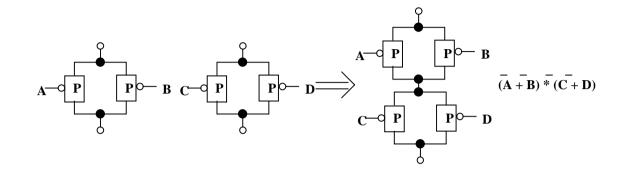


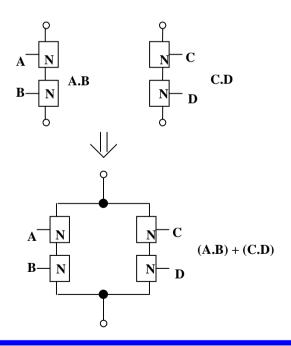
Das NAND-Gatter

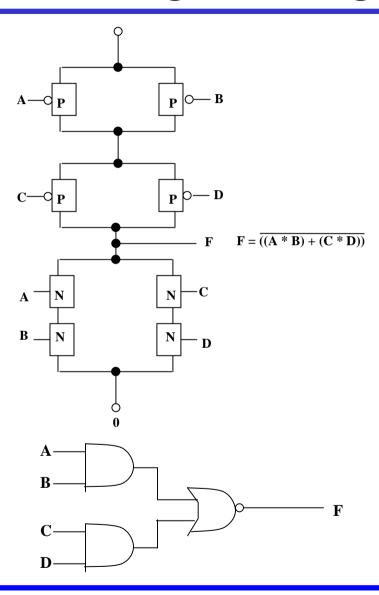

- O Das NAND-Gatter wird aus den nMOS- und pMOS-Grundschaltungen gebildet.
- O Dabei wird das KV-Diagramm durch die KV-Diagramme der Grundschaltungen überdeckt.
- O Die Transistoren werden stets so benutzt, daß sie gut leiten.
 - ⇒ "1": Überdeckung durch pMOS
 - ⇒ ,,0": Überdeckung durch nMOS


NAND-Schaltung

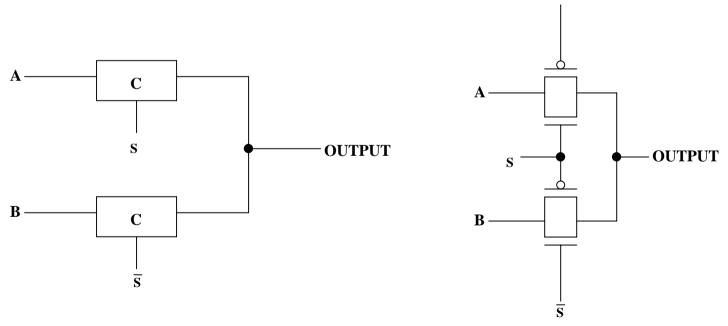
Das NOR-Gatter



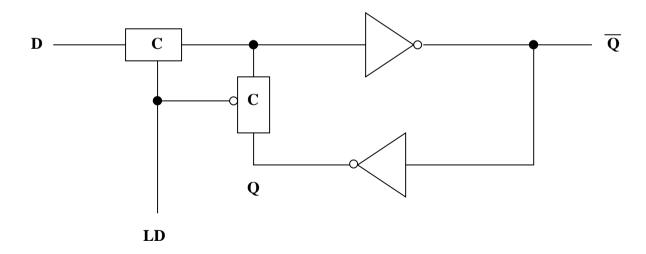

NOR-Schaltung


Komplexgatter

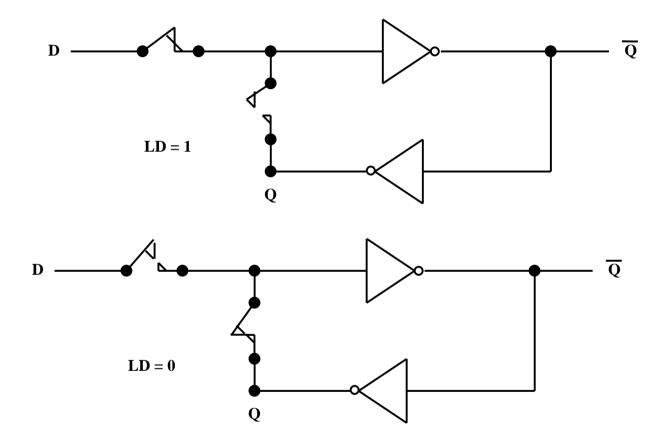
- O Komplexgatter sind Gatter, die komplexere Funktionen implementieren Beispiel: die Funktion: f(A,B,C,D)=(A*B)+(C*D) wird gebildet aus einer Reihe von Serien- und Parallelschaltungen
- n-Seite der Schaltung:
 - **⇒** nicht-invertierter Teil der Schaltung
 - \Rightarrow A*B und C*D werden durch Serienschaltungen implementiert
 - ⇒ die ODER-Verknüpfung wird durch Parallelschaltung der beiden Terme implementiert
- p-Seite der Schaltung:
 - \Rightarrow Negation der Gleichung ergibt: f(A,B,C,D)=(A+B)*(C+D)
 - **⇒** invertierter Teil der Schaltung
 - ⇒ 'A+'B und 'C+'D werden durch Parallelschaltungen implementiert
 - ⇒ die UND-Verknüpfung wird durch Parallelschaltung der beiden Terme implementiert



Die vollständige Schaltung

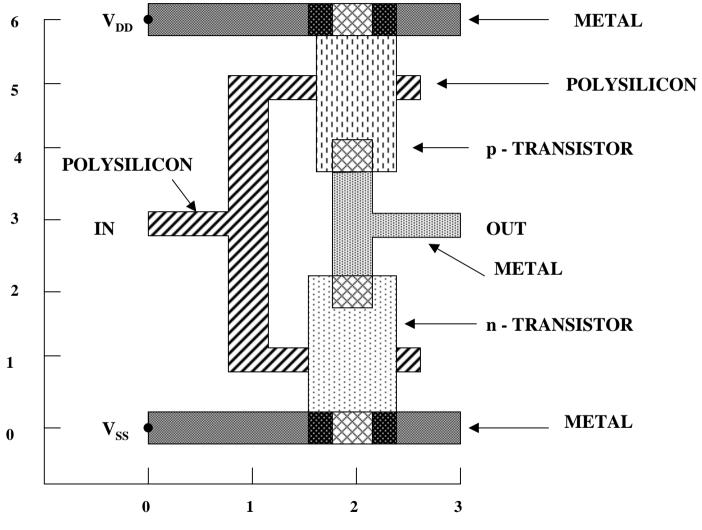

Multiplexer

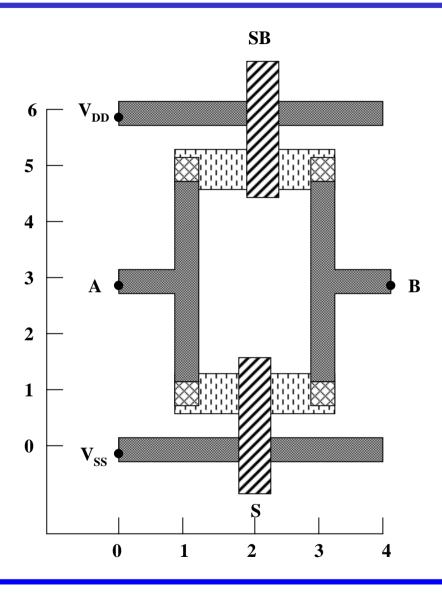
- O Multiplexer können aus Komplementärschaltern aufgebaut werden.
- "0" und "1" werden gleich gut übertragen
- O Das Steuersignal wird positiv und negiert benötigt
- Schaltbild des Multiplexers



Speicher

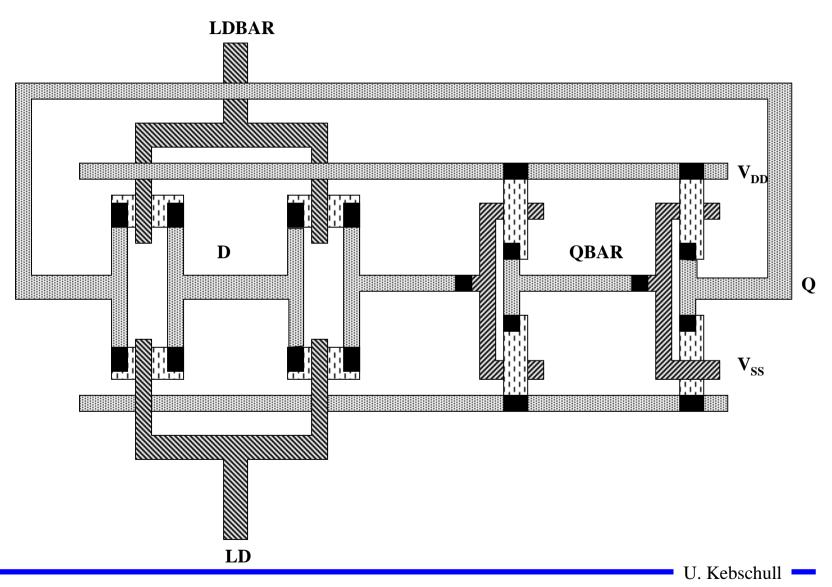
- Auch ein Flipflop kann aus den bisher behandelten CMOS-Strukturen aufgebaut werden.
- O Man benötigt zwei Inverter und einen Multiplexer.
- O Das Flipflop besitzt Latch-Verhalten:
- O Die Ausgabe folgt der Eingabe, wenn LD=1
- O Die Ausgabe speichert den letzten Wert, wenn LD=0
- Schaltbild:

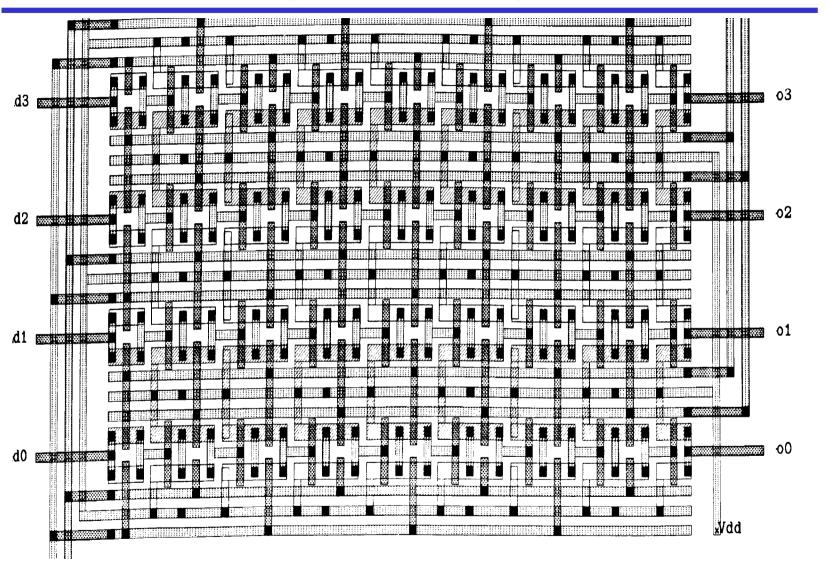

Schaltverhalten


Physikalische Darstellung von MOS-Schaltkreisen

- O Die physikalische Darstellung von MOS-Schaltkreisen wird benutzt um zu beschreiben, wie der physikalische Aufbau einer integrierten Schaltung ist. Im Prinzip können daraus automatisch die Belichtungsmasken erstellt werden.
- O Die einzelnen Transistoren entstehen durch Übereinanderlegen von Schichten
 - **⇒** p-Diffusion (positiv dotiert)
 - ⇒ n-Diffusion (negativ dotiert)
 - **⇒** Polysilizium (Gate)
 - **⇒** Metall1 und Metall2
 - **⇒** Kontakte

Beispiel Inverter


Beispiel Komplementärschalter


sprachliche Beschreibung des Layouts eines Komplementärschalters

```
begin tg
t1: device n (2,1) or=east
t2: device p(2,5) or=east
         wire alum (0,0)(4,0)
         wire alum (0,6)(4,6)
         wire poly (2,-1)(2,1)
         wire poly (2,7)(2,5)
         wire alum (1,1)(1,5)
         wire alum (3,1)(3,5)
         wire alum (0,3)(1,3)
         wire alum (3,3) (4,3)
         contact md (1,1)
         contact md (3,1)
         contact md (1,5)
         contact md (3,5)
end
```

Beispiel Flipflop

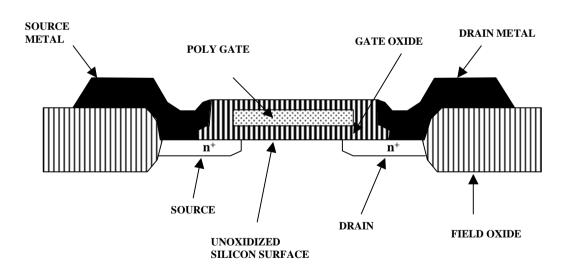
Beispiel Schieberegister

4 Der CMOS-Fertigungsprozeß

CRYSTAL HOLDER

4.1 Herstellung von Wafern

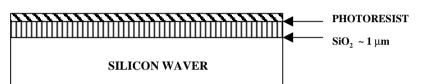
In diesem Abschnitt folgt eine Übersicht, wie CMOS-Schaltungen gefertigt werden. Das Ausgangsprodukt sind monokristalline Siliziumscheiben deren. Dicke zwischen 0.25 und 1 mm und deren Durchmesser 75 bis 150 mm beträgt. Diese Scheiben nennt man Wafer

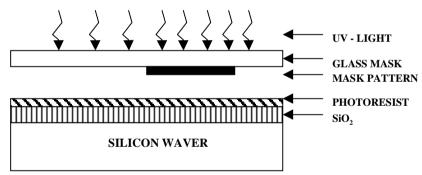

- Monokristallin bedeutet, daß das GRAPHITE LINER Silizium in einer möglichst reinen Kristallstruktur erstarrt. Der Schmelzpunkt von Silizium beträgt ca. 1425 °C
- Heute wird meist die Czochralski-Methode angewandt bei der die Wachstumsrate ca. 30 bis 180 mm/Stunde beträgt

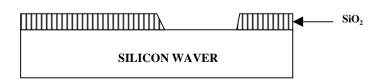
SEED GROWING CRYSTAL QUARTZ CRUCIBLE WITH SHIELD MOLTEN SILICON CRUCIBLE SUPPORT

DIRECTION OF PULL

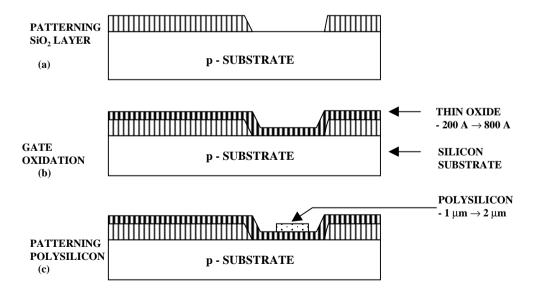
Oxydation

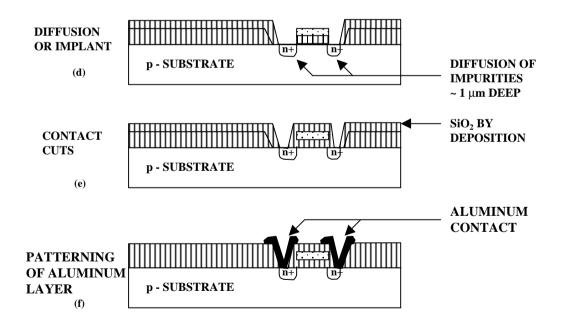

- O Siliziumoxyd (SiO2) ist ein guter Isolator. Es wird erzeugt, indem der Wafer einer oxydierenden Umgebung ausgesetzt wird
- **○** Wasserdampf bei 900×C bis 1000×C (schnelle Oxydierung)
- Sauerstoff bei 1200×C (langsame Oxydierung)
- O SiO2 besitzt etwa das doppelte Volumen von Silizium und es wächst sowohl vertikal als auch horizontal




Selektive Diffusion

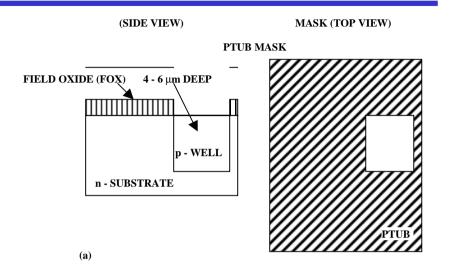
- O Selektive Diffusion ist das Erzeugen verschieden dotierter Siliziumschichten.
- O Flächen müssen dabei
 - **⇒** beliebige Formen annehmen können
 - **⇒** genau plaziert sein
 - **⇒** genau skaliert sein
- O Das SiO2 verhindert den Dotierungsvorgang. Es kann später durch eine Säure entfernt werden, die das Silizium nicht angreift.
- Prinzip der selektiven Dotierung:
 - Oxydieren der Siliziumoberfläche
 - ⇒ Beschichten mit einem lichtempfindlichen Lack
 - ⇒ Belichten mit UV-Licht über eine Maske
 - ⇒ Entfernen des nicht belichteten Photolacks und des darunterliegenden Siliziumoxyds

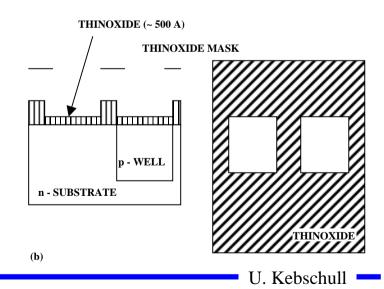


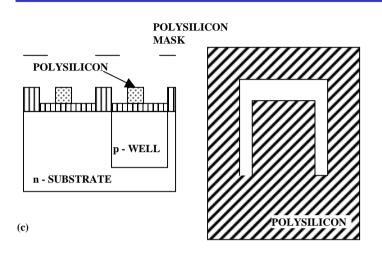


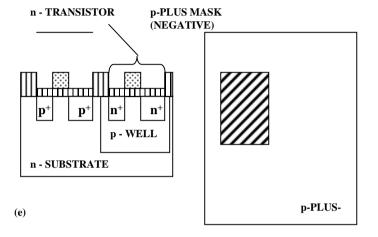
4.2 Entstehung eines nMOS Transistors

- Zunächst wird der Wafer mit einer dicken SiO2-Schicht überdeckt
- An den Stellen, an denen Transistoren entstehen sollen, werden diese freigelegt (a)
- O Die gesamte Fläche wird mit einer dünnen, sehr einheitlichen SiO2-Schicht überdeckt (b)
- O Der Wafer wird mit einem Photolack überzogen und an den Stellen, an denen Gates entstehen sollen, freigelegt. Polykristallines Silizium wird aufgedampft (c)

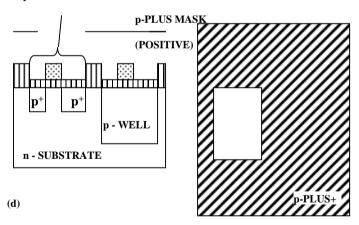


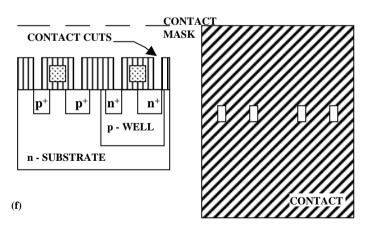

- O Mit den gleichen Arbeitsschritten werden die Flächen für die negative Dotierung freigelegt. Die freigelegten Flächen werden negativ dotiert (d). Der Wafer wird erneut mit einer SiO2-Schicht überdeckt
- O Die Kontaktstellen werden durch Ätzung freigelegt.
- O Die Metallbahnen zur Verbindung werden aufgedampft.

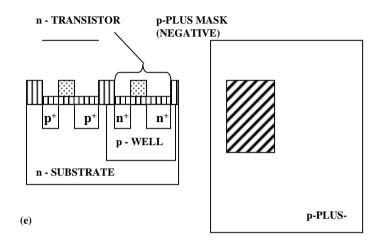


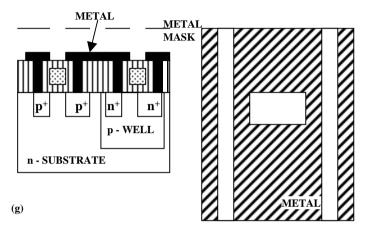

4.3 Entstehung eines CMOS-Inverters

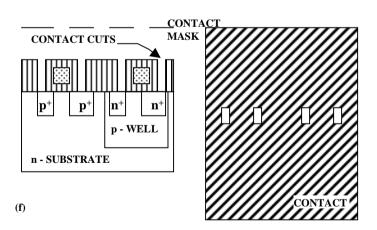
O Beim CMOS-Prozeß müssen negativ dotierte Flächen für pMOS-Transistoren geschaffen werden (p-Well, p-Wannen).

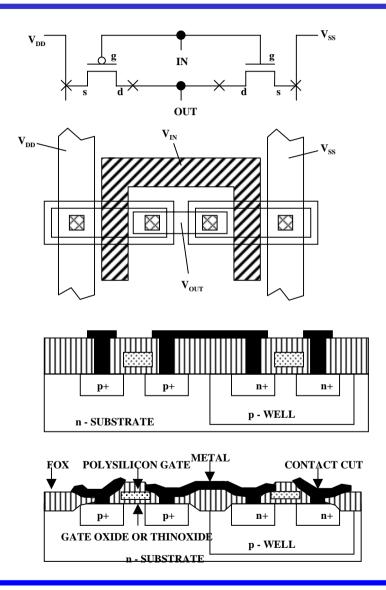


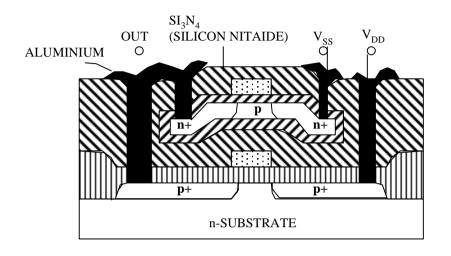


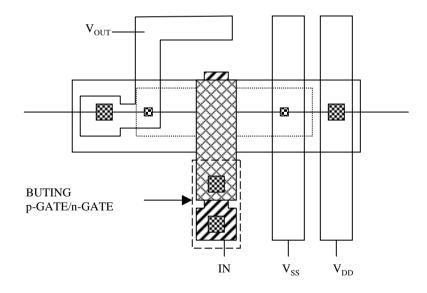




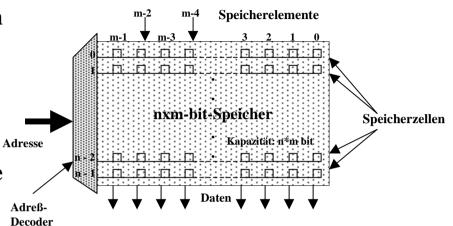


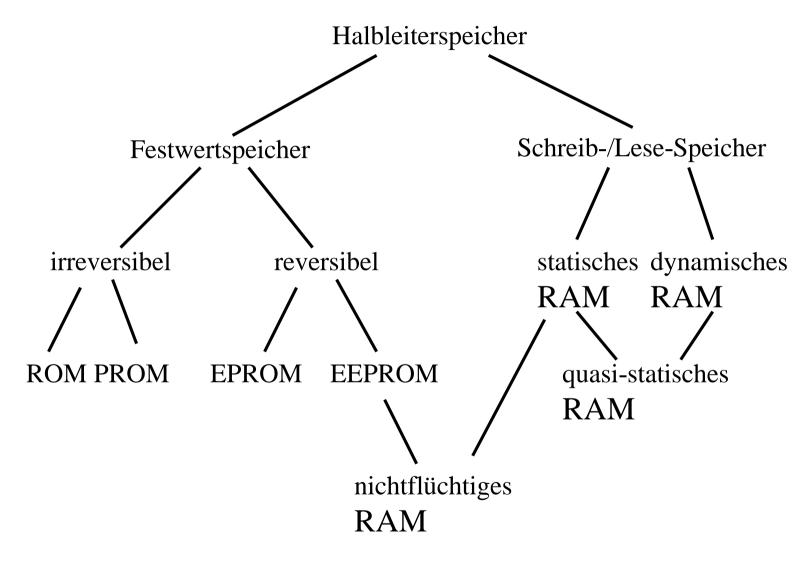




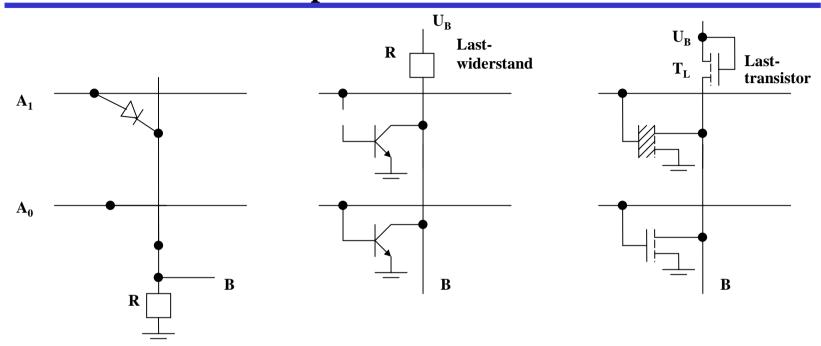


Zusammenhang zwischen Schaltplan und Realisierung


Moderne CMOS-Techniken: ein 3D-CMOS-Inverter

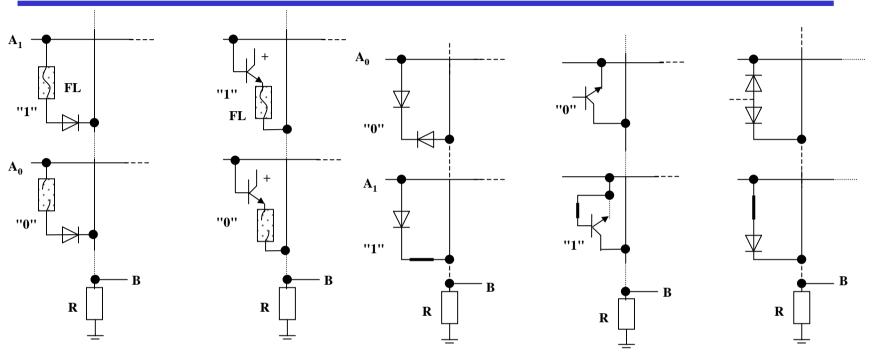

5 Aufbau von Speicherzellen

- O Speicherung von Daten oder von logischen Funktionen
- Arten der Speicherung
 - ⇒ irreversibel programmierbare Speicherzellen
 - ⇒ reversibel programmierbare Speicherzellen
 - ⇒ spezielle
 Transistorschaltungen als
 statisches Speicherelement
 - **⇒** Speicherung in der Daten in einem Kondensator
- O Speicherung der kleinsten Informationseinheit (Bit) in einem Speicherelement



- Speicherzelle
 - Speicherelemente, die unter einer gemeinsamen Adresse ansprechbar sind
- Speicherwort
 - **Datenbusbreite**
- Organisation
 - **⇒** Anzahl der Speicherzellen
 - **⇒** Anzahl der Speicherelemente
 - ⇒ n*m Bit
- Kapazität
 - **⇒** Zahl der Speicherelemente

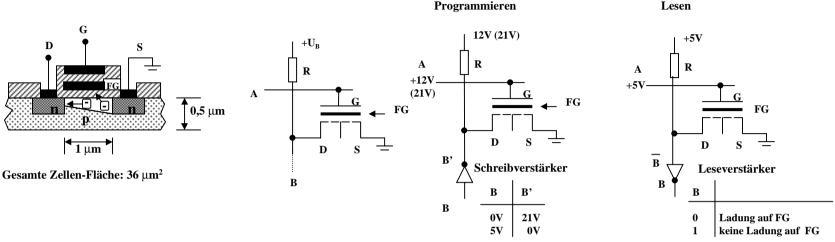
Klassifizierung von Halbleiterspeichern



Speicherzellen für maskenprogrammierbare Speicherelemente

- Maskenprogrammierbare Speicherelemente erhalten ihre Information bei der Herstellung des Chips
 - **⇒** Information steht auf einer der Masken
 - **⇒** Inhalt ist nicht verämderbar
- O Bauelemente wie Dioden, Bipolar- oder MOS-Transistoren werden bei der Herstellung deaktiviert
 - ⇒ Bei MOS-Transistoren ist die Dicke der Gate-Isolation ausschlaggebend

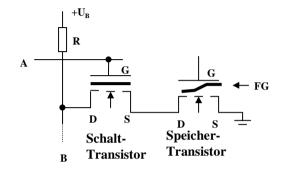
Speicherzellen für programmierbare Speicherelemente

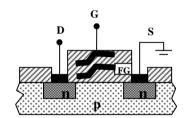


 $Speicherzellen\ mit\ Schmelzsicherungen$

AIM-Speicherzellen

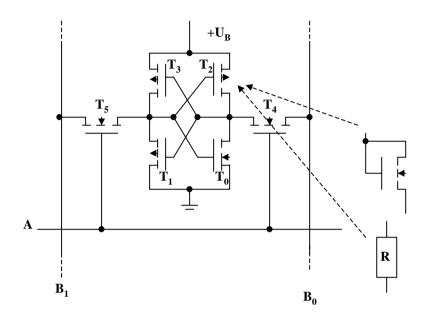
- O Programmierung in Programmiergerät durch Überspannungen
 - **⇒** Schmelzsicherung
 - **⇒** Zerstören von Dioden (dauernd leitend)
- O Information ist nur einmal schreibbar und kann nicht verändert werden

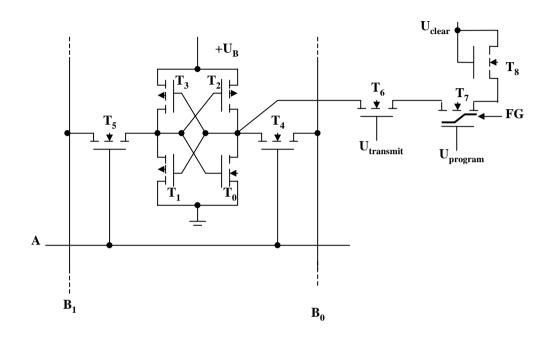

Löschbare Speicherelemente



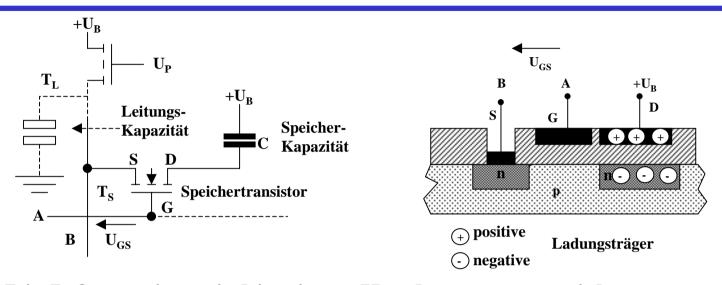
- O Löschen durch UV-Licht
- **○** FAMOS: floating gate avalance MOS-transisistor
 - ⇒ Besitzt zweites Gate, das vollständig isoliert ist
 - ⇒ Speicherung der Ladung über 30 Jahre
- O Programmierung durch hohe Spannung (12-21 V)
 - **⇒** Elektronen werden angezogen

- Programmieren und Lesen einer EPROM-Zelle
- O Lesen durch Anlegen einer niederen Spannung (5 V)
 - ⇒ ist das Floating-Gate geladen, schaltet der Transistor nicht

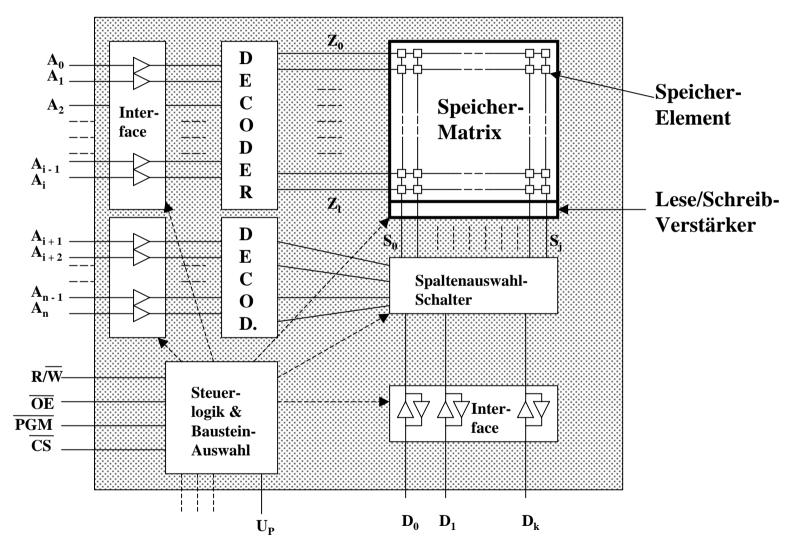

Elektrisch löschbare Speicherelemente


- **O Dünne Isolierschicht des Floating Gates**
 - ⇒ Lesen: Wenn das Floating Gate des Transistors geladen ist, sperrt dieser
 - \Rightarrow Löschen: Hohe Spannung (21 V) am Gate-Anschluß des Transistors lädt das Floating Gate ($U_B = 0V$)
 - ⇒ Programmieren: 0 V am Gate und eine hohe Spannung am Drain-Anschluß des Transistors entlädt einzelne Floating Gates (logisch 0)

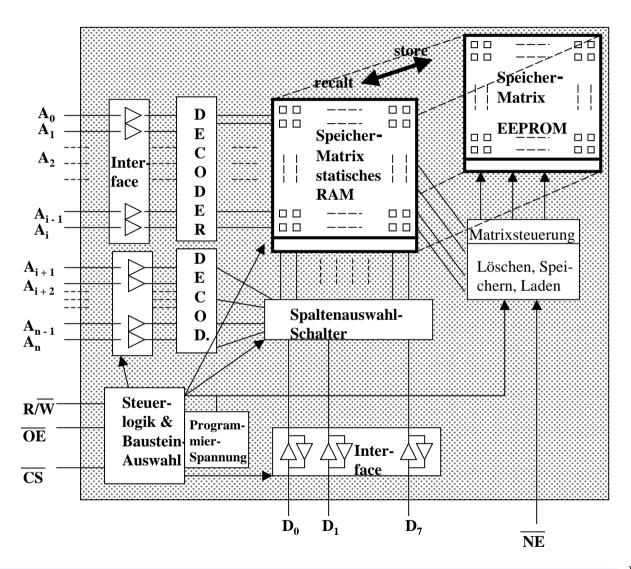
Statische MOS-Speicherelemente


- **○** 6-Transistorzelle
 - ⇒ Statt T₂ und T₃ können auch n-MOS-Transistoren oder Widerstände eingesetzt werden
 - \Rightarrow T₄ und T₅ dienen zur Ankopplung an die Bitleitungen

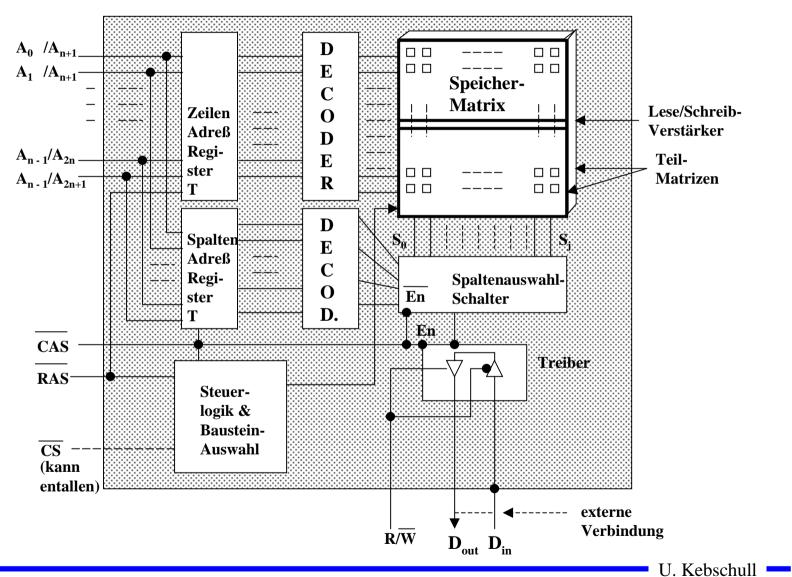
NVRAM-Speicherelemente


- O Kombination eines statischen mit einem EEPROM Speicherelement
 - ⇒ wenn die Spannung abfällt oder das Gerät eingeschaltet wird, findet eine Übertragung von bzw. in die EEPROM-Zelle statt

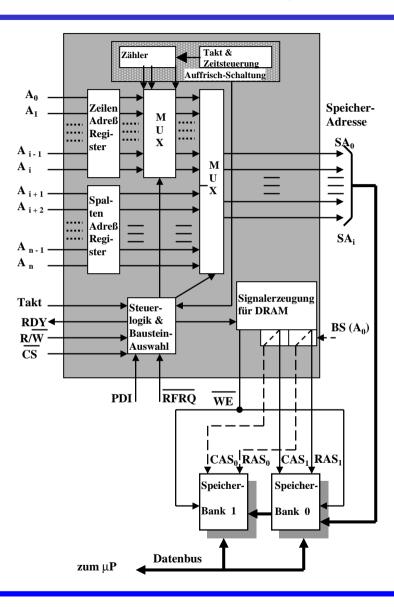
Dynamische Speicherelemente



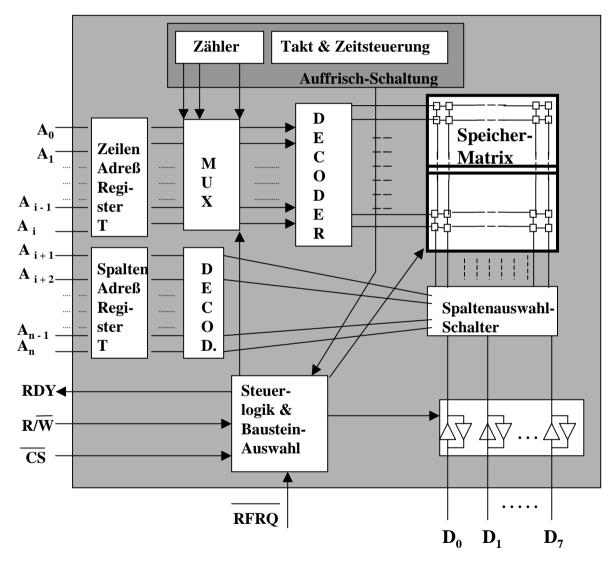
- O Die Information wird in einem Kondensator gespeichert
 - ⇒ vergrößerte Drain-Zone
 - **⇒** isoliert zur Spannungsversorgung
- O Kapazität 0,1 bis 0,5 pF, 100.000 bis 150.000 Elektronen
 - ⇒ Selbstentladung nach ca. 2 ms
- O Speichern entspricht dem Laden des Kondensators
- Lesen entlädt den Kondensator
 - **⇒** Daten müssen wieder zurückgeschrieben werden


Organisation eines Speicherbausteins

NVRAM-Bausteine



Dynamische RAM-Bausteine



WC 09/00

Aufbau eines DRAM-Controllers

Pseudo-statische RAMs

Technische Informatik I Stand WS 98/99 215

Technische Informatik I Stand WS 98/99 216