
 IspLEVER 1.0 Concepts

IspLEVER™ v1.0
Concepts Manual
Welcome to ispLEVER Concepts, a
resource manual of design,
implementation, verification, and
programming concepts that comprise
ispLEVER 1.0. This manual explains the
purpose of each ispLEVER tool and
gives guidelines for using these tools to
implement Lattice programmable
devices.

The contents of this document are also
covered in ispLEVER Help. However,
this document offers the benefit of being
able to print multiple pages (topics) at a
time.

IspLEVER 1.0 Concepts ii

Contents

Overview of ispLEVER .. 11
Constraint Editor.. 11
Hierarchy Browser... 11
Hierarchy Navigator .. 11
ispEXPLORER .. 11
ispVM System.. 11
Lattice Logic Simulator ... 12
Library Manager .. 12
Performance Analyst.. 12
Project Navigator ... 12
Report Viewer.. 12
Schematic Editor.. 12
SVF Debugger ... 12
Symbol Editor.. 13
Text Editor ... 13
Waveform Editor ... 13
Waveform Viewer.. 13

CPLD Process Flow.. 14
Program Folder ... 14
Learning ispLEVER ... 15

ispLEVER Concepts .. 15
ispLEVER Help ... 15
ispLEVER Tutorial .. 15
Example Projects ... 15
Third-Party Documentation ... 16
Product Literature .. 16

Using ispUPDATE ... 17
Starting the ispUpdate Program... 17

Using the Update Feature ... 18
Using the Download Feature .. 21
Launching the Patch Install Program.. 22
Migrating from ispDesignEXPERT 8.x (8.2, 8.3, or 8.4) to ispLEVER .. 23

MACH Devices.. 23
ispLSI Devices... 23

Using ispLEVER Help ... 26
Context-sensitive Help ... 26

Running ispLEVER from the Command Line... 26
Contacting Lattice Semiconductor ... 26

Headquarters .. 26
Product Support ... 27

Project Management ... 28
Project Navigator .. 28

The Project Navigator Interface.. 28
Valid Source Types .. 29
Source Hierarchy .. 29
Process Flows ... 30

Source-Level Flow... 30

Contents

IspLEVER 1.0 Concepts iii

Project-Level Flow .. 30
Initialization.. 30

Using the Global Constraints Dialog Box to Control Optimization .. 31
Using the Location Assignments Dialog Box to Pre-assign Pins and Nodes............................. 31

Describing a Project ... 31
Design Hierarchy.. 31
Tips for Defining Projects .. 31
Where Source Files are Placed ... 31
Processing a Design.. 32
Tip for Saving and Naming Projects .. 32
Forcing a Process to Run .. 32
Reserved File Names .. 33

Pop-up Menus .. 33
Hierarchical Design .. 34

What is a Hierarchical Design? .. 34
Advantages of Hierarchical Design .. 34
Hierarchy vs. Sheets ... 35
Approaches to Hierarchical Design .. 35
Hierarchical ABEL-HDL Design ... 36
Hierarchical Schematic Design... 36
Hierarchical Verilog HDL Design.. 36
Hierarchical VHDL Design .. 36
Hierarchical Design Considerations37
Hierarchical Design Structure... 37
Hierarchical Naming... 38
Nets in the Hierarchy.. 39
Automatic Aliasing of Nets .. 39
Hierarchical Design Examples 40
ABEL-HDL Hierarchy Example .. 40

Top-level ABEL-HDL Module (top.abl) ... 40
Lower-level ABEL-HDL module (add.abl)... 41
Schematic Hierarchy Example... 42
Lower-level ABEL-HDL Module for Add Block Symbol .. 43
Schematic/Verilog HDL Hierarchy Example .. 43
Lower-level Verilog HDL (mux2x1v.v) .. 44
Schematic/VHDL Hierarchy Example... 45
Lower-level VHDL Module (mux2x1vhd.vhd)... 46

Design Entry... 47
ABEL-HDL Design .. 47

Using a Template to Create an ABEL-HDL Source... 47
Entering Declarations ... 48
Entering Logic Descriptions ... 48
Entering Test Vectors ... 49

Verilog HDL Design .. 50
Adding a Verilog HDL Module to Your Design .. 50
Creating a New Verilog HDL Module ... 50
Synthesizing Your Verilog HDL Design.. 50

VHDL Design... 52
Adding a VHDL Module to Your Design .. 52
Creating a New VHDL Module.. 52
Synthesizing your VHDL Design... 53

EDIF Design .. 54
Importing an EDIF Netlist .. 54

ispLEVER 1.0 Concepts iv

Translating EDIF Properties... 55
EDIF Properties .. 55

PIN LOCATION Property... 55
GROUPING Property .. 56
OUTPUT SLEW Property ... 56
SIGNAL OPTIMIZATION Property... 56
OPEN DRAIN Property... 56
PULL Property... 56
OUTPUT VOLTAGE Property ... 57

Schematic Design... 58
Introduction to Schematic Design .. 58
Schematic Overview... 58
What is a Schematic?.. 59
What do Schematics Consist of? .. 59
Symbols .. 60
Symbol Information.. 60

Graphics and Text.. 60
Pins .. 60
Attributes ... 61

Wires .. 61
Wire Names .. 61
Net Attributes ... 61
I/O Markers .. 62
Graphics.. 62
Text... 62
Naming Schematic and Symbol Files... 62
Schematic Attributes... 63

Attribute Use.. 63
Attribute Types .. 63
Attribute Components.. 63
Attribute Name .. 63
Attribute Value .. 63
Attribute Modifier.. 63
Attribute Window .. 64

Setting Attribute Values ... 64
Default Values .. 64
Displaying Attribute Values on a Schematic .. 65

The Schematic Editor ... 66
Basic Schematic Editor Operation.. 66
Error Recovery ... 67
Network Operation ... 67
Wiring the Schematic ... 67
Nets... 68
Net Names .. 68

Interconnection .. 68
Entering Net Names.. 68
Placing Net Names ... 69
Legal Characters in Net Names .. 69
Reserved Names ... 69
Logical Inversion.. 70
Specifying Signal Direction.. 70
Buses .. 70
Ordered Buses .. 70
Unordered Buses .. 71
Bus Taps ... 72

ispLEVER 1.0 Concepts v

Naming the Tap ... 72
Connecting to Pins.. 72
Bus Pins .. 72
Nets on Iterated Instances... 73

Compound Names.. 73
Single Names ... 73

Bus and Net Connections to Iterated Instance .. 73
Wiring Constraints.. 74
Debugging and Verifying a Schematic ... 75
"Unconnected Pin" Message... 75

The Symbol Editor .. 76
Symbol Elements.. 76
Positioning Master Symbols ... 77
Using Grids to Position Symbol Elements ... 77
Positioning Pins .. 77
Selecting a Line Weight ... 77
Drawing Lines .. 77
Drawing Rectangles.. 78
Drawing Circles and Arcs... 78
Drawing Negation Bubbles... 78
Drawing Text.. 78
Text Size and Justification.. 78
Preparing Symbols for Schematics ... 78
Pins ... 78
Adding Pins .. 79

Bus Pins ... 79
Bus Pin Limitations .. 79
Attributes .. 80

Symbol Attributes .. 80
Pin Attributes ... 80
Attribute Windows... 80

Setting Symbol Origins .. 81
Saving Symbols .. 81
Printing Symbols .. 81
Checking Symbols.. 81

The Hierarchy Navigator .. 83
Attributes .. 83
Attribute Modifiers ... 83
Attribute Window... 85
Attribute Functions ... 85
Attribute Types ... 85
Attribute Names.. 86
Attribute Numbers .. 86
Attribute Values.. 86

The Library Manager... 87
Why Use the Library Manager? ... 87
Working with Binary Symbol Libraries ... 87

The Hierarchy Browser... 88
Introduction to the Hierarchy Browser ... 88

Mixed-Mode Design .. 89
The Text Editor.. 90

ispLEVER 1.0 Concepts vi

Design Simulation ... 91
Integrated Simulation ... 91
Standalone Simulation.. 91
Functional Simulation - CPLD Process Flow... 92

Lattice Logic Simulator .. 93
Simulation Support ... 93

Stand-alone Simulation.. 93
Integrated Simulation... 93

Simulation in the ispLEVER Design Flow... 94
Design Entry... 94
Test Stimulus .. 95
Creating Test Stimulus for Lattice Logic Simulator... 95

Creating Graphic Waveforms .. 96
Creating Test Vectors ... 96
Creating a VHDL Test Bench... 96
Creating a Verilog Test Bench ... 97
Special Constants.. 97
Using .P. to Pre-load Values in the State Machine ... 97
Viewing Simulation Results ... 99
Cross Probing ... 99
Simulation Mode .. 100
Showing Logic Values on Schematics.. 100
Using Query to Navigate .. 100

Design Implementation ... 101
Synthesizing and Compiling 101
Keeping Track of Processes.. 101
Understanding the Compilation Process... 101
Compile (Logic or Schematic).. 102
Compile Logic (for logic sources) .. 102
Compile Schematic (for schematic sources)... 102
Compile EDIF (EDIF) .. 102
Check Syntax.. 102
Compiler Listing... 103
Compiled Equations ... 103
Signal Cross-Reference (EDIF).. 103
Process Options .. 103
Viewing and Setting Process Option Properties ... 103
Compiling Source Files .. 103

Optimizing a Design ... 104
Design Resources Check.. 104

Logic Synthesis Options... 104
Boolean Logic Reduction .. 104
D/T Synthesis... 104
Input Register Optimization... 104
XOR Synthesis... 104
Node Collapsing .. 105
Speed ... 105
Area ... 105
Fmax .. 105
Collapsing Max. Product Term.. 105
Collapsing Max. Input ... 105
Splitting Max. Product Term ... 105
Example ... 105

ispLEVER 1.0 Concepts vii

Example ... 106
Setting Logic Synthesis Options.. 106

Utilization Options ... 106
Logic Grouping .. 106

Fitting a Design... 108
Assigning Pin and Node Locations... 108
Pin and Node Pre-Assignment.. 108
Pin Assignment Guidelines... 108

Large Functions at the End of a Block... 108
Adjacent Macrocell Use... 109

Modifying Assignments ... 109
Deleting Assignments... 109
Ignoring Assignments... 109
Power Control... 109
Slew Rate Control... 109
Partitioning ... 109

Balanced Partitioning... 110
Fitting (Place and Route) .. 110

Placement... 110
Spread Placement... 110
Routing .. 110

Fitter Options.. 110
Pack Design ... 111
Spread Design.. 111
Advanced Options.. 111
Balance Partitioning... 111
Spread Placement... 111
Fitter Effort .. 111

Fitter Report Formats.. 111
Formatting the Fitter Report ... 112

The Fitter Report.. 112
Project Summary.. 112
Compilation Times .. 112
Design Summary.. 112
Device Resource Summary.. 112
GLB Resource Summary ... 113
GLB Control Summary.. 113
Optimizer and Fitter Options ... 113
Pinout Listing... 113
(Input, Output, Bidir, Buried) Signal List .. 113
Signals Fan-out List ... 113
GLB (GLB name) Cluster Steering Tables.. 113
GLB (GLB name) Logic Array Fanin.. 113
Product Term Histogram.. 113
GLB Input Histogram .. 113
Post-Fit Equations.. 113

Backannotating Assignments.. 114
The Constraint Editor ... 115

Assigning Pins and Nodes .. 115
Assigning Signals to Groups.. 115

Node Preserving ... 116
Resource Reservations.. 116
Slew Rate.. 116
PULL.. 116
Open Drain ... 116

ispLEVER 1.0 Concepts viii

I/O Type ... 116
PLL... 116
HSI.. 117

The ispEXPLORER ... 118
Overview of the ispEXPLORER .. 118

Use predefined or customized settings... 118
Create multiple versions of design runs. .. 118
Save the best constraints for your project. ... 119

The Report Viewer .. 120
Design Verification .. 121

The Waveform Viewer... 121
Opening the Waveform Viewer.. 121
Saving and Printing Waveforms... 121

Printing Waveforms... 121
Waveform Viewer Configuration ... 121
Waveform Display.. 122
Adding Waveforms... 122
Finding the Signal You Want ... 122
Using the Probe Item Command... 122
Duplicating Waveforms.. 123
Changing Waveform Locations .. 123
Hiding Waveforms ... 123
Creating Bus Displays .. 123
Expanding Bus Displays... 123
Changing the Bus Radix ... 123
Moving Around 123
View Commands .. 123
Scroll Bars .. 124
Moving the Query Cursor... 124
Marking Your Spot... 124
Jumping to Events .. 124
Setting Signal and Bus Triggers ... 125
Analysis Techniques 125
Interaction with the Hierarchy Navigator ... 125
Displaying Simulation Values on a Schematic... 126
Viewing Reports ... 126

The Waveform Editor.. 127
Bus Pulses... 127
Patterns ... 127
Hierarchical Patterns... 128
Editing Patterns .. 128
Simulation Time ... 128
Simulator Setup .. 128
Stimulus File Format .. 128
Saving Changes .. 128

The Performance Analyst... 130
How does it Work? ... 130
Analysis Types ... 130
fMAX ... 131

Maximum Clock Operating Frequency.. 131
Default fMAX Path Trace.. 131

tSU.. 131
Setup Time... 131

ispLEVER 1.0 Concepts ix

Default tSU Path Trace .. 131
Path Endpoints for tSU .. 132
Register D/T Inputs.. 132
Register CE Inputs ... 132

tPD.. 132
Propagation Delay Time .. 132
Default tPD Path Trace .. 132

tCO ... 132
Clocked Output-to-Pin Time.. 132
Default tCO Path Trace.. 132

tOE.. 133
Output Enable Path Delay.. 133
Default tOE Path Trace.. 133

tCOE... 133
Clock to Output Enable Time .. 133
Default tCOE Path Tracing.. 133

Path Tracing Rules 133
Tracing Enabled Through Bi-directional Paths .. 133
Tracing Enabled Through Register Asynch S/R Inputs.. 133
Tracing Enabled Through Transparent Latch D Inputs .. 134
Tracing Enabled Through Ripple Clocks ... 134
Batch Timing 134
Running Timing Analysis in Batch Mode .. 134
Batch Commands.. 134

Set Operations.. 134
Path Tracing... 135
Report .. 135
Switch Control ... 135

Batch File Example .. 135
Batch Command File Example .. 135

Device Programming... 137
The ispVM System .. 137

Overview of ispVM System Software .. 137
Lattice Designs .. 137
Designs Compliant with IEEE 1532 .. 138
Designs Compliant with IEEE 1149.1 ... 138

Programming Basics... 138
JTAG Scan Chains.. 139
Programming Algorithm Basics ... 139
Programming Times ... 140
USERCODE... 140
I/O States During Programming ... 141
Programming Hardware ... 141

PC Hardware.. 142
ispDOWNLOAD Cable ... 142
ISP Engineering Kit Model 300... 142

Programming Software... 142
Programming on a Board Test System .. 143
Programming on JTAG Test Systems.. 143
Embedded Programming ... 143

The SVF Debugger.. 144
Understanding SVF Files.. 144
SVF Debugger Software Support of SVF Operations .. 144

The Model 300 Programmer... 146

ispLEVER 1.0 Concepts x

Overview .. 146
Device Support .. 146
Socket Support... 146
Connector Support ... 146
Power Supply Support ... 147
Programming Software Support .. 147

Special Features.. 147
Calibration Control Switches.. 147

LOCAL.. 147
LSB, MSB, VCC ON... 147

Software Control .. 147
Control Register... 148

ispLEVER 1.0 Concepts 11

Overview of ispLEVER

The ispLEVER program offers an integrated environment consisting of several
tools necessary to implement Lattice programmable devices. These tools are
briefly described in the following paragraphs and covered in detail in other
sections of this manual. They are listed in alphabetical order.

Constraint Editor
The Constraint Editor lets you specify pin and node location assignments,
group assignments, I/O types settings, power level settings, resource
reservations, PLL attributes, as well as output slew rates and JEDEC file
options. The Constraint Editor reads the constraint file and displays the
constraint settings. Modifications to the constraint file are made via the function
dialogs. See the Constraint Editor for more information about this tool.

Hierarchy Browser
The Hierarchy Browser allows you to navigate through a design consisting of
any combination of schematic and HDL modules. In contrast with the
Hierarchy Navigator, the Hierarchy Browser works with designs whose top
level is either a schematic or HDL source. Additionally, you can cross probe
between design sources and their appropriate tool. See the Hierarchy Browser
section for more information about this tool.

Hierarchy Navigator
The Hierarchy Navigator combines all the components of a multi-level design
for viewing and analysis. You can traverse the full design, viewing each
component in its full hierarchical context. See the Hierarchy Navigator section
for more information about this tool.

ispEXPLORER
The ispEXPLORER lets you run multiple passes of your design using different
combinations of Fitter/Optimizer settings and critical timing constraint to
achieve the best solution. Results are summarized in a single spreadsheet and
detailed reports for each run are accessible. See the ispEXPLORER section for
more information about this tool.

ispVM System
The ispVM™ System software (ispVM) supports both serial and concurrent
(turbo) programming of all Lattice devices in a PC environment. The ispVM
System software is built around a graphical user interface. Device chains can be
scanned automatically. Any required JEDEC files are selected by browsing
with a built-in file manager. Non-Lattice devices that are compliant with IEEE
1149.1 can be bypassed once their instruction register length is defined in the
chain description. Programmable devices from other vendors can be
programmed through the vendor-supplied SVF file. See the ispVM System
section for more information about this tool.

 IspLEVER Overview

 ispLEVER 1.0 Concepts 12

 Lattice Logic Simulator
Lattice Logic Simulator performs logic simulation on your design before you
implement it into a Lattice ispMACH or ispGDX device. You can observe not
only the gate-level behavior at its inputs and outputs, but also the behavior of
internal nodes. See Lattice Logic Simulator section for more information about
this tool.

Library Manager
The Library Manager manages libraries of symbols that are used in Schematic
Editor. The Library Manager lets you browse through the libraries and lets you
maintain the libraries by adding, deleting, copying, or renaming the symbol
files in the libraries. See the Library Manager section for more information
about this tool.

Model 300 Programmer
The ISP Engineering Kit Model 300 programmer is an engineering device
programmer that supports prototype development by allowing single -device
programming directly from a PC. The Model 300 programmer supports all
JTAG devices produced by Lattice, with device Vcc of 1.8, 2.5, 3.3, and 5.0V.
See the Model 300 Programmer section for more information about this tool.

Performance Analyst
The Performance Analyst analyzes the performance of your design after it has
been optimized and implemented by the Fitter. See the Performance Analyst
section for more information about this tool.

Project Navigator
The Project Navigator is the primary interface for ispLEVER and provides an
integrated environment for managing the project elements and processes, as
well as accessing all ispLEVER tools. See the Project Navigator section for
more information about this tool.

Report Viewer
You can use the Report Viewer to view, but not edit, the various report files
generated by ispLEVER. See the Report Viewer section for more information
about this tool.

Schematic Editor
The Schematic Editor is the ispLEVER schematic entry tool. It lets you create
schematic (.sch) files that can represent a complete design or any component of
a hierarchical design. See the Schematic Editor section for more information
about this tool.

SVF Debugger
The SVF Debugger can be used with ispVM System software to help you
debug a Serial Vector Format (SVF) file. The SVF Debugger software allows
you to program a device, and then edit, check syntax, debug and trace the

 IspLEVER Overview

 ispLEVER 1.0 Concepts 13

process of an SVF file. See the SVF Debugger section for more information
about this tool.

Symbol Editor
The ispLEVER software comes with a standard symbol library. Use the Symbol
Editor to create symbols or primitive elements that represent an independent
schematic module. You can also use the Symbol Editor to create decorative
symbols, such as title blocks. See the Symbol Editor section for more
information about this tool.

Text Editor
The Text Editor is the ispLEVER text entry tool. You use this tool to create and
edit text-based files, such as ABEL-HDL files, test stimulus files, and project
documentation files. See the Text Editor section for more information about
this tool.

Waveform Editor
The Waveform Editor lets you create the stimulus graphically, by clicking and
dragging with the mouse. You see exactly what each waveform will look like,
as well as its timing relationship to all the other waveforms. See the Waveform
Editor section for more information about this tool.

Waveform Viewer
The Waveform Viewer lets you view the results of simulation. You can display
the waveform of any net in your design. The Waveform Viewer is fully
interactive with the Hierarchy Navigator; clicking on a net in the schematic
automatically displays its waveform. See the Waveform Viewer section for
more information about this tool.

Overview of ispLEVER CPLD Process Flow

ispLEVER 1.0 Concepts 14

CPLD Process Flow

The ispLEVER CPLD process flow diagram.

Program Folder
When you install the ispLEVER software, several icons are created in the
Lattice Semiconductor Programs folder. The contents of the folder may vary
from the picture below, depending on your installation choices.

Overview of ispLEVER Learning ispLEVER

ispLEVER 1.0 Concepts 15

Learning ispLEVER
Lattice ispLEVER includes a variety of resources to help you learn the software
quickly and become proficient in designing, implementing, verifying, and
programming your design in a Lattice device. These resources include a
Concepts manual, comprehensive online Help, an online HTML-based tutorial
with interactive lessons covering a variety of practical areas, and many example
design projects to practice developing your skills.

ispLEVER Concepts
The ispLEVER Concepts is a resource manual of design, implementation,
verification, and programming concepts that comprise ispLEVER v1.0. This
manual explains the purpose of each ispLEVER tool, and gives guidelines for
using these tools to implement Lattice programmable devices.

The contents of this document are also covered in ispLEVER Help. However,
this document offers the benefit of being able to print multiple pages (topics) at
a time.

You can access this manual from the Project Navigator: Help > Manuals
command, or from the toolbar of ispLEVER Help.

ispLEVER Help
The ispLEVER Help is a comprehensive, hyper-linked information system
covering all aspects of the ispLEVER software. Following the Introduction,
ispLEVER Help is divided into seven parts, each representing a major step in
the Lattice programmable device design flow. Within each part are tool and
process sections. Each of these sections is organized with the concepts,
procedures, and references you will need to successfully complete your design.
Additional reference information is provided covering a wide range of topics.

ispLEVER Tutorial
The ispLEVER Tutorial contains three tutorials designed to benefit all
ispLEVER software users and is the best place to start if you want to get some
hands-on experience. By working through the tutorial lessons, you'll learn how
to create sample design projects with some of ispLEVER's most useful and
powerful features.

Example Projects
The ispLEVER software comes with a broad range of example projects. These
examples include a combination of Schematic/ABEL, Schematic/Verilog-HDL,
Schematic/VHDL, and EDIF project types. You can access the examples from
the Project Navigator: File > Open Example command.

Overview of ispLEVER Learning ispLEVER

ispLEVER 1.0 Concepts 16

Third-Party Documentation
The ispLEVER software tightly integrates several third-party synthesis and
simulation tools. In addition to design flow documentation included in
ispLEVER Help, you can find a complete manual set for these products
supplied by their respective vendor from the Project Navigator: Help >
Manuals command.

Product Literature
Lattice maintains a comprehensive selection of online product literature in
Adobe PDF format. This includes documents such as product brochures, data
sheets, design techniques, application notes, and packaging information. You
can download these documents from the Lattice Web site
(http://www.latticesemi.com).

http://www.latticesemi.com/

Overview of ispLEVER Using ispUPDATE

ispLEVER 1.0 Concepts 17

Using ispUPDATE
The ispUPDATE program lets you select the version of ispDesignEXPERT or
ispLEVER to be updated when there are multiple versions of the software
installed on the same computer. The ispUPDATE software is a stand-alone
application; you do not need to run the Project Navigator to implement the
update.

Starting the ispUpdate Program
After you start the ispUPDATE program, you can set your Internet
communication options.

To start ispUPDATE:

1. From the Lattice program menu, select ispUPDATE to open the program.

2. In the Select Software list, select the Lattice software program that you want
to update.

Note: If the selected software is not installed on your computer, the Update
button is disabled. See the Download section later in this manual.

3. Click Internet Setting to open the Internet Connection Setting dialog.
Choose one of the following options, and then click OK.

Overview of ispLEVER Using ispUPDATE

ispLEVER 1.0 Concepts 18

If your organization has a firewall, your browser may need to go through a
proxy server before connecting you to the Internet. The proxy server
prevents outsiders from breaking into your organization’s private network.

• Connect to the Internet directly – Select this option if you do not have
to go through a proxy server.

• Use a proxy server – Select this option if you have to go through a
proxy server. Ask your system administrator for the URL address and
port assignment.

Using the Update Feature
Use the Update feature when you want to update your currently installed
Lattice software.

To use Update:

1. Click Update.

The ispUPDATE software automatically determines the installed version of
the selected Lattice software program. If there are no service patches
available for the chosen release, a message box appears saying so.

2. Click OK to close the ispUpdate dialog box.

Overview of ispLEVER Using ispUPDATE

ispLEVER 1.0 Concepts 19

3. Because no Service Patches are available for this installed version, click
Close to close the dialog box.

If a Service Patch is available for the installed version, the Select Patch
Version dialog box opens.

4. In the dialog box, do the following:

• Select the Installed version you want.

• Select the service patch you want.

Overview of ispLEVER Using ispUPDATE

ispLEVER 1.0 Concepts 20

• Optionally, click Details of Service Patch to open your default
browser and view the description of the service patch.

Note: If no services patches are available for the selected installed version,
you will not see a button under the list boxes labeled Detail of Service
Patch.

• Click OK to close the dialog box.

5. The message dialog appears. Click Continue. The ispUPDATE program
begins downloading the service patch and automatically launches the
installation program.

Overview of ispLEVER Using the Download Feature

ispLEVER 1.0 Concepts 21

Using the Download Feature
Use the Download feature when you want to download any of the total
available service patches for all Lattice software releases, regardless of whether
they are installed on your computer.

To use download:

1. Click Download to open the Download Service Patch dialog and the Select
Patch Version dialog box.

2. In the Select Patch Version dialog box, do the following:

• Select the software version you want.

• Select the service patch you want

• Optionally, click Details of Service Patch to open your default browser
and view the description of the service patch.

• Click OK to open the Save Service Patch dialog box.

Overview of ispLEVER Using the Download Feature

ispLEVER 1.0 Concepts 22

3. Navigate to a location on your computer where you want to save the file, and
then click Save. The ispUPDATE software starts downloading the service
patch.

Launching the Patch Install Program
After you have downloaded the service patch, you can install it to update your
Lattice software.

To install the service patch:

1. Go to the location where you saved the service patch.

2. Double-click the service patch file (fileneme.exe) and follow the on-
screen setup instructions.

Overview of ispLEVER Using ispLEVER Help

 ispLEVER 1.0 Concepts 23

Migrating from ispDesignEXPERT 8.x (8.2, 8.3, or 8.4) to
ispLEVER

The new ispLEVER software gives you an improved and more unified
constraint flow. You must convert legacy ispDesignEXPERT 8.2, 8.3, or 8.4
constraint files to ispLEVER constraint files before running your design in
ispLEVER. To convert the constraint files, you can use the Legacy
Constraints Translator on the Lattice Semiconductor program menu, or the
legacy2lci command line utility provided with the ispLEVER software, located
in <install_path>\ispcpld\bin.

MACH Devices
For MACH4 and MACH5 devices, designs created with ispDesignEXPERT
8.2, 8.3, or 8.4 use a .vci constraint file, which must be converted to an .lci
constraint file for ispLEVER.

ispLSI Devices
For ispLSI 1K and 2K devices, designs created with ispDesignEXPERT 8.2,
8.3, or 8.4 use a parameter file (.par), a property file (.prp), a pin file (.ppn),
a user code file (.ues), a pin reservation file (.rsp), or a fitting options setting
file (.stp), all of which can be converted to a single .lci file for ispLEVER.
The new ispLEVER software gives you an improved and more unified
constraint flow. You must convert legacy ispDesignEXPERT 8.2, 8.3, or 8.4
constraint files to ispLEVER constraint files before running your design in
ispLEVER. To convert the constraint files, you can use the Legacy
Constraints Translator on the Lattice Semiconductor program menu, or the
legacy2lci command line utility provided with the ispLEVER software, located
in <install_path>\ispcpld\bin.

Note: Before beginning the conversion process, be sure to save an archive
copy of your entire project directory.

Converting Files Using the Legacy Constraints Translator
The Legacy Constraints Translator is a graphical user interface application that
reads the <projectName>.syn file, and other files according to the optional
parameters.

To convert files using the Legacy Constraints Translator:

1. Archive your project directory so that you will have a backup.

2. From the Lattice program menu, select Legacy Constraints Translator to
open the program.

3. In the dialog, do the following:

• In Project Name, select the ispDesignEXPERT 8.x project that you
want to convert.

Overview of ispLEVER Using ispLEVER Help

 ispLEVER 1.0 Concepts 24

• Under Select Device, the default is the current target device. To select a
different device, you must change the project name in the Project Name
field. If the target device is not supported, all options are disabled.

• Under Options, select the files that you want to convert.

Note: For ispLSI devices, all options are available. For MACH devices, no
options are available.

4. Click OK. The selected legacy files are converted to ispLEVER files in the
specified project directory.

Converting Files Using the legacy2lci Command Line Application
You can use the legacy2lci command line utility to specify constraint file
conversion options.

To convert files using the legacy2lci command line utility:

1. Archive your project directory so that you will have a backup.

2. For MACH4 or MACH5 devices, using the Windows Command Prompt,
change directory (cd) to your project directory, and type (on one line):

<install_path>\ispcpld\bin\legacy2lci
<project_name>

For ispLSI 1K and 2Kdevices, using the Windows Command
Prompt, change directory (cd) to your project directory, and then type
(on one line):

<install_path>\ispcpld\bin\legacy2lci
<project_name> [-prp <filename_ext>] [-p [-par
<filename_ext>]] [-n [-ppn <filename_ext>]] [-u
[-ues <filename_ext>]] [-r [-rsp
<filename_ext>]] [-x [-xct <filename_ext>]] [-
ppnOnly <filename_ext>]

where [] denotes optional parameters for 1K and 2K devices:

-prp converts a user property file name that differs from the project
name, <project_name>.prp. It is recommended that you not use the
8.4 system-created _edif.prp file. However, you can use the
_edif.prp file in those cases where the <project_name>.prp file is 0
bytes or empty.

–p converts the PAR file. By default, the PAR file is
<project_name>.par. When you use the –p option, the Part Name,
PRP, and PPN defined in the PAR file are ignored.

-par is used to specify a PAR file name that differs from the project
name, <project_name>.par.

–n converts the PPN file. By default the PPN file is
<project_name>.ppn. When you use the –n option, the pin

Overview of ispLEVER Using ispLEVER Help

 ispLEVER 1.0 Concepts 25

assignments in the PPN file are used, and those defined in the PRP
file are ignored.

-ppn is used to specify a PPN file name that differs from the project
name, <project_name>.ppn.

-u converts a UES file.

-ues is used to specify a UES file name that differs from the project
name, <project_name>.ues.

-r converts an RSP file.

-rsp is used to specify an RSP file name that differs from the project
name, <project_name>.rsp.

-x converts an XCT file.

-xct is used to specify an XCT file name that differs from the project
name, <project_name>.xct.

-ppnOnly is used to override all of the above parameters. When using
ppnOnly, legacy2lci does not need a PRP and SYN file. The part
name is derived from the PPN itself.

Note: For ispLSI 1K and 2K devices, the part name defined in
<project_name>.syn will be used; therefore, the part name defined in PAR
file will be ignored.

3. After the conversion process, make sure that the converted .lci file is in
your working project directory.

4. In ispLEVER, choose File > Open to open your Project (.syn) file.

5. Save the project by choosing File > Save .

Notes:

- After you perform design migration using the legacy2lci utility, you must re-
synthesize your design with your ispLEVER synthesis tool and import the newly
synthesized EDIF file into ispLEVER. You cannot import legacy EDIF files that
were synthesized in ispDesignEXPERT 8.x.

- For legacy schematic designs, you may need to map old library symbols to
equivalent new library symbols in ispLEVER after using the legacy2lci utility.
Contact Lattice Technical Support for help with mapping old library schematic
symbols with new library schematic symbols.

Overview of ispLEVER Using ispLEVER Help

ispLEVER 1.0 Concepts 26

Using ispLEVER Help
Following the Introduction, ispLEVER Help is divided into seven parts, each
representing a major step in the Lattice programmable device design flow.
Within each part are tool and process sections. Each of these sections is
organized with the concepts, procedures, and references you will need to
successfully complete your design. Additional reference information is
provided covering a wide range of topics.

The ispLEVER Help uses the WinHelp 2000 tri-pane window, which includes:

• Button bar. The button bar is displayed across the top of the ispLEVER
Help window. You can show or hide the Navigation pane by toggling the
Help Topics button. Other buttons take you Back to the previous topic, let
you Print the current topic, and browse backward (<<) or forward (>>) in
topic sequence.

• Navigation pane. The navigation pane takes up approximately one-third of
the left side of the ispLEVER Help window (or one-third of the total
window size). It contains three tabs: the Contents tab, the Index tab, and the
Search tab. The Contents tab uses the books and pages metaphor to display
contents and remains synchronized with the topic displayed in the Topic
pane. The Index tab provides access to the Help index, and the Search tab
provides access to full-text search. You do not have to leave the Contents,
Index, or Search tabs to see their selected topic; it appears in the Topic pane
on the right.

• Topic pane. Help topics appear on the right side of the ispLEVER Help
window. If the topic extends beyond the window, scroll bars allow you to
see the rest of the topic.

Context-sensitive Help
You can use context-sensitive Help in two ways: clicking Help buttons and
pressing the F1 key on your computer’s keyboard. Most ispLEVER software
dialogs have a Help button. Clicking this button or pressing the F1 key opens a
relevant help topic. For help on menu commands, place your cursor over the
command name and press the F1 key.

Running ispLEVER from the Command Line
You can run the ispLEVER software from the command line on PC and UNIX
using ispflow command line software. The ispflow software will attempt to fit
the design to the specified part.

Contacting Lattice Semiconductor
Please use the following address and numbers to contact Lattice
Semiconductor.

Headquarters
Lattice Semiconductor Corporation
5555 NE Moore Ct.
Hillsboro, OR 97124

Overview of ispLEVER Using ispLEVER Help

ispLEVER 1.0 Concepts 27

Phone: (503) 268-8000
Fax: (503) 268-8037

Product Support
Lattice is dedicated to customer satisfaction. If you have questions about
ispLEVER, please contact your sales representative or visit Technical Support
on our Website.

Note: If your browser is not responding to this link, please copy the URL:
http://www.latticesemi.com/support/index.cfm.

ispLEVER 1.0 Concepts 28

Project Management

Project Navigator
The Project Navigator is the primary interface for the ispLEVER software.
Using the Project Navigator, you can select all the source components for a
design, as well as specification documents and test files, and assemble them
into one project file.

The Project Navigator Interface
The Project Navigator has two primary interface elements: the Sources window
and the Processes window.

Using the Project Navigator, you can select all the source components for a
design, as well as specification documents and test files, and assemble them
into one project file. The Project Navigator also helps you keep track of all the
processing steps necessary to move the design from conception through
implementation of a programmable device. When you switch the target device,
the Project Navigator automatically changes the design flow and processes to
appropriate ones for the new target device.

The Project Navigator also associates all the tools needed for a particular design
step. For example, for HDL source files, the Project Navigator associates the
Text Editor and HDL synthesis tools; for schematic sources, the Project
Navigator associates the Schematic Editor, Symbol Editor, Hierarchy

Project Management Project Navigator

ispLEVER 1.0 Concepts 29

Navigator, Library Manager tools, and schematic compiling tools; and for
waveform stimulus source files, the Project Navigator associates Waveform
Editor, Waveform Viewer, and Lattice Logic Simulator tools. Furthermore, the
Project Navigator keeps track of your preferences, automatically setting options
that work for most systems until you want to modify the options yourself.

Valid Source Types
Below are the acceptable sources for a project. A new project will not have any
sources except for the Project Notebook.

Source Type Icon File Extension

Project Notebook None

Target Device None

Document Source .wri, .doc, .txt, .xls, .hlp
(or any extension not recognized by
the Project Navigator)

Schematic Source .sch

ABEL-HDL .abl

ABEL-HDL Test
Vector

.abv

VHDL .vhd

Verilog HDL .v

EDIF Netlist .ed*

Waveform
Stimulus

.wdl

VHDL Test Bench .vhd

Verilog HDL Test
Fixture

.tf

Undefined or
incorrect

Any
source reference

Source Hierarchy
One of the source files in a project is the top-level source for the design, which
can be an HDL module or schematic. The top-level source defines the inputs
and outputs that will be mapped into the device, and references the logic
descriptions contained in lower-level sources. Referencing another source is
called instantiation.

Project Management Project Navigator

ispLEVER 1.0 Concepts 30

Lower-level sources can also instantiate sources to build as many levels of logic
as necessary to describe your design.

Note: If you build a project with a single source, that source is automatically the
top-level source.

Process Flows
One of the most powerful features of ispLEVER is the context-sensitive nature
of the Project Navigator. It automatically adjusts the processes for you
depending on what you do.

The steps in the Processes window are context-sensitive in two ways. First, the
process flow changes depending on the type of source file selected in the
Sources window (source-level flow). Second, the processing for a given file
changes depending on the target device (project-level flow).

Source-Level Flow
Notice that the processes are different in these two examples depending on the
source that is selected. The example on the left shows the processes for the
selected schematic source, while the example on the right shows the processes
for the selected ABEL source.

Project-Level Flow
This example shows the difference in processes depending on the target device.
In the example on the left, the target device is an ispMACH 5000VG. The
example on the right uses an ispGDX device.

Initialization
At the beginning of a new project, the ispLEVER software automatically copies
a default constraint file from the ispLEVER directory into your project
directory. For first-time users, the default settings allow most designs to

Project Management Project Navigator

ispLEVER 1.0 Concepts 31

achieve a First-Time Fit (FTF). For users requiring more control, the default
settings can be easily changed to achieve better fitting density or performance.

You can control the contents of the constraint file using the Global Constraints
dialog box and the Location Assignments dialog box.

Using the Global Constraints Dialog Box to Control Optimization
Using the Global Constraints dialog box, you can pack your design, spread your
design, or use other advanced options such as specifying device utilization
levels.

Using the Location Assignments Dialog Box to Pre-assign Pins and
Nodes
The Location Assignments dialog box lets you specify pin and block locations,
group signals in specific blocks, or even reserve pins for later use.

Describing a Project
You "describe" a project by targeting a particular device implementation and by
specifying the project files that will represent the design.

Design Hierarchy
A single module design is a flat design containing only one source describing
the entire design such as a schematic. You can also have a test file such as
ABEL-HDL test vectors in a flat design because all processes such as
functional simulation in the flat design involve the entire design.

When designs are in multiple levels, this is called hierarchical design. The
ispLEVER software supports full hierarchical design to clarify its function or
permit the reuse of functional blocks.

Tips for Defining Projects
Use the following guidelines when saving and naming source files and your
project:

• Understand and use the different methods described in the hierarchical
design section.

• Avoid using ABEL, VHDL, Verilog, or EDIF reserved words for module
and signal names in any source files.

• You can instantiate the source to use the same source many times in a
design, but two different sources with the same name can cause problems
with the hierarchy. For example, do not use an ABEL-HDL source called
compare and a schematic source also called compare.

Where Source Files are Placed
After you import a source into the Project Navigator, it appears in the Sources
window. However, where the source appears in the window depends on the
following:

Project Management Project Navigator

ispLEVER 1.0 Concepts 32

• If the imported source is a documentation file or a file type not recognized
as a logic description or test file, the source appears between the Notebook
icon and Target Device icon.

• If the source is a logic description, the source is placed in alphabetical order
for each level of hierarchy following the project notebook and the targeted
device. For example, if the source is called multiplx and the top-level
source, a schematic called myChip, contains a functional block called
multiplx, the source is placed underneath myChip in the Sources
window.

• If the source is an ABEL test vector file, the source is placed beneath the
Target Device icon.

Processing a Design
A process is a specific task in the overall processing of a source or project.
Typical processing tasks include netlisting, compiling, logic reduction, logic
synthesis, fitting the design, and simulation. To view the available processes for
a source, select the source. Then the ispLEVER software displays the processes
for that source in the Processes window.

Tip for Saving and Naming Projects
Do not save more than one project in the same directory when saving and
naming source files and projects.

Forcing a Process to Run
If the process is updated (indicated by a check mark to the left of the process), it
will not run again. However, you can force a process to run by doing the
following.

• Choose Process > Force to start the highlighted process and run all the
intermediate steps, even if the process is up-to-date. When the process has
finished running, the Project Navigator displays the selected file, if
applicable. This command allows you to temporarily override the Process
Force settings in the Environment Options dialog box to start the
highlighted process.

• Choose Process > Force One Level to start the highlighted process.

Project Management Project Navigator

ispLEVER 1.0 Concepts 33

Reserved File Names
The ispLEVER software reserves several file name extensions for its own use.
You should avoid using the following extensions when naming your own files:

_ln Hierarchy Navigator log file

_sc Schematic Editor log file

_sy Symbol Editor log file

_wt Waveform Editing Viewer log file

_wv Waveform Viewer log file

.asc ASCII schematic file

.asy ASCII symbol file

.bin Binary waveform file

.ed* EDIF netlist

.err Error OUTPUT file

.his Waveform Viewer history file

.nam Binary waveform name file

.pin Netlist file for generic netlist by pin

.sch Schematic Editor files

.sym Symbol Editor file

.tre Hierarchy Navigator file

.lci Constraint file

.lct Temporary working copy of the constraint file

.lco Constraint output from the Fitter (such as the post-fit pinouts,
etc.)

.vtr Hierarchy Navigator temporary file

.wav Waveform Viewer waveforms and trigger information

.wdl Waveform Editing Tool database

.wet Waveform Editing Tool database

Pop-up Menus
Pop-up (right-click) menu support helps accomplish frequently used tasks.
Most of the commands on the pop-up menus are also available from the toolbar
or menus.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 34

Hierarchical Design
What is a Hierarchical Design?

A design with more than one level is called hierarchical. A single-level design
is referred to as being flat. Converting a section of circuitry to a block makes a
flat design hierarchical. This is commonly referred to as "hierarchical" design.

The ispLEVER software supports full hierarchical design. Hierarchical
structuring permits a design to be broken into multiple levels, either to clarify
its function or to permit the reuse of functional blocks. For instance, a large,
complex design does not have to be created as a single module. By using a
hierarchical design, each component or piece of a complex design can be
created as a separate module.

A design is hierarchical when it is broken up into functional blocks, or
modules. For example, you could create a top-level schematic describing an
integrated circuit. In the schematic, you could place a Block symbol (a Block
symbol represents a functional block) that provides a specific function of the
chip. You can then elaborate the underlying logic for the Block symbol as a
separate schematic or as a separate HDL module.

The module represented by the Block symbol is said to be at one level below
the schematic in which the symbol appears. Or, the schematic is at one level
above the Block's module. Regardless of how you refer to the levels, any design
with more than one level is called a hierarchical design.

Advantages of Hierarchical Design
The most obvious advantage of hierarchical design is that it encourages
modularity. A careful choice of the circuitry that composes your module will
give you a Block symbol that can be reused.

Another advantage of hierarchical design is the way it lets you organize your
design into useful levels of abstraction and detail. For example, you can begin a
project by drawing a top-level schematic that consists of nothing but Block
symbols and their interconnections. This schematic shows how the project is
organized but does not display the details of the modules (Block symbols).

You then draw the schematic for each Block symbol. These schematics can also
contain Block symbols for which you have not yet drawn schematics. This
process of decomposition can be repeated as often as required until all
components of the design have been fully described as schematics.

Breaking the schematic into modules adds a level of abstraction that lets you
focus on the functions (and their interaction) rather than on the device that
implements them. At the same time, you are free to view or modify an
individual module.

Although there are many ways of "breaking apart" a complex design, some may
be better than others. In general:

• Each module should have a clearly defined purpose or function and a well-
defined interface.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 35

• Look for functions or component groupings that can be reused in other
projects.

• The way in which a design is divided into modules should clarify the
structure of the project, not obscure it.

Hierarchy vs. Sheets
Creating a hierarchical design is not the same as creating a schematic with
multiple sheets. In a schematic, you can add as many sheets as desired to extend
beyond the original sheet. However, regardless of how many sheets you add, all
the components of the design are still at a single level; all sheets are still
contained in the same module.

Approaches to Hierarchical Design
Hierarchical designs consist of one top-level module. This module can be of
any format, such as ABEL-HDL, VHDL, Verilog HDL, schematic, or EDIF
netlist. Lower-level modules can be of any supported sources and are
represented in the top-level module by functional blocks or other "place-
holders."

Following are some rules you need to follow when creating a hierarchical
design in ispLEVER.

• The top-level source can be of any format, such as ABEL-HDL, VHDL,
Verilog HDL, schematic, or EDIF netlist.

• For hierarchical Schematic/ABEL designs:

If the upper-level source is a schematic file, the lower-level source can be
either a schematic or an ABEL-HDL file.

If the upper-level source is an ABEL-HDL file, the lower-level source can
be either a schematic or an ABEL-HDL file.

• For hierarchical Schematic/VHDL designs:

If the upper-level source is a schematic file, the lower-level source can be
either a VHDL file or a schematic file.

If the upper-level source is a VHDL file, the lower-level source can only be
a VHDL file.

• For hierarchical Schematic/Verilog HDL designs:

If the upper-level source is a schematic file, the lower-level source can be
either a Verilog HDL file or a schematic file.

If the upper-level source is a Verilog HDL file, the lower-level source can
only be a Verilog HDL file.

• For EDIF designs:

Hierarchical EDIF design is not allowed.

You can create the top-level module first, or create it after creating the lower-
level modules. For example, in the Schematic Editor you can create schematic
project components in any order and then combine them into a complete
design. You can draw a schematic first and create a Block symbol for it

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 36

afterwards; or you can specify the Block first and create the schematic for it
later.

Hierarchical ABEL-HDL Design
You can use ispLEVER to specify a lower-level block symbol in an ABEL-
HDL design. Also, you can instantiate a lower-level schematic Block symbol in
an ABEL module.

Hierarchical Schematic Design
You can use the ispLEVER software to specify a lower-level block symbol in a
schematic, or you can instantiate a lower-level ABEL-HDL block symbol in a
schematic.

Hierarchical Verilog HDL Design
You can use the ispLEVER software to specify a lower-level schematic block
symbol in a Verilog HDL module, or you can instantiate a lower-level Verilog
HDL block symbol in an upper-level Verilog HDL.

Hierarchical VHDL Design
You can use the ispLEVER software to specify a lower-level schematic block
symbol in a VHDL module, or you can instantiate a lower-level VHDL block
symbol in an upper-level VHDL.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 37

Hierarchical Design Considerations
Apply the following considerations when using hierarchical design techniques.
We take a hierarchical schematic design as an example (shown below). The
rules implied in the example are also applicable to other types of hierarchical
designs.

• Hierarchical Design Structure

• Hierarchical Naming

• Nets in the Hierarchy

• Automatic Aliasing of Nets

Example: REG4 and its Equivalent Circuit

Hierarchical Design Structure
When a symbol is placed in a schematic, the component or subcircuit that the
symbol represents is added to the circuit. For example, when you place a latch
symbol, you are actually including the OR gate, inverter, and two AND gates
from the latch's schematic.

The example shows a 4-bit register (REG4) constructed from four latch
symbols (latch.sym). The right side of the figure shows the underlying
components. The four latch symbols represent a total of eight AND gates, four
OR gates, and four inverters.

This hierarchical building process could be repeated by using the Schematic
Editor’s File > Matching Symbol command or File > Generate Symbol
command (if the corresponding .naf file has been generated) to create a
symbol for schematic reg4, and then placing the reg4 symbol in a higher-
level schematic. If you created a schematic for a 16-bit register, reg16, by
placing four copies of symbol reg4, you would be defining a circuit with a
total of 64 gates. But instead of having to view 64 gates on a single level, you
can work with symbols that represent gates, at the appropriate level of detail.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 38

Hierarchical Naming
In the latch schematic example, the inverter has the instance name I1. In
schematic reg4, four copies of the symbol latch are placed and assigned
instance names L1 through L4. Schematic reg4, therefore, contains four
copies of inverter I1.

The Hierarchy Navigator distinguishes among these otherwise identical
inverters by combining the inverter's instance name with the instance name of
the latch containing it. The four inverters are therefore named (in the Hierarchy
Navigator):
L1.I1

L2.I1

L3.I1

L4.I1

If we created a 16-bit register by combining four reg4 symbols, the resulting
schematic would represent a new hierarchical level containing four copies of
reg4 (named R1 through R4). Each copy of reg4 contains the four inverters as
named above. The Hierarchy Navigator would then name the 16 inverters by
combining the instance names of the four reg4 symbols with each of the four
instance names of the inverters as follows:
R1.L1.I1, R1.L2.I1, R1.L3.I1, R1.L4.I1

R2.L1.I1, R2.L2.I1, R2.L3.I1, R2.L4.I1

R3.L1.I1, R3.L2.I1, R3.L3.I1, R3.L4.I1

R4.L1.I1, R4.L2.I1, R4.L3.I1, R4.L4.I1

When you view an individual latch schematic in the Schematic Editor, you see
the instance names of the gates, without the hierarchical context. When the
schematic becomes part of a larger design and is viewed in the Hierarchy
Navigator, the instance names include the hierarchical path (as shown above) to
assure their uniqueness.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 39

Nets in the Hierarchy
The schematic definition for the latch circuit contains both local and external
nets. The output of the inverter is connected to the AND gate with a local net.
Two other local nets connect the outputs of the AND gates to the inputs of the
OR gate. Assume these nets have been named N1, N2, and N3. When16 copies
of this circuit are combined in reg16, 16 copies of these local nets are created.

The 16 local nets named N1 are individual nets, not branches of the same net,
so the Hierarchy Navigator creates a unique name for each. The local net name
(N1) is prefixed with the instance name of the schematic where the net is
defined. A dash separates the net and instance names. The 16 N1s then become:

R1.L1-N1, R1.L2-N1... R4.L3-N1, R4.L4-N1

The latch schematic contains three external nets, D, ENABLE, and Q. The
symbol pins on the latch connect these nets to the hierarchical level mentioned
above.

Automatic Aliasing of Nets
When a design is loaded into the Hierarchy Navigator, nets take the name of the
highest (top-level) net in the design. That is, the name of top-level net
propagates downward through the hierarchy to override the local name. By
forcing all nets to the same name, this aliasing feature greatly speeds signal
tracing in a multi-level design.

In the preceding example, the net name D from the latch is overridden by the
higher-level external reference to become D1, D2, D3.... This override becomes

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 40

the reference at all levels of the hierarchy. If, in the suggested 16-bit register,
the D0, D1, D2... inputs were connected to wires named and marked Bit0,
Bit1, ... Bit15, these new names would take precedence and the D0, D1,
D2... names would no longer be accessible at any level of the hierarchy.

Hierarchical Design Examples

ABEL-HDL Hierarchy Example
The first example below shows an upper-level ABEL-HDL module
(top.abl) that references a lower-level ABEL-HDL module (add.abl).
Following that, the example shows a lower-level module implemented as an
ABEL-HDL block, while the figure shows the lower-level module implemented
as a schematic block (add.sch). Both add.abl and add.sch can be
instantiated in the upper-level source top.abl.

Top-level ABEL-HDL Module (top.abl)
MODULE top

"inputs

AIN,BIN,CARRYIN pin;

"outputs

CARRYOUT,SUMOUT pin;

add INTERFACE(A,B,CI -> SUM,CO);

my_add functional_block add;

EQUATIONS

my_add.A = AIN;

my_add.B = BIN;

my_add.CI = CARRYIN;

SUMOUT = my_add.SUM;

CARRYOUT = my_add.CO;

END

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 41

Lower-level ABEL-HDL module (add.abl)
MODULE add

"inputs

A,B,CI pin;

"outputs

CO,SUM pin;

EQUATIONS

SUM = A&B&CI

+!A&!B&CI

+!A&B&!CI

+A&!B&!CI;

CO = A&B

+A&CI

+B&CI;

END

Lower-level Schematic block (add.sch)

Note: If you are in a lower-level schematic, you can choose Add > New Block
Symbol and then click Use Data From This Block on the dialog box to
automatically create a functional block symbol for the current schematic.

The name of the lower-level schematic must match the block name (schematic)
or the interface name (ABEL-HDL) in the upper-level module. This associates
the lower-level module with the symbol representing it. For example, the
schematic in the Figure must be named add.sch.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 42

The net name in the lower-level schematic corresponds to the pin names in the
upper-level module that can be either schematic or ABEL-HDL.

Schematic Hierarchy Example
The figure below shows an example of how the new symbol corresponds to an
underlying schematic. In this figure, pin A on the Block symbol corresponds to
the net in the schematic, which is also named A. The other pins, B, CI (Carry
In), CO (Carry Out) and SUM, also correspond to named nets in the schematic.

A block symbol and its underlying schematic

This following figure shows one top-level schematic and different ways to
implement the lower-level modules.

Top-level Schematic for Top (top.sch)

Note: If you are in a lower-level schematic, you can choose Add > New Block
Symbol and then click Use Data From This Block on the dialog box to
automatically create a functional block symbol for the current schematic.

The name of the lower-level schematic must match the block name (schematic)
or the interface name (ABEL-HDL) in the upper-level module. This associates
the lower-level module with the symbol representing it. The above schematic
must be named add.sch.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 43

The net name in the lower-level schematic corresponds to the pin names in the
upper-level module that can be either schematic or ABEL-HDL.

The symbol should be a Block symbol.

Lower-level ABEL-HDL Module for Add Block Symbol
MODULE add

"inputs

A,B,CI pin;

"outputs

CO,SUM pin;

EQUATIONS

SUM = A&B&CI

+!A&!B&CI

+!A&B&!CI

+A&!B&!CI;

CO = A&B

+A&CI

+B&CI;

END

Note: It is best to create the lowest-level sources first and then import or create
the higher-level sources.

Schematic/Verilog HDL Hierarchy Example
The first figure shows the upper-level schematic mux4x1.sch that references
a lower-level schematic and a lower-level Verilog HDL module. The second
figure shows the lower-level schematic mux2x1.sch, and the file after the
second figure shows the lower-level Verilog HDL module mux2x1v.v.

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 44

Top-level Schematic (mux4x1.sch)

Lower-level Schematic (mux2x1.sch)

Lower-level Verilog HDL (mux2x1v.v)
module mux2x1v(a,b,s, z);

output z;

input a, b, s;

reg z;

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 45

always @(a or b or s)

begin

case (s)

1'b1: z = b;

1'b0: z = a;

default: z = 'bx;

endcase

end

endmodule

Schematic/VHDL Hierarchy Example
The first figure shows the upper-level schematic mux4x1.sch that references
a lower-level schematic and a lower-level VHDL module. The second figure
shows the lower-level schematic mux2x1.sch, and the file after the second
figure shows the lower-level VHDL module mux2x1vhd.vhd.

Top-level Schematic (mux4x1.sch)

Project Management Hierarchical Design

ispLEVER 1.0 Concepts 46

Lower-level Schematic (mux2x1.sch)

Lower-level VHDL Module (mux2x1vhd.vhd)
library ieee;

use ieee.std_logic_1164.all;

entity mux2x1vhd is

port (z: out std_logic;

a, b, s: in std_logic);

end;

architecture mux2x1_arch of mux2x1vhd is

begin

process (s, a, b)

begin

case s is

when '0' =>

z <= a;

when '1' =>

z <= b;

when others =>

z <= 'X';

end case;

end process;

end mux2x1_arch;

ispLEVER 1.0 Concepts 47

Design Entry

ABEL-HDL Design
ABEL-HDL is a hierarchical hardware description language that supports a
variety of behavioral input forms, including high-level equations, state
diagrams, and truth tables. The ispLEVER ABEL-HDL compiler and
supporting software functionally verify ABEL-HDL designs through
simulation. The compilers then implement the designs in a programmable IC.
ABEL-HDL designs can also be transferred to other design environments
through standard format, design transfer files.

Using a Template to Create an ABEL-HDL Source
This procedure describes how to enter an ABEL-HDL design description using
a template to create a single ABEL-HDL source.

To create a template for an ABEL-HDL source file:

1. In the Project Navigator, choose Source > New to open the New Source
dialog box.

2. Select ABEL-HDL Module and click OK. The Text Editor opens, and a
dialog box prompts you for a module name, file name, and title.

3. Type a Module Name, which is the name of the MODULE statement. The
MODULE statement is required. It defines the beginning of the module and
must be paired with an END statement. The MODULE statement also
indicates whether any module arguments are used.

4. Type a File Name. The file extension can be omitted.

Design Entry ABEL-HDL Design

ispLEVER 1.0 Concepts 48

Note: The module name and file name should have the same base name.
(The base name is the name without the 3-character extension.) If the
module and file names are different, some automatic functions in the
Project Navigator might fail to run properly.

5. Optionally, type a descriptive Title for the module.

6. When you have finished typing the information, click OK. You now have a
template for an ABEL-HDL source file.

Entering Declarations
The Declarations section specifies the names and attributes of signals used in
the design; defines constants, macros, and states; declares lower-level modules
and schematics; and optionally declares a device. Each module must have at
least one DECLARATIONS section, and declarations affect only the module in
which they are defined. If a TITLE statement exists in the template file, enter
these statements after the TITLE statement.

Using the andff module above as an example, the following describes the
DECLARATIONS statement for the three inputs (two AND gate inputs and the
clock) and the output.
DECLARATIONS

input_1, input_2, Clk pin;

output_q pin istype 'reg';

These two statements declare four signals (input_1, input_2, Clk, and
output_q).

Note: ABEL-HDL does not have an explicit declaration for inputs and outputs.
Whether a given signal is an input or an output depends on how it is used in the
design description that follows. The signal output_q is declared to be type 'reg',
which implies that it is a registered output pin. The actual behavior of output_q,
however, is specified using one or more equations.

Entering Logic Descriptions
You can use Equations, a State diagram, or a Truth table to describe your logic
design. The following EQUATIONS statement describes the actual behavior of
the andff example module.
EQUATIONS

output_q := input_1 & input_2;

output_q.clk = Clk;

These two equations define the data to be loaded on the registered output, and
define the clocking function for the output.

Design Entry ABEL-HDL Design

ispLEVER 1.0 Concepts 49

Entering Test Vectors
The traditional method for testing ABEL-HDL designs is to use test vectors.
Test vectors are sets of input stimulus values and corresponding expected
outputs that can be used with both Equation and JEDEC simulators.

You can specify test vectors in two ways: in the ABEL-HDL source file, or in
an external ABEL Test Vector File (.abv). When you specify the test vectors
in the ABEL-HDL source file, the ispLEVER software creates a "dummy"
ABV file that points to the ABEL-HDL source containing the vectors. This file
is necessary because an ABV file is required in order to have access to the
Equation and JEDEC simulation processes.

To continue with the example andff module, the following describes the
TEST_VECTORS statement.
TEST_VECTORS

([Clk, input_1 , input_2] -> output_q)

[0 , 0 , 0] -> 0;

[.C., 0 , 0] -> 0;

[.C., 0 , 1] -> 0;

[.C., 1 , 1] -> 1;

Design Entry Verilog HDL Design

ispLEVER 1.0 Concepts 50

Verilog HDL Design
The ispLEVER software supports Verilog HDL, a hardware description
language used to design and document electronic systems. Verilog HDL allows
designers to design at various levels of abstraction.

Adding a Verilog HDL Module to Your Design
To add a Verilog HDL module to a design, you can either import a .v file, or
create a new Verilog HDL module file with the Text Editor.

Creating a New Verilog HDL Module
You can use the Text Editor to create a new Verilog HDL module.

To create a new Verilog HDL module:

1. In the Project Navigator, choose Source > New to open the New Source
dialog box.

2. Select Verilog Module and click OK. The Text Editor window appears
together with the New Verilog Module dialog box.

3. In the dialog box, type the relevant contents into the text fields.

4. Click OK. The new Verilog HDL file appears in the Text Editor window.

5. Use the commands on the Edit menu to Cut, Copy, Paste, Find, or Replace
text.

Synthesizing Your Verilog HDL Design
The ispLEVER software provides two synthesis tools that are integrated into
the Project Navigator environment: Synplicity Synplify and Exemplar
LeonardoSpectrum. You can synthesize your Verilog HDL design as a stand-

Design Entry Verilog HDL Design

ispLEVER 1.0 Concepts 51

alone process by choosing the synthesis tool from the Lattice Semiconductor
Programs in your Start menu, or you can synthesize automatically and
seamlessly within the Project Navigator.

In Project Navigator, select your synthesis tool in one of two ways:

• Choose Options > Select RTL Synthesis and make your selection.

• Choose Tools and make your selection.

Synthesis then takes place automatically and seamlessly as you process your
design.

Design Entry VHDL Design

ispLEVER 1.0 Concepts 52

VHDL Design
VHDL is a language for describing the structure and function of integrated
circuits. VHDL allows you to:

• Describe the hierarchical structure and interconnect of a design.

• Specify the function of designs using familiar programming language
forms.

Simulate the design before being manufactured, so that design alternatives can
be quickly compared and tested.

Adding a VHDL Module to Your Design
To add a VHDL module to a design, you can either import a .vhd file, or
create a new VHDL module file with the Text Editor.

Creating a New VHDL Module
You can use the Text Editor to create a new VHDL module.

To create a new VHDL module:

1. In the Project Navigator, choose Source > New to open the New Source
dialog box.

2. In the dialog box, select VHDL Module and click OK. The Text Editor
window appears together with the New VHDL Source dialog box.

3. In the New VHDL Source dialog box, type the relevant contents into the
text fields.

4. Click OK. The new VHDL file appears in the Text Editor window.

Design Entry VHDL Design

ispLEVER 1.0 Concepts 53

5. Use the commands in the Edit menu to Cut, Copy, Paste, or Replace text.

Synthesizing your VHDL Design
The ispLEVER software provides two synthesis tools that are integrated into
the Project Navigator environment: Synplicity Synplify and Exemplar
LeonardoSpectrum. You can synthesize your VHDL design as a stand-alone
process by choosing the synthesis tool from the Lattice Semiconductor
Programs in your Start menu, or you can synthesize automatically and
seamlessly within the Project Navigator.

In Project Navigator, select your synthesis tool in one of two ways:

• Choose Options > Select RTL Synthesis and make your selection.

• Choose Tools and make your selection.

Synthesis then takes place automatically and seamlessly as you process your
design.

Design Entry EDIF Design

ispLEVER 1.0 Concepts 54

EDIF Design
The Electronic Design Interchange Format (EDIF) is a format used to exchange
design data between different ECAD systems.

The EDIF format is designed to be written and read by computer programs that
are constituent parts of EDA systems or tools. Its syntax has been designed for
easy machine parsing and is similar to LISP.

The ispLEVER software supports EDIF Version 2 0 0.

Importing an EDIF Netlist
You can import a design netlist description into the ispLEVER software from a
third-party synthesis or schematic tool if the design file is formatted as EDIF 2
0 0.

To import an EDIF netlist into your project:

1. In the Project Navigator, choose Source > Import to open the Import File
dialog box.

2. Change Files of type to EDIF Netlist (*.ed*), and then select the EDIF
file that you want to import.

3. Click Open to open the Import EDIF dialog box.

4. The default setting for power and ground in the ispLEVER software are the
VCC and GND symbols. If you know that the EDIF generated by other
tools uses a different convention, you can change it in the window. Select
Custom. Select either Symbol or Net representation. Then type the new
names for VCC and GND.

5. If you are following the recommendation from Lattice for generating the
EDIF file from the supported third party design kit, you can then select

Design Entry EDIF Design

ispLEVER 1.0 Concepts 55

CAE Vendors. Then from the list, you can choose the vendor that
generated the EDIF file.

6. Click OK. The software adds the selected EDIF file (.edf) to the project
sources.

Translating EDIF Properties
By default, the ispLEVER software ignores EDIF properties. If you want the
ispLEVER software to translate EDIF properties to design constraints for the
Fitter, do the following:

1. In Project Navigator, choose Tools > Import Source Constraint Option
to open the dialog box. The Import Source Constraints Option dialog box
lets you import constraints, such as Location (pin/node) Assignments,
Group Assignments, and Output Slew Rate, from source files (ABEL,
schematic, or EDIF).

2. In the dialog box, select Auto Import Source Constraints.

3. Click OK.

When you select this option, the ispLEVER software displays a
confirmation dialog box prior to implementing the function. This
confirmation dialog box appears every time you run the Fit Design process,
unless you select the Do Not Import Source Constraints option.

On the warning message dialog box, if you click Yes, the constraints from
the source files are written into the project constraint file.

Important: Constraints from source files and existing constraints in the project
constraint file are not merged; existing constraints are overridden by the new
constraints.

Existing constraints (only Location Assignments, Group Assignments, and
Output Slew Rate are affected) in the project are cleared, regardless of
constraints that might exist in the source file. If there are constraints in the
source file, the new constraints are written into the project constraint file. If
there are no constraints in the source file, no constraints are written into the file.

EDIF Properties
The ispLEVER software will take design-specific constraints from the
properties in the EDIF netlist. The following is the list of properties that the
Fitter supports.

PIN LOCATION Property
Name: LOC

Value: {PIN # }

Example: LOC = P20

Scope: IO PORT, net connect to the IO port.

Design Entry EDIF Design

ispLEVER 1.0 Concepts 56

GROUPING Property
Name: GROUPING

Value: GROUP NAME

Example: Use the following command to assign signal locations in your design.
In this case, you have a list of internal node: a, b, and c, and you want to assign
them into a group "mg." The location of this group needs to be Block "A",
Segment "2’:

On net a, grouping = mg

On net a, loc = "A, 2"

On net b, grouping = mg

On net b, loc = "A, 2"

On net c, grouping = mg

On net c, loc = "A, 2"

OUTPUT SLEW Property
Name: SLEW

Value: {Fast, Slow}

Example: To set port A to high slew, put the following property on the net or
port:

SLEW=Fast

Scope: OUTPUT PORT/NET.

SIGNAL OPTIMIZATION Property
Name: OPT

Value: {KEEP, COLLAPSE}

Scope: On any net of the design.

OPEN DRAIN Property
Name: OPENDRAIN

Value: {On/Off}

Example: To set port A to an open drain, put the following property on the net
or port:

OPENDRAIN=on

Scope: OUTPUT PORT/NET.

PULL Property
Name: PULL

Value: {On/Off/Hold}

Example: To set port A to pull up, put the following property on the net or port:

Design Entry EDIF Design

ispLEVER 1.0 Concepts 57

PULL=on

Scope: OUTPUT PORT/NET.

OUTPUT VOLTAGE Property
Name: VOLTAGE

Value: {VCC/VCCIO}

Example: To set port A to output voltage at VCCIO level, put the following
property on the net or port:

VOLTAGE=VCCIO

Scope: OUTPUT PORT/NET.

Design Entry Schematic Design

ispLEVER 1.0 Concepts 58

Schematic Design
Introduction to Schematic Design

The schematic design entry environment is a set of tools that allows you to
capture the structure of a design as either a flat description or a hierarchical set
of components, and the connectivity between these components. Then you can
use this description to drive the Fitter and verification tools. Designs can be
single-level (flat) or multi-level (hierarchical). Schematics can be drawn on
multiple "sheets" and be of any size.

The Schematic Editor works in conjunction with the Hierarchy Navigator,
Symbol Editor, and Library Manager programs.

Schematic Overview
Unless you're using them just for documentation, schematics are actually the
starting point of the development process, not the goal. The schematic will
eventually be used to analyze the device's behavior using the Functional
Simulator and the Waveform Viewer.

The ispLEVER software includes a Schematic Editor for creating and editing
schematic sources. The figure below is an example schematic that represents an
AND gate.

Schematic of an AND gate

In the above schematic there are two inputs (labeled IN1 and IN2) and one
output (OUT1). The function of I_1 is to combine the signals IN1 and IN2.

The following figure is a much more complex schematic that represents a
programmable IC.

Design Entry Schematic Design

ispLEVER 1.0 Concepts 59

Complex schematic of a programmable IC

What is a Schematic?
The schematic file (saved as a .sch file) describes your circuit in terms of the
components used and how they connect to each other. The schematic can be
used to create netlists for the ispLEVER Fitter.

A schematic can represent a simple logic process (such as an AND gate) or a
more complex component in your design (such as a Register). It can also
represent the top-level of your design.

What do Schematics Consist of?
A schematic is composed of the following items:

Symbols - These can be symbols from the standard Symbol libraries, symbols
representing other schematics you have drawn (Block symbols), or symbols
you have created from scratch.

Wires - Wires connect the symbols. They can be single-signal (nets) or
multiple-signal (buses).

I/O Markers - I/O markers show where signals enter or exit the schematic and
the direction (polarity) of the signal. That is, whether it is an input, output, or
bi-directional signal.

Graphics & Text - Graphics and text are usually added to display explanatory
data. They are optional and have no electrical meaning.

A valid schematic must contain at least the first three components—symbols,
wires, and I/O markers. For instance, a single, isolated component symbol
cannot be the only element in a schematic. The schematic must include I/O

Design Entry Schematic Design

ispLEVER 1.0 Concepts 60

markers for the external connections to the schematic, and these markers must
be connected to the symbol with wires.

A valid schematic

Invalid Schematic (no wires or I/O markers)

Symbols
Symbols are graphic representations of components. The term "symbol" usually
refers to an electrical symbol, such as a gate or a sub-circuit. You can draw
graphic-only symbols (such as title blocks) with the Symbol Editor, but these
have no electrical meaning.

Symbols are the most basic elements of a schematic. Symbols represent
primitive design elements, whether those elements are complete gates or a
complex macro. A symbol can also be the hierarchical representation of a sub-
circuit, or a "Block" symbol.

Symbol Information
Each schematic symbol is a file ending with a .sym extension, and may be
included in a library file with a .lib extension. The symbol file contains four
types of information: graphics, text, pins, and attributes.

Graphics and Text
Graphics are pictures of the symbols. Symbol graphics have no electrical
meaning and show only the position of the component in the circuit. A
symbol’s attributes and pins, not the graphics that represent it, define the
electrical behavior of a symbol. Explanatory or descriptive text displayed with a
symbol is also considered "graphic" information without electrical meaning.

Pins
Symbol pins are the connecting points between the symbol and the schematic
wiring. If the symbol represents an individual component, the symbol pin
represents the physical pin where a conductor can be attached. If the symbol
represents a subcircuit (block symbol), the symbol pin represents a connection
to an internal net of the subcircuit.

Design Entry Schematic Design

ispLEVER 1.0 Concepts 61

Attributes
Each symbol has a number of predefined attributes that describe its component
type and other unchanging characteristics. (These were discussed briefly in the
preceding section, "Symbols."). Other attributes can be given values after the
symbol is placed in the schematic.

Wires
Wires are the lines that electrically connect the symbol pins. Symbol pins are
the only connection points for wires. You cannot connect wires to the symbol
body itself.

There are two types of wires: single-wire nets and multiple-wire buses. Buses
allow more than one signal to be routed as single line.

Wires (both nets and buses) are added to schematics using the Add > Wire or
the Add > Net Name commands of the Schematic Editor.

Note: There is only one kind of wire you can add (using the Add > Wire
command). Whether it is a net or a bus depends on how you name the wire
(using the Add > Net Name command). For instance, Buses are named as
busname[numberlist] where busname is the name of the bus and
numberlist is a list of numbers separated by commas representing each net in
the bus. You can also draw and name a net or bus (you do not have to use the
Add > Wire command) by choosing Add > Net Name and dragging on the
schematic to draw the wire.

Wire Names
Wires have names. These names identify the wires to the Schematic Editor and
netlister programs.

You would normally name all wires that connect to inputs or outputs and any
"internal" nets with signals you want to view during simulation. You can use
any name you like, but you usually choose a name that suggests the name or
function of the signal carried by that wire. If you don't give a wire a name, the
Schematic Editor automatically supplies one, of the form N_n (where n is an
integer).

Giving a single wire a compound name creates multi-wire buses. You can then
tap off any signal you want anywhere along the bus.

Buses are most often used to group related signals, such as a 16-bit data path.
However, a bus can be any combination of signals, related or not. Buses are
especially useful when you need to route a large number of signals from one
side of the schematic to the other.

Buses also make it possible for a single I/O marker to connect more than one
signal to a Block symbol. The signal names don't have to match, but both pins
must carry the same number of signals.

Net Attributes
Like symbols and symbol pins, nets (the wiring that connects symbols to each
other and makes external connections) can also have attributes. These attributes

Design Entry Schematic Design

ispLEVER 1.0 Concepts 62

include the net's name, as assigned in the schematic. There are also net
attributes that pass parameters to other programs, such as simulators.

I/O Markers
I/O markers mark the points at which signals leave or enter the schematic. They
are required. Any unconnected wire without an I/O marker will eventually be
flagged as an error when you try to create a netlist, run the simulator, or load
the design into the Hierarchy Navigator.

I/O markers are added to schematics using the Add > I/O Marker command in
the Schematic Editor.

The I/O marker automatically takes the name of the wire it is attached to. If the
wire is a bus, the marker will have the same compound name as the bus.

When a Block symbol and its matching schematic are created, the I/O markers
for the signals that enter and leave the schematic must have the same names as
the corresponding pins on the Block symbol. The matching names identify
which signal attaches to which pin.

Graphics
Although symbols, wires, and I/O markers are visible, graphical items, they
also have a functional or electrical meaning. In this context, "graphics" refers to
the non-functional graphical parts of the schematic.

For example, you might add graphics showing the expected waveforms at
different points in the circuit. Or, you could draw the company's logo and add it
to each schematic for identification.

The most common use of graphics is to create a title block. The block shows
the name and address of your company, and can include the company logo and
blank spaces for the project name, schematic sheet number, and so on.

The title block is a symbol (usually called Title and located in the project
directory, in the ..\isptools\ispcpld\sym_libs\title.lib library, or as the
..\isptools\ispcpld\generic\generic\misc\title.sym file.). You can
modify this symbol in the Symbol Editor and save the file (with the same name)
in the project directory, or you can use the Library Manager to add the revised
symbol to the misc.lib symbol library file.

Text
Text, like graphics, can provide additional information about the schematic or
its project. Text can be placed anywhere on a schematic, even if it overlaps
symbols or wires.

Text is added to schematics using the Schematic Editor: Add > Text
command.

Naming Schematic and Symbol Files
When you name schematic or symbol files, observe the following rules:

• Observe DOS file naming conventions. The dollar sign ($) cannot be the
first letter of a file name, however.

Design Entry Schematic Design

ispLEVER 1.0 Concepts 63

• Don't type a file name extension; the Editor will add it automatically. If you
enter a non-standard extension, the Editor will replace it with the correct
extension (.sch for schematics, .sym for symbols, and .lib for symbol
libraries).

Schematic Attributes
You use attributes to describe the characteristics or properties belonging to, or
associated with, a symbol, pin, or net. Attributes only apply to describing
characteristics in schematics. ABEL-HDL source files have their own syntax
for describing characteristics.

Note: See each device family application note for a list of supported attributes.

Attribute Use
Attributes are primarily used to control certain aspects of design optimization
and signal placement. You can also use attributes to control how the Fitter
implements your design.

Attribute Types
There are two types of attributes used in the Schematic Editor: symbol and net.

Symbol attributes describe features related to a whole symbol. Symbol
attributes usually apply only to the symbol on which they appear.

Net attributes describe characteristics associated with nets.

Attribute Components
Every attribute consists of four components: name, value, modifier, and
window. The following is a brief discussion of attribute components as they
apply to programmable IC design.

Attribute Name
An attribute's name identifies the attribute to the user. Width, Length, Refname,
and PinNumber are examples of attribute names. Consult your Vendor Kit
(Device Kit or Interface Kit) documentation for the names and descriptions of
any attributes you need to use.

Attribute Value
An attribute can be assigned a value. A value is usually a number or a text
string.

Attribute Modifier
An attribute modifier specifies the conditions under which an attribute's value
can be modified. The attribute modifiers are grouped based on where you can
edit their values:

• Anywhere in Design (<blank>)

• Not Editable (!)

• Symbol Only (-)

Design Entry Schematic Design

ispLEVER 1.0 Concepts 64

• Symbol or Schematic ($)

• Derived (*)

Attribute Window
Attribute values are displayed in attribute windows. Attribute values cannot be
displayed unless the symbol has at least one attribute window.

You add attribute windows to a symbol when you define the symbol. Each
window is assigned a unique number and the default attribute that will be
displayed in that window. (The window number does not have to match the
number of the assigned attribute.) When the symbol is placed in a schematic,
the value of the assigned attribute appears in the window.

You can temporarily change which attribute is displayed in an attribute
window, using the Attribute Display command from the Options menu. This is
useful when you need to view attributes that are not currently displayed.

Attribute windows in schematics can be repositioned, one at a time, with the
Attribute Location command on the Edit menu. Repositioning can make a
crowded schematic more readable.

Note: Attribute windows do not have visible outlines. Rather, they are
predefined areas on or near the symbol.

Setting Attribute Values
The Schematic Editor passes attribute information to the Fitter. For those
attributes that can be edited, you can set or override the values as follows:

• You can set symbol and pin attribute values for all occurrences of a
symbol in the Symbol Editor.

• You can override the attribute values in any schematic where the symbol
appears by using the Schematic Editor.

• You can override the attribute values in any design where the symbol
appears by using the Hierarchy Navigator.

Default Values
Attribute values in a symbol definition become the default values for each
symbol instance. These values are frequently overridden in the completed
design, usually to optimize its performance.

When you are in the Symbol Editor, any attribute values you set in the Symbol
Editor will be used.

When you are in the Schematic Editor, any attribute values you set in the
Schematic Editor will be used. If you did not specify attributes for the symbol
in the Schematic Editor, the Schematic Editor will use the values set for the
symbol in the Symbol Editor.

When you are in the Hierarchy Navigator, any attribute values you set in the
Hierarchy Navigator will be used. If you did not specify attributes for the
symbol in the Hierarchy Navigator, the Hierarchy Navigator will use the values

Design Entry Schematic Design

ispLEVER 1.0 Concepts 65

set for the symbol in the Schematic Editor. If you did not specify attributes for
the symbol in the Hierarchy Navigator or the Schematic Editor, the Hierarchy
Navigator will use the values set for the symbol in the Symbol Editor. (Note
that most netlisters use the values you set in the Hierarchy Navigator.)

Attributes that apply to all instances of a symbol (such as the vendor part
number and the pin polarity) are generally assigned values when the symbol is
created. Attributes that apply to a single instance (such as the instance name)
are assigned after a symbol has been placed in the design.

The symbol libraries supplied with the ispLEVER software have predefined
values for all the attributes required by most simulators and netlisters.

Displaying Attribute Values on a Schematic
Attribute values are displayed in attribute windows. Before an attribute can be
displayed on a schematic, an attribute window number must be assigned to the
attribute in the Symbol Editor.

You can add an attribute window number to any value to display it. The
attribute window number does not have to match the attribute number.

You can assign one attribute window number to several attributes. The attribute
with the lowest attribute number that has a value assigned is displayed.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 66

The Schematic Editor
You create schematic designs using the Schematic Editor. Schematics can be
drawn on multiple "sheets" and be of any size.

The Schematic Editor can work in conjunction with the Hierarchy Navigator,
Symbol Editor, and Library Manager programs.

Basic Schematic Editor Operation
The Schematic Editor uses an action–object command structure. That is, you
select the action you want to perform (usually from a menu), and then you
select the object you want to act on.

For example, to remove a symbol from a schematic, you first select the Delete
command from the Edit menu. Then you point the mouse cursor at the symbol
and click the mouse button.

Almost all commands remain in effect until you select a different command.
For example, if the Add Wire command is active, you can continue to draw
wires until you select a different command.

All commands that require another action or additional information will prompt
you for it. The prompt line is at the lower-left corner of the Schematic Editor.
Whenever you're not sure what to do, look at the prompt line.

The prompt line also displays what you type, such as the names of symbols and
signals. You can edit this information as you type, using the ARROW, DEL,
and BACKSPACE keys on your keyboard.

An error window immediately above the prompt line reports minor errors that
prevent a command from completing its action. This prompt often explains how
to fix the error. Major errors are reported in popup message box.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 67

Error Recovery
The Schematic and Symbol Editors have a feature that increases the chance of
fully recovering from a hardware or software malfunction (a "crash" or
"lockup"). The first time you save a new design, the Schematic Editor creates a
log file named design._sc (where design is the base name of the
schematic file). The Symbol Editor log file is named design._sy.

The Editors check for a log file before opening an existing schematic or
symbol. If the file exists, it means:

• Someone else on the network has this particular file currently open. (See
the next section on network operation.)

• The last time the file was opened, the user did not exit the Editor normally.

When either Editor finds a log file, the Editor displays a warning message that
asks you to verify that no one else is editing the target file. If someone else on
the network is editing the file, you should not edit it, as you would overwrite
the other person’s changes. If you tell the Editor that someone else is editing
the file, the Editor will not load it.

If you respond that no one else is using the file, the Editor assumes the log file
is left from an interrupted editing session. The Editor then asks if you want to
recover the file. If you respond Yes, the Editor uses the log file to recover any
changes made to the schematic or symbol before the last editing session was
interrupted.

The log file is not named until you first save a schematic. Be sure to save new
schematics and symbols as soon as you start working on them, so that an easily
identifiable log file will be available. (Until you save the file and name it, the
Editor gives the log file an arbitrary name, such as _SC60D5.TMP in the
directory specified by the TMP or TEMP environment variables.) Whenever
you exit the Schematic or Symbol Editor normally, the Editor updates the
schematic or symbol file (design.sch or design.sym) and erases the log
file.

Network Operation
When schematics, symbol files, and other project components are shared on a
network, some form of overwrite protection is required. The system does not
allow two people to work on the same file at the same time.

The Schematic Editor uses the crash-recovery log file (described in the
preceding section) to ensure single-user access. If you try to open a file and the
Schematic Editor finds a log file for it, you are asked if someone else is using
the file. If you answer Yes, you cannot access the file.

If you answer No, you will be allowed to open the file, even if someone else is
editing it. Check with anyone who might be using the file before answering No.

Wiring the Schematic
Wires electrically connect schematic symbols. The symbol pins are the
connection points for the wires. The Wire command is used to add wires
between symbol pins. However, you can also use the Net Name and Bus Tap
commands to add single wire segments.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 68

Nets
Any single- or multi-wire connection between pins is called a net ("network").
The following topics explain how nets are named and how multi-wire nets
(called buses) are created and named.

Net Names
The nets (networks) form the electrical connections among the components.
Every net has a name, either assigned by you or by the Schematic Editor. Net
names have two principal functions: identification and interconnection.

Note: If your instance names use brackets [], parentheses (), or curly braces {
}, the software replaces these characters with an underscore (_) because they
are illegal characters in ABEL-HDL language.

Meaningful net identifiers make a design easier to understand. Nets are usually
given the names of the signals they carry.

If you don't assign a name, the Schematic Editor automatically assigns a unique
name when you save the file, in the form of N_nn, where nn is an integer
between 1 and 232 – 1 (4,294,967,295).

You can override any name assigned by the Schematic Editor and assign one of
your own by using the Net Name command from the Add menu.

Interconnection
If a wire segment attached to a symbol pin is given the name of a net or bus, the
pin is attached to that net or bus, even if you haven't drawn the connection on
the schematic.

Two or more wires with no visible connection on the schematic are
automatically connected if they have the same net name. Each wire is called a
branch of that net. Inter-sheet connections are created in this way.

You can easily find implicit net connections with the Query command from the
DRC menu. Click any net or bus. All wires with the same name are highlighted,
on all sheets of the current schematic.

Nets with different names cannot be connected; the Schematic Editor will warn
you if you try to "short" them.

Entering Net Names
Use the Net Name command from the Add menu to assign a name of your own
choosing to a net. Your name replaces any name the Schematic Editor may
already have assigned. If you assign the same name to two separate nets
("branches"), they are connected, even though no connection appears on the
schematic. This feature makes it easy to connect widely spaced components
without having to draw long wires across the schematic.

Net names you assign are always displayed; Editor-assigned names are not
displayed. To avoid cluttering the schematic, you should name only those nets:

• That connect to other schematics.

• Whose functions need documentation or clarification.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 69

• Whose signals you want to view in the Hierarchy Navigator.

• Whose signals you want to reference in simulation or timing analysis.

• Whose signals you want to identify in the Fitter report.

Placing Net Names
Once a net name (or group of names) is attached to the cursor, there are three
ways to place it.

• Click an empty space to place the net name at an empty point on a sheet.
This will be an error unless a net is eventually connected to the name flag.

• Click a net to place the net name on the selected net. If you click at the end
of a net, the net name extends from the end. If you click the middle of a net,
the net name is centered just above the net.

• Drag to create the net and place the net name on the newly created net.
The net name and a single net segment can be placed simultaneously. You
can then place subsequent wires and names by clicking a pin.

Note 1: You can only define a horizontal or vertical net segment in this way. If
either end of the segment connects to a perpendicular net or bus, a bus tap is
created at that end of the segment. If the net was not a bus, it is promoted to
one.

Note 2: The position of the name is determined by the segment ends at the
time of placement. If both ends are connected, the name is placed in the
middle. If neither end of the segment is connected, the name is placed at the
starting point. If only one end of the segment is connected, the name is placed
at the unconnected end.

Note 3: After you drag the mouse to or from a pin, you can place subsequent
net names by clicking a pin. You don't need to drag. A wire segment is
automatically added, of the same length as the one previously dragged. The
name is attached as described above.

Legal Characters in Net Names
The following characters can be used in net names:
A–Z, a–z, 0–9 All alphanumeric characters. Case is not significant.

' Apostrophe (single quote)

_ Underscore

Reserved Names
If B is the first character of a net name, the underscore cannot follow it as the
second character (as in B_). The underscore cannot be used in a net name of the
form "N_nn" (where "nn" is any integer). These names are reserved by the
Schematic Editor for nets that have not been named by the user.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 70

Logical Inversion
When either the apostrophe or underscore is the first character of a net name,
the Schematic Editor draws the name with an overbar. Overbars are often used
to suggest logical inversion. The apostrophe or underscore is kept in the name
and appears in the netlist, but it is not displayed.

Specifying Signal Direction
An I/O marker is a special indicator that identifies a net name as a device input,
output, or bidirectional signal. This establishes net polarity (direction of signal
flow) and indicates that the net is externally accessible.

The Schematic Editor Consistency Check command uses I/O markers to flag
any discrepancies in the polarity of marked signals and the symbol pins.
Discrepancies in polarity are also flagged each time you run the Hierarchy
Navigator.

Buses
A bus combines two or more signals into a single wire. Buses are a convenient
way to group related signals. This grouping can produce a less cluttered,
functionally clearer drawing and clarify the connection between the main
circuit and a Block symbol.

The figure below shows how a circuit appears before and after a bus has
replaced individual wires. The two schematics are electrically equivalent.

Circuit before and after a bus has replaced individual wires

Ordered Buses
An ordered bus has a compound name consisting of the names of the signals
that comprise the bus. Any signals can be combined into an ordered bus,
whether or not they are related.

A net becomes an ordered bus when it is given a compound name. The net is
promoted to an ordered bus containing the nets listed in the compound name.
(The net is redrawn at twice its regular thickness to indicate that it's now a bus.)

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 71

A compound name is a list of two or more net names, separated by commas.
For example:

READ,WRITE,MYNAME

represents the three signals READ, WRITE, and MYNAME. Spaces in
compound names are ignored.

Adding a sequence of numbers to a name can also form a compound name. The
sequence is specified as a starting number, an ending number, and an optional
increment (default = 1). The numbers are positive integers, and are delimited by
commas (,), dashes (–), or colons (:). The sequence is enclosed in brackets
[], parentheses (), or curly braces { }.

The following are examples of sequential compound names.

Sequential
Name

Signals

DATA[0-7] DATA[0] DATA[1] ... DATA[7]

ADDR(0,14,2) ADDR(0) ADDR(2) ADDR(4) ...
ADDR(14)

IO{4:23:3} IO{4} IO{7} IO{10} ... IO{22}

If the increment is greater than one, the ending number will not appear in the
sequence if it does not equal the starting number plus an integral multiple of the
increment (as in the third example above).

A compound name can also combine individual names and compound names in
any order.

Sequential
Name

Signals

CS,DATA{0:7},WR CS DATA{0} DATA{1} ... DATA{7}
WR

The order of the signals in the bus is the same as the order in which they are
specified. The order is significant only when the bus is connected to a bus pin.
(Bus pins are described in a later section, "Bus Pins.")

Note: If your instance names use brackets [], parentheses (), or curly braces
{ }, the software replaces these characters with an underscore (_) because
they are illegal characters in ABEL-HDL language.

Unordered Buses
An unordered bus is nothing more than an unnamed wire with bus taps. A net
with a single name (or any unnamed wire) is promoted to an unordered bus by
attaching one or more bus taps to it. The order of the signals within an
unordered bus is not defined and has no significance.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 72

Although the order of the signals in an unordered bus has no significance, you
must name the wires connecting to the bus taps, because the Schematic Editor
would otherwise have no way of determining which symbol pin at one end
connects to which symbol pin at the other end

Unordered buses provide a convenient way to route signals through the
schematic with a minimum of visual clutter. They have no other function.

Unordered buses cannot connect to bus pins, because bus pins represent an
ordered sequence of signals.

Bus Taps
Signals enter (or exit) a bus at points called bus taps. A bus tap can be added to
any existing bus, net, or wire. If a net or wire is not already a bus, adding the
tap automatically promotes it to a bus.

Naming the Tap
Once the tap has been added, choose the Add >>>> Net Name command to name
it. If the tap is from an ordered bus, the tap’s name must match the name of a
signal in the bus. If it does not, the Schematic Editor or Hierarchy Navigator
will flag it as an error.

Note: Wires entering and leaving any bus (ordered or unordered) must be
tagged with a net name to indicate which signal is being tapped. Unnamed taps
will eventually be flagged as errors.

Connecting to Pins
A tapped signal connects to an ordinary symbol pin in the usual way. An
ordered bus connects to a bus pin (a pin with multiple connections) directly. No
taps are needed; the connections are made automatically. The first signal in the
bus connects to the first signal in the bus pin, the second to the second, and so
forth. Both the bus and the bus pin must contain the same number of signals.

Bus Pins
A pin represents either a physical pin on a real component or a signal from a
lower-level schematic.

A bus pin represents a group of pins or signals. You create a bus pin by giving a
pin a compound name. That is, a list of signals. If the pin connects to a Block
symbol, each of the signals listed in the bus pin name must also appear in the
schematic. This defines the connection between the Block symbol and its
underlying schematic.

Ordered buses can connect directly to bus pins. The number of bits or signals
attached to the bus must match the number of bits or signals attached to the bus
pin.

The first signal in the bus (by definition, the first signal in the bus's name) is
connected to the first signal represented by the pin. The remaining signals in the
bus are connected to the remaining pins in the same order you assigned the
signal names to the pins

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 73

Nets on Iterated Instances
Iterated instances allow a single symbol instance to represent multiple instances
in a parallel connection. The figure below shows two ways of representing four
parallel buffers. On the right, four separate inverters are added to the schematic.
On the left, one symbol with the instance name of INV[0:3] represents the bank
of four inverters.

Compound Names
The input and output nets of an iterated instance can be given either single
names or compound names. If the inputs or outputs are given a compound
name, their nets are promoted to buses in which each instance's input or output
is a separate signal.

Iterated buses work like any other bus. You can attach a bus (with the same
number of signals) directly to them, as you would any other bus.

Single Names
If an iterated input or output is given a single net name, there is only one input
or output net, and all the inputs or outputs connect in parallel to that single net.
In the figure below, the input net is given a single name and the inputs of all
four gates are connected in parallel to the net.

This feature is used most often on inputs, not outputs. Paralleled outputs
represent a "wired-OR" configuration, which is usually drawn as separate gates,
rather than as an iterated instance.

Bus and Net Connections to Iterated Instance
You can make an iterated instance of any symbol. A simple (non-bus) pin on an
iterated instance remains a simple pin. The iteration does not convert the pin to
a bus pin. The same rules of connection to a simple pin still apply.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 74

Connections to the nets of iterated instances are made according to the
following rules.

Rules for connection to nets of iterated instances

Connection Rule
Simple net to simple pin The net connects to corresponding pin on each

instance.

Bus to bus pin Successive bus signals connect to successive
bus pins on successive instances. The bus and
bus pin must have the same number of nets.

Simple net to bus pin Not permitted. Only a bus can connect to a
bus pin.

Bus to simple pin The Nth signal of the bus connects to the
scalar pin of the Nth instance. The width of
the bus and the number of instances must
match.

Wiring Constraints
The Schematic Editor enforces a number of wiring constraints. Most are
intended to encourage clean layout and prevent ambiguous wiring patterns.

• All wire segments must end on Primary grid points.

• Wire segments must be oriented on the 45° and 90° axes.

• Wire segments cannot form acute angles. This applies to both crossing and
connected wire segments.

• A maximum of two diagonal wire segments can connect at a point. A third
vertical or horizontal segment can connect if it does not form an acute angle
with either of the other segments.

• A maximum of three wires can connect at a pin or I/O marker.

• A net can have only one name (simple or compound).

• Two I/O markers with different net names cannot be connected by a wire.

• An I/O marker can connect only to a wire segment, never a pin. (Add a
wire segment if you want a marker to be near a pin.)

• An I/O marker cannot be placed in the middle of a diagonal line, only at the
end.

• An I/O marker cannot be placed at the crossing point of two wires, even if
the wires are connected.

• A tap can only be placed on a vertical or horizontal section of a wire.

• Only one bus tap can be made at any point on a bus.

Design Entry Schematic Editor

ispLEVER 1.0 Concepts 75

• A bus can contain only individual signals, not other buses. Attempting to
give a net in a bus either a compound name or the name of another bus is
flagged as an error.

• The relationship between an ordered bus (that is, a bus with a compound
name) and the signals in that bus is strictly enforced. Naming the bus or one
of its signals in a way that breaks this relationship is not permitted. For
example, you cannot assign a bus tap a name that is not in the bus.

Debugging and Verifying a Schematic
The Schematic Editor has two levels of checking that report or prevent errors
early in the design process.

First level errors are detected as you enter your schematic. For example, the
Schematic Editor will not let you draw an isolated wire that forms a closed loop
without connecting to anything else. It won't let you short together nets with
different names.

Second level errors are recognized in the context of a complete design. An
unconnected wire or pin, or an unnamed signal tapped from a bus, are normal
during the first stages of a design. Some potential errors are always indicated,
such as the dots on open pins and hanging line ends. Otherwise, errors of this
type are reported only when schematics and symbols are combined in the
design hierarchy.

You can check for errors and potential errors at any time.

"Unconnected Pin" Message
You can tell the Schematic Editor Consistency Check command to ignore
intentionally unconnected pins by appropriately setting one of the pin's
attributes. This attribute is named OpenOK. Use the Schematic Environment
dialog box to add this attribute and set its Modify Option to "+", Assign in
Schematic.

The attribute can be set in either the Schematic Editor or the Symbol Editor. If
it is set in the Symbol Editor, the pin is never flagged as unconnected. The
attribute can also be selectively set in the Schematic Editor to disable the
message on specific pins, but not on all instances of the symbol.

Any value entered will inhibit the "Unconnected" message for that pin. A value
of Yes, OK, or True is suggested.

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 76

The Symbol Editor
The Symbol Editor lets you construct schematic symbols. Besides the various
lines, arcs, and boxes needed to create the symbol, you can also add text to give
information about the symbol and its relationship with the rest of the circuit.

Symbol Elements
Schematics are constructed from symbols. A symbol can represent any logic
component. Symbols are connected with wires (in the Schematic Editor) to
create a complete schematic whose behavior can be verified and simulated.

A symbol is a picture; it has no inherent electrical meaning. Its electrical
characteristics are supplied by attributes that describe the symbol's behavior.
(The behavior of a Block symbol is described by the schematic file associated
with that Block symbol.).

The ispLEVER software supplies you with an extensive set of symbols. You
can also use the Symbol Editor to create Block symbols that represent a
complete schematic, or part of one.

Symbols are composed of graphic, pin, and attribute elements.

Graphic elements are the picture of the symbol. They have no electrical
meaning; they show only the location of the component in the schematic.

Pin elements on a symbol are points where a wire can be attached. The pins and
wires are connected between symbols to circuit elements.

Buses cannot be connected to pins unless the pin is a bus pin. Only ordered
buses can be connected to bus pins.

Attribute elements are properties of a symbol, pin, or net. Attributes can
describe how the Fitter will optimize the symbol, or where it is placed in the
device.

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 77

Positioning Master Symbols
Master symbols cannot be freely placed on a schematic sheet. Instead, they are
automatically positioned at one of the corners. This permits resizing the sheet
without having to move the title block or other annotations.

The sheet corner is determined by the location of the symbol's origin. If the
origin is placed at the upper-right corner of the Master symbol, for example, the
symbol will be positioned at the upper-right corner of the sheet.

Master symbols do not have pins.

Using Grids to Position Symbol Elements
All symbol elements are positioned on a grid. The default spacing of the grid is
one-tenth of an inch (or 2.5 mm). (This spacing is set in the Graphic Options
dialog box.)

Graphics are usually placed on the Primary grid, but you can align them with a
Secondary grid that has two or four times the resolution. This finer resolution
gives more precise control over the position of names, annotations, and graphic
embellishments. The Options > Graphic Options command determines whether
alignment is with the Primary or Secondary grids.

Symbol dimensions are stored as multiples of the Secondary grid units, not as
absolute lengths. For example, if you redefine the Primary grid to be 0.2" (when
it was previously 0.1"), symbol drawings and schematics will print out at twice
their previous size.

Positioning Pins
Although graphics and text can be positioned at any of the three grid spacing,
pins must be aligned with the Primary grid. Wires are drawn only on the
Primary grid. If the pins are not on the Primary grid, you will not be able to
attach wires to them.

The size of the drawing area can be increased with the Expand Page command
from the Edit menu. Each time you choose the Expand Page command, the
drawing area increases by 20 Primary grid units in each direction. The
maximum size of the drawing area is 400 x 400 Primary grid units.

Selecting a Line Weight
Graphic objects can be drawn in two line weights: normal and wide.

Normal lines (default) are the same width as the wires in a schematic. You
might use this weight for drawing all elements.

Wide lines are twice the width of Normal lines, the same weight as schematic
buses. For example, you might use this weight to illustrate a bus pin
connection.

Drawing Lines
When clicking to place the end points, lines are constrained to three principal
directions: vertical, horizontal, and 45°. When you drag the line, the line can be
at any angle as long as the end points fall on the grid being used. Switch to a
finer grid to make it easier to place lines exactly where you want them.

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 78

Drawing Rectangles
Many symbols are based on a rectangular body. For non-rectangular symbols
such as inverters or multiplexers, use the Line command to draw the outline.

Drawing Circles and Arcs
You can place full circles with the Circle command and create portions of
circles with the Arc command. Arcs are useful for the curved sections of
NAND and NOR gates.

Drawing Negation Bubbles
Negation bubbles are graphical and have no electrical significance. (Adding a
negation bubble to a symbol does not change its logic. You must modify the
symbol's attributes or the underlying schematic file.) You can add small or
large bubbles:

• Choose Add > Bubble to draw a bubble one-half the Primary grid unit in
diameter

• Choose Add > Big Bubble to draw a bubble one Primary grid unit in
diameter

With either command, a bubble is attached to the cursor. Click the desired
position in the schematic to place a bubble.

Drawing Text
Text can be added anywhere in the drawing window. Typical uses of text
include:

• Notes about the symbol

• Title blocks

• Cross references

Text Size and Justification
Fixed text (as opposed to text appearing in attribute windows) can be drawn in
up to eight sizes. (In the Windows version of the ispLEVER software, eight
sizes are available. In the UNIX/Motif version, three sizes are available.) Text
can be left justified, right justified, or centered. The controls for font size and
justification are in the Graphic Options dialog box. Defaults for these values
can be changed by using the Schematic Environment dialog box (Project
Navigator: Options > Schematic Configuration).

Preparing Symbols for Schematics
A symbol needs special links so that it can be recognized and placed in a
schematic. These links consist of pins, attributes, attribute windows, and the
symbol origin.

Pins
Symbol pins are connection points for wires. Pins on Gate, Component, and
Cell symbols represent the connection points on the device (pins or pads). Pins

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 79

on a Block symbol represent connections from one level of the hierarchy to the
level below. Because Graphic and Master symbols don't represent electrical
components, you can't attach pins to them.

Pins are the only symbol elements restricted to locations on the Primary grid,
since wires must begin and end on Primary grid points.

Adding Pins
Symbol pins correspond to I/O markers on the underlying schematic and
connect the device represented by the symbol to the rest of the circuit.

Pins are usually attached to the symbol on short lines extending outward from
the symbol's body. However, pins can be attached anywhere inside or outside
the symbol, with or without connecting lines.

Pins are electrical elements and are therefore restricted to locations on major
grid intersections. There can be only one pin at any location.

Bus Pins
A bus pin is used to connect a bus to a symbol. Naturally, a bus pin must have
as many nets or signals as the bus that connects to the pin.

One way to create a bus pin is to give a pin a name of the form:
bus_name[index1–index2]

Where bus_name is the name of an internal bus, and index1 and index2 specify
the range of signals you want to connect. For example, if you need to connect
nine signals, index1 could be 5 and index2 could be 13.

Alternatively, a bus pin can be defined by giving it a compound name—a list of
bus names separated with commas (,):

name1, clk, mux[0-3], toggle

Bus Pin Limitations
Bus pins are allowed only on Block, Cell, and Component symbols. When a
bus pin is created on a Component symbol, the numbers of the physical pins
must be specified in the symbol definition.

These pin numbers are a list of pins assigned to the pin attributes BusPin_A
through BusPin_H. When assigning bus pins, the normal PinNumber pin
attribute must not have an assigned value.

The pin list can be divided sequentially among the eight attributes. Each
individual attribute can hold about 200 characters. The list is delimited with
commas or spaces, and can specify sequences of pins in parentheses () or
square brackets []. Examples are

BusPin_A = 1, 3, 5, (7:10)

7 pins: 1, 3, 5, 7, 8, 9, 10

BusPin_B = A1 B[2:4] C1

5 pins: A1, B2, B3, B4, C1

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 80

Attributes
A symbol and each of its pins can have attributes. An attribute has a name and a
value.

Attribute names are represented in the symbol's file by an integer. The
correspondence between attribute names and integers is defined with the
Symbol Attributes and Pin Attributes tabs in the Schematic Environment dialog
box (Project Navigator: Options > Schematic Configuration). This
arrangement allows the internal numbers to remain constant while the attribute
names change to accommodate local practice or language.

Attribute values assigned in a symbol definition become the default values for
each symbol instance. These values are frequently overridden in the completed
design.

Symbol Attributes
Symbol Attributes are characteristics or properties associated with a symbol.
Examples of symbol attributes are PartNum, InstName, Width, and Type. The
standard symbol attributes (numbered 0–99) are reserved. You can create
symbol attributes (numbered 100–199) using the Schematic Environment
dialog box (Project Navigator: Options > Schematic Configuration).

Any attribute that is not defined as having a fixed value can later be modified in
the Schematic Editor or Hierarchy Navigator using the Attribute command. The
procedure is the same as editing pin attributes, described in the preceding
section.

Pin Attributes
Pin Attributes are characteristics or properties associated with a pin. PinName,
Polarity, and PinNumber are examples of Pin Attributes. Pin attributes are
created with the Schematic Environment dialog box (Project Navigator:
Options > Schematic Configuration) and their values are modified in the
Symbol Editor.

Attribute Windows
Attribute windows are predefined areas on or near a symbol or pin in which
attribute values are displayed. Attribute windows do not have a visible outline.
If no value is displayed, there is no indication that an attribute window has been
defined.

Numbers identify attribute windows. The association between an attribute
window and an attribute is defined using the Symbol Attributes tab in the
Schematic Environment dialog box (Project Navigator: Options > Schematic
Configuration). An attribute window can have any number; it does not have to
match the number of the attribute itself.

When a symbol is rotated or mirrored, the text in attribute windows retains its
original position. This keeps it readable.

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 81

Setting Symbol Origins
When a symbol is placed in the Schematic Editor, the symbol is attached to the
cursor. The point on the symbol attached to the cursor is called the origin of the
symbol.

A newly created symbol has no origin. When the symbol is saved, the origin
defaults to the upper-left corner of the symbol. You can assign an origin or
change the current origin with the Symbol Origin command in the Symbol
Editor.

Saving Symbols
You can store a symbol in a library for use in many designs, or keep it in the
design directory for use in a specific design.

If you're saving a new symbol, you're prompted for a name. If you're editing an
existing symbol, changes are saved to the existing file.

You can use the Save As command to save the symbol with another file name,
which is useful when you're designing several similar symbols. Save the
original, modify it, then save the new version with a new name.

Symbol files have the extension .sym. The Symbol Editor adds this extension
automatically when you specify the base name. If you specify a different
extension, the Editor replaces it with .sym.

Printing Symbols
Use the Print command on the File menu to print a symbol. The default
orientation is landscape (long side of the page horizontal). If portrait
orientation (long side of the page vertical) would allow a larger image, choose
the Page Setup command from the File menu to change the orientation.

Checking Symbols
You can check symbols for errors at any time. The Symbol Editor writes an
error report to a file and displays it after the check is run. Clicking an error in
the list highlights the error in the drawing.

The following types of errors are detected and reported:

• Block symbols should have a schematic with the same name in the current
directory.

• Symbols of type other than Block are usually primitives and should not
have a schematic of the same name in the current directory.

• Each pin should have a PinName in a Block or Cell, and a PinNumber in a
Gate or Component.

• Pins in Component and Pin symbols can only have one PinNumber.

• Pins in the same group of a Gate must all have the same Polarity, Load and
Drive.

• Pins on Block symbols should not have Load or Drive specifications.

• Pins on non-Block symbols should have Load or Drive specified. Input pins
should specify Load but not Drive. Output pins should specify Drive,

Design Entry Symbol Editor

ispLEVER 1.0 Concepts 82

unless the pin is tristate. In that case, Load should also be specified,
representing the load in the High-Z state. Bidirectional pins should specify
both Load and Drive.

Design Entry Hierarchy Navigator

ispLEVER 1.0 Concepts 83

The Hierarchy Navigator
The Hierarchy Navigator program allows you to navigate through a schematic
design consisting of a top-level schematic and lower-level schematics and HDL
modules.

The Hierarchy Navigator loads a full hierarchical design all at once so that you
can view it in its complete form, rather than as individual sources. Every
schematic sheet and behavioral file at all levels of hierarchy is included. You
can trace signals and connectivity throughout the design.

Attributes
An attribute is a characteristic or property belonging to, or associated with, a
symbol, pin, or net. For example, attributes can describe:

• Number of connections to a block

• Delay from input to output

• Length of time taken to design a symbol

Attribute Modifiers
An attribute modifier specifies the conditions under which an attribute's value
can be modified. The attribute modifiers are grouped based on where you can
edit their values.

Design Entry Hierarchy Navigator

ispLEVER 1.0 Concepts 84

You can edit symbol and pin attribute values on the symbol and override the
values in any schematic where the symbol appears. The four attribute modifiers
described below control how attribute values can be changed in the schematic.

Modifier
Edit In Description

<blank> Anywhere
in design

These attributes can be assigned or edited in
the Symbol Editor, Schematic Editor, or
Hierarchy Navigator.

! Not Editable Certain attributes are editable only by special
"system" commands, such as Instance Names
and Net Name Flags. In addition, the ini file
may contain attributes that are not editable
for the purposes of maintaining compatibility
with other versions of the schematic (for
example, for a different FPGA or ASIC
device family) without losing the attribute
name association.

These attributes are not listed in the Hierarchy Navigator attribute editor.

Modifier Edit In Description
- Symbol Only These attributes can only be assigned or

modified in the symbol editor. They establish
fixed values for all instances of the symbols
to which they are attached. "symbol only"
attributes will be listed in the symbol editor
attribute editor, but not in the schematic editor
or hierarchy navigator. This modifier cannot
be assigned to net attributes.

$ Symbol or
Schematic

Attributes designated with this modifier can
be assigned or modified in the Symbol Editor
or Schematic Editor; they are not editable in
the Hierarchy Navigator. These are typically
used in conjunction with netlisters that run
from the schematic. Since those netlisters do
not have access to the hierarchical database,
any attributes added through the Hierarchy
Navigator would be lost.

* Derived Derived attributes can be assigned or
modified anywhere in the design through the
Symbol Editor, Schematic Editor, or
Hierarchy Navigator.

Note: Attributes 00 through 99 are reserved definitions. Do not change their
numbers or use. Attributes 100 through 199 are available for you to define and
use for any purpose.

Design Entry Hierarchy Navigator

ispLEVER 1.0 Concepts 85

Attribute Window
Attribute values are displayed in attribute windows. Attribute values cannot be
displayed unless the symbol has at least one attribute window.

You add attribute windows to a symbol when you define the symbol. Each
window is assigned a unique number and the default attribute that will be
displayed in that window. (The window number does not have to match the
number of the assigned attribute.) When the symbol is placed in a schematic,
the value of the assigned attribute appears in the window.

You can temporarily change which attribute is displayed in an attribute
window, using the Attribute Display command from the Options menu. This is
useful when you need to view attributes that are not currently displayed.

Attribute windows in schematics can be repositioned, one at a time, with the
Attribute Location command from the Edit menu. Repositioning can make a
crowded schematic more readable.

Note: Attribute windows do not have visible outlines. Rather, they are
predefined areas on or near the symbol.

Attribute Functions
The principal source of information about a symbol's electrical characteristics
and behavior is the attribute values attached to it. Your simulator uses these
attributes to analyze and simulate the schematics you design.

Attribute values in a symbol definition become the default values for each
symbol instance. These values are frequently overridden in the completed
design, usually to optimize its performance.

Attributes that apply to all instances of a symbol (such as the vendor part
number and the pin polarity) are generally assigned values when the symbol is
created. Attributes that apply to a single instance (such as the instance name)
are assigned after a symbol has been placed in the design.

Note: The symbol libraries supplied with the ispLEVER software have
predefined values for all the attributes required by the Verilog simulator.

Attribute Types
There are four attribute types:

Global Global attributes are constants such as feature size,
supply voltage, or identification codes. These attributes
are accessible from every sheet of every schematic at
every level of hierarchy.

Symbol Symbol attributes describe features related to the whole
symbol. Examples are the width and length parameters of
transistors, or SPICE-model characteristics. Symbol
attributes usually apply only to the symbol on which they
appear.

Design Entry Hierarchy Navigator

ispLEVER 1.0 Concepts 86

Pin Pin attributes describe features related to individual pins.
Polarity, lead number, drive capability, and loading are
typical pin attributes. Pin attributes are accessible at the
instance level and can be modified in both the Schematic
Editor and Hierarchy Navigator.

Net Net attributes describe characteristics associated with
nets. A good example is the stray capacitance of a net
routed across a chip.

Attribute Names
An attribute's name identifies it to you. Attribute names are text strings and can
contain any characters except spaces. Names are not case sensitive. You can
mix cases to improve readability. Width, Length, RefDes, and PinNumber are
examples of attribute names.

Attribute Numbers
The attribute's number identifies it to the editors and the Hierarchy Navigator.
The editors and Hierarchy Navigator use the number, not the name, to reference
an attribute. This allows a different name to be assigned without changing the
meaning or use of the attribute. The connection between an attribute's name and
its number is defined in the initialization file.

Attribute Values
An attribute can be assigned a value. (Attributes 0-99 are reserved for the
editors, the Hierarchy Navigator, and simulation. Most of them have predefined
meanings.) A value is usually a number or a text string.

Design Entry Library Manager

ispLEVER 1.0 Concepts 87

The Library Manager
The Library Manager lets you manage libraries of symbols that are used in your
designs. The Library Manager also allows you to browse these libraries and to
maintain them by adding, deleting, copying, and renaming the symbols in the
libraries

Why Use the Library Manager?
Using the Library Manager, you can clean up your folder structure by
organizing your symbols into binary libraries, which use disk space more
efficiently than separate symbol files.

Working with Binary Symbol Libraries
There are two types of symbol libraries: folder and binary. Folder libraries are
simply directories that contain symbols. Folder libraries and the symbols they
contain can be manipulated using the Windows File Manager or Explorer.

A binary library is a symbol library that has been compressed into one compact
file with the extension .lib, but it can contain many different symbols. Using
the Library Manager can create only binary libraries.

Design Entry Hierarchy Browser

ispLEVER 1.0 Concepts 88

The Hierarchy Browser
The Hierarchy Browser allows you to navigate through a design consisting of
any combination of schematic and HDL modules. In contrast with the
Hierarchy Navigator, the Hierarchy Browser works with designs whose top-
level is either a schematic or HDL source. Additionally, you can cross probe
between design sources and their appropriate tool.

Introduction to the Hierarchy Browser
A large, complex design is typically broken into components, or modules.
Circuitry for a specific function or interface can be abstracted as a separate
module. The design represented by the module is said to be one level below the
design in which the module appears. Or, the design is one level above the
module.

Any design with more than one level is called a hierarchical design. The
Hierarchy Browser shows all the design files (sources) associated with a
project. There are several kinds of design sources in the ispLEVER software,
including schematics, ABEL-HDL modules, VHDL modules, and Verilog HDL
modules. The type of a source is indicated by the icon to the left of the instance
name in the Hierarchy Browser.

Design Entry Mixed-Mode Design

ispLEVER 1.0 Concepts 89

Mixed-Mode Design
The ispLEVER software supports mixed-mode design entry: a design with at
least one schematic module as the top project source, and one or more sources
of the same language. The language sources are mutually exclusive, so you
must choose one of the three types when you begin a new project. For example,
a schematic and an ABEL-HDL source, a Verilog HDL source, or a VHDL
source.

Design Entry Text Editor

ispLEVER 1.0 Concepts 90

The Text Editor
The Text Editor is the ispLEVER text entry tool. You use this tool to create and
edit text-based files, such as ABEL-HDL files, test files, and project
documentation files.

ispLEVER 1.0 Concepts 91

Design Simulation

Functional simulation is the process of simulating the functionality of your
RTL design before synthesis, thus letting you find and correct basic design
errors sooner. While functional simulation will verify your Boolean equations,
it does not indicate timing problems.

The ispLEVER software supports functional simulation for any Lattice
Semiconductor device using Lattice Logic Simulator or ModelSim� from
Model Technology. These simulators operate in both stand-alone and integrated
environments.

Integrated Simulation
To simulate a design file inside the current project, the ispLEVER software
provides integrated simulation. From the Project Navigator, you can run the
appropriate process associated with the design file in the process window.

Project Navigator Process Simulation Tool Used
Functional Simulation Lattice Logic Simulator

Verilog Functional Simulation ModelSim

VHDL Functional Simulation ModelSim

Standalone Simulation
The ispLEVER software supports stand-alone functional simulation. This
provides an easy entry if you need to simulate a design file outside the current
project. Even if you have previously opened Lattice Logic Simulator or
ModelSim from a project, you can change to the stand-alone mode flexibly by
selecting the appropriate simulator from the Project Navigator Tools menu.

Design Simulation Functional Simulation

ispLEVER 1.0 Concepts 92

Functional Simulation - CPLD Process Flow
The figure below shows functional simulation within the CPLD process flow.

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 93

Lattice Logic Simulator
Lattice Logic Simulator performs logic simulation on your design and helps
you verify the operation of your design before you implement it into a Lattice
Semiconductor device. You can observe not only the gate-level behavior at its
inputs and outputs, but also the behavior of internal nodes.

You can use Lattice Logic Simulator to verify a design:

• Before fitting (Functional Simulation)

• After fitting (Timing Simulation)

Simulation Support
The ispLEVER software supports simulation for Lattice ispLSI, ispMACH,
ispGDX, and ispGDX2 device families. Lattice Logic Simulator operates in
both standalone and integrated environments.

Stand-alone Simulation
The ispLEVER software supports stand-alone functional and timing simulation.
This is to provide an easy entry if you need to simulate a design file outside the
current project. Even if you have previously opened Lattice Logic Simulator
from a project, you can change to the stand-alone mode flexibly by choosing
Tools > Lattice Logic Simulator from the Project Navigator.

Integrated Simulation
To simulate a design file inside the current project, the ispLEVER software
provides integrated simulation. You can just run the Functional Simulation or
Timing Simulation process associated with the design file in the Project
Navigator Processes window.

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 94

Simulation in the ispLEVER Design Flow
The following figure displays Lattice Logic Simulator in the ispLEVER design
flow.

Design Entry
Lattice Logic Simulator enables you to verify the operation of your design in
the following formats:

• ABEL-HDL format (design.abl) - a hierarchical logic description
language that supports a variety of behavioral input forms, including high-
level equations, state diagrams, and truth tables.

• Schematic format (design.sch) - describes your circuit in terms of the
components used and how they connect to each other.

• VHDL format (design.vhd) - Very High Speed IC Hardware
Description Language format.

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 95

• Verilog HDL format (design.v) - an industry-standard hardware
description language used to describe the behavior of hardware that can be
implemented directly by logic synthesis tools.

• EDIF format (design.edf) – an industry-standard netlist file generated
by synthesis tools.

The ispLEVER software also supports mixed design entry as follows:

• Mixed ABEL-HDL and Schematic entry

• Mixed Schematic and VHDL entry

• Mixed Schematic and Verilog HDL entry

Test Stimulus
Once you have completed your design (or a module of the design), you can test
it to confirm that it behaves the way you expect it to. Simulation requires a test
stimulus file that specifies the input waveforms.

Lattice Logic Simulator can accept two types of test stimulus files:

• Graphic waveform file

• Test vector file

The ispLEVER software has an interface with Model Technology’s VHDL and
Verilog Simulator that accepts the following two stimulus files:

• VHDL test bench file

• Verilog test fixture file

Install the ModelSim before you do the VHDL and Verilog HDL simulation.
Refer to the ModelSim online help for more information on creating VHDL test
bench and Verilog test fixture.

Creating Test Stimulus for Lattice Logic Simulator
Before simulation, you must create a stimulus file that specifies the input
waveforms.

• Creating a graphic waveform file

The Waveform Editor lets you graphically create input stimulus waveforms
for your design by drawing them directly on the screen. The stimuli can be
edited graphically or by modifying values in dialog boxes. The Waveform
Editor then converts the waveforms into a stimulus file that the simulator
recognizes. Waveform files (in Waveform Description Language format)
are also useful as input to automatic test equipment or as documentation of
the circuit’s expected behavior.

If you associate the waveform stimulus file (.wdl) with the selected device
in your design, both the functional and timing simulation processes are
supported. However, if you associate the waveform stimulus file with a
design module, only functional simulation is available.

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 96

• Creating a test vector file

You can create a test vector file in a text editor using proper keywords. Test
vectors are sets of input stimulus values and corresponding expected
outputs that can be used with both functional and timing simulators. Test
vectors can be specified either in a top-level ABEL-HDL source or in a
separate ABEL-HDL test vector format file called a .abv file. The .abv
file is considered a text document and is kept above the device level in the
Sources window. Whether the test vectors are part of a top-level ABEL-
HDL source (.abl) or are in a separate file, they will be compiled and
passed to the simulator.

Creating Graphic Waveforms
You can graphically create a waveform file using the Waveform Editor, which
can be used as a stand-alone tool or interactively with the Hierarchy Navigator.
Running the Waveform Editor with the Hierarchy Navigator offers a number of
advantages, including direct entry of node names and the direct display of
stimulus logic levels on the schematic.

The Waveform Editor uses a data model called the Waveform Description
Language (WDL). The language represents a waveform as a sequence of signal
states separated by time intervals. The language also has constructs that let you
express the waveform pattern hierarchically. You do not have to be familiar
with the Waveform Description Language to use the Waveform Editor.

Creating Test Vectors
Test vectors can be specified in two ways:

• Specified in an ABEL-HDL source (.abl)

The most common method is to place test vectors in the ABEL-HDL
source file. If you use this method, the Project Navigator will detect the
presence of test vectors in the source file and create a "dummy" test vector
file. This file indicates to the system that the actual test vectors are in the
ABEL-HDL source file.

• Specified in an external Test Vector file (.abv).

Placing test vectors in an ABV file instead of in an ABEL-HDL source file
improves processing time. By placing test vectors in an ABV file you will
be able to change the test vectors and re-simulate without having to
recompile the logic.

Creating a VHDL Test Bench
Before you do VHDL simulation, you need to create a test bench file as the test
stimulus that specifies the input for simulation.

You can manually create a VHDL Test Bench File (*.vhd), use a VHDL Test
Bench Template File (*.vht), or export a VHDL Test Bench File with the
Waveform Editor.

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 97

Creating a Verilog Test Bench
Before you do Verilog HDL simulation, you need to create a test fixture file as
the test stimulus that specifies the input for simulation.

You can either manually create a Verilog Test Fixture File (*.tf) or include a
Verilog Test Fixture Template (*.tfi) into the test fixture.

Special Constants
.C. Translates to 0, 1, 0 and time unit delay is 3

.K. Translates to 1, 0, 1 and time unit delay is 3

.D. Translates to 1,0 and time unit delay is 2

.U. Translates to 0, 1 and time unit delay is 2

.F. Translates to .Z.

.SV#. #2-9 translates to 0 (can be changed in .ini file)

.P. Assigns the value provided in vectors to signals. When .C. .K.
.U. .D. appear as well as .P., they are translated to ‘0’

The .P. in .abv means the supervoltage preload. It is used to
load registers to the desired state. If the registers do not set
preload value when CLK is set to .P., the simulation result is
complex and unpredictable.

.P. takes effect only when it is used as .clk of a flip-flop. If it
is not used as .clk, it is translated to ‘0’, and the simulator
does not care where the .P. appears; it is only concerned whether
the .P. appears, which means the simulator assumes that you
used the .P. correctly.

.R. Specifies random test vector values in test vector blocks.
Translates to 0 or 1 randomly.

Note: All the special constants, except .R., cannot be used together with the
CYCLE or WAIT keyword.

Using .P. to Pre-load Values in the State Machine
.P. is a special constant used to pre-load values to registers. The main function
of .P. in the test stimulus is to preload some invalid values to test the function
of a design, especially for some invalid state of the state machine.

Note: .P. cannot be used together with the CYCLE or WAIT keyword.

The following example shows the usage of .P.:

MODULE preload;

TITLE 'Using Special Constant .P. to show state transition'

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 98

"Inputs

clk pin;

reset pin;

"Outputs

[q0..q2] pin istype 'reg';

"State Register

sreg = [q2..q0];

"State

A = [0, 0, 0];

B = [0, 0, 1];

C = [0, 1, 0];

D = [0, 1, 1];

E = [1, 0, 0];

"Illegal states

F = [1, 0, 1];

G = [1, 1, 0];

H = [1, 1, 1];

Equations

sreg.clk = clk;

sreg.re = reset;

State_diagram sreg;

State A: goto B;

State B: goto C;

State C: goto D;

State D: goto E;

State E: goto A;

"Illegal state

State F: goto A;

State G: goto A;

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 99

State H: goto A;

"Nomal

Test_vectors ([reset, clk] -> sreg);

[1, 0] -> 0;

@repeat 8 {

[0, .c.]-> .x.;};

"Preload to test invalid state

Test_vectors([reset, clk, [sreg]] -> sreg)

[1, 0, [.x.]] -> 0;

[0, .P., [F]] -> F;

[0, 0, [.x.]] -> .x.;

[0, .c., [.x.]] -> A;

[0, .P., [G]] -> G;

[0, 0, [.x.]] -> .x.;

[0, .c., [.x.]] -> A;

[0, .P., [H]] -> H;

[0, 0, [.x.]] -> .x.;

[0, .c., [.x.]] -> A;

End;

Viewing Simulation Results
The Waveform Viewer is the primary tool for viewing simulation results. The
Viewer graphically depicts the activity on any node in the simulation database.
The Viewer is automatically updated as simulation progresses. Several tools are
provided to analyze the results.

The Waveform Viewer also works in conjunction with the Hierarchy Navigator
to display simulation results directly on the schematic. This feature is called
"cross probing."

Cross Probing
Cross probing lets you view simulation results on schematics and lets you add
waveforms to the Waveform Viewer from a schematic. Crossing probing makes
it easier to correlate simulation results with the sources in the design.

Note: Functional simulation reduces your ability to cross probe. Cross probing
relies on direct correspondence between the node names in sources and those

Design Simulation Lattice Logic Simulator

ispLEVER 1.0 Concepts 100

in the simulation database. Synthesis and optimization often eliminate signals,
change names, and remove pieces of logic. These changes interfere with the
resolution of name references. You can still cross-probe device I/O pins, since
these are never removed. This is not the case with many internal nodes. You
have to browse the simulation database directly within the Waveform Viewer to
select internal nodes.

Simulation Mode
The simulation mode determines how the simulator handles delays in the
simulation netlists. The option modes are Inertial and Transport.

Showing Logic Values on Schematics
The following table lists the states displayed on the schematic and the logic
values in Lattice Logic Simulator they correspond to:

Schematic Value Logic Value Strength Value
 0 0 supply0, strong0, pull0, weak0

 1 1 supply1, strong1, pull1, weak1

 Z Z all strengths

 X X all strengths

Using Query to Navigate
The Query command in the Hierarchy Navigator is another useful debugging
tool. The Query command lets you interrogate the Navigator’s online
connectivity database by clicking items in the schematic. Highlighting an item
in the Viewer displays the associated schematic and positions the cursor over
that item.

For example, querying a net generates a list of all the instances and pins in the
hierarchy that connect to that net. Selecting an instance from the list displays
the schematic with that instance. With the instance highlighted, you can trace a
signal throughout the entire design by selecting items from the list.

ispLEVER 1.0 Concepts 101

Design Implementation

Synthesizing and Compiling
The ispLEVER software accepts several design entry formats. With the
exception of EDIF, all designs must be either synthesized or compiled before
going to the Fitter.

For Verilog and VHDL designs, the ispLEVER software provides two
synthesis tools that are integrated into the Project Navigator environment:
Synplicity Synplify and Exemplar LeonardoSpectrum. You can synthesize your
Verilog or VHDL design as a standalone process by choosing the synthesis tool
from the Lattice Semiconductor program group in your Start menu, or you can
synthesize automatically and seamlessly within the Project Navigator.

For ABEL-HDL and Schematic designs, the compilation process is an
integrated part of the ispLEVER process flow. When you compile a design, you
are changing your design entry format into Boolean equations, which serve as
input to simulation and device implementation programs. In general, compiling
a design involves running every process after design entry. These processes
include compiling and optimizing steps that can be performed on a single
source or on the entire design.

Keeping Track of Processes
The Project Navigator automatically keeps track of your design's processes for
you. For example, it knows which processes should be run for a targeted
device, a selected source, or for the entire design. Also, you can choose to run
any process step and the Project Navigator will run all other processes required
to complete that selected step, but not run further, unnecessary steps.

The Project Navigator lists all processes for a selected source in the Processes
window. Device-related processes, such as fitting the design, are shown in the
Processes window after you select a target device, and highlight it in the
Sources window.

Understanding the Compilation Process
The Project Navigator processes each logic module, schematic file, or EDIF
netlist to obtain an intermediate file that can later be linked together before
fitting the design into a Lattice device.

There are more processes required to compile a logic source than a schematic
source, primarily because logic designs are language-based and are stored in
ASCII format. This means that the ispLEVER software must check the
language syntax and process equation statements that are within the logic file.

Design Implementation Synthesizing and Compiling

ispLEVER 1.0 Concepts 102

The processing steps required to compile a design are listed below in the order
in which they run:

• Compile (for logic, schematic, EDIF, or test vector files)

• Check Syntax (for logic files)

• Compiler Listing (for logic files)

• Compiled Equations (for logic, schematic, and EDIF files)

• Signal Cross Reference (for EDIF files)

Compile (Logic or Schematic)
This comprehensive process compiles a logic module, a schematic design file,
or an EDIF netlist. Design compilation steps differ between source types, as
described below:

Compile Logic (for logic sources)
• Checks for and flags syntax errors

• Converts state diagrams and truth tables into equations

• Expands macros

• Converts equations with sets to equations without sets

• Replaces all operators with equivalent operations using only NOTs, ANDs,
ORs and XORs

• ORs together equations that cause multiple assignments to the same
identifier

• Performs simple logic reduction

• Translates the equations into the OPEN-ABEL-2.0 file format

Compile Schematic (for schematic sources)
• Compiles the schematic to produce a BLIF format file, including any

attributes or properties specified. Schematics compiled this way should use
only the Device-Independent symbol library.

Note: You should run design rule checking (Schematic Editor: DRC >
Consistency Check) before compiling the schematic.

Compile EDIF (EDIF)
• Compiles the EDIF file to produce a BLIF format file, including any

attributes or properties specified.

Check Syntax
Checks the syntax of a logic module. No compilation is run. If there are syntax
errors, the errors can be viewed in the Process Log File. If you want to see the
errors in a compiler listing report format, use the Compiler Listing process.

Design Implementation Synthesizing and Compiling

ispLEVER 1.0 Concepts 103

Compiler Listing
The Compiler Listing process gives a record of the compilation of your source
file. The report shows your logic file by line numbers, with errors and warnings
below the line on which they occurred.

Compiled Equations
This process shows the Boolean equations produced by the compiler. The
equations are shown in sum-of-products form. Positive and reverse polarity
equations are displayed, along with product term and fan-in/fan-out summaries
for each signal.

Signal Cross-Reference (EDIF)
This option displays a cross-reference of the old names to the new names
(converting long and hierarchical to mangled names). Names that are more
than 32 characters long or that contain one or more of the characters '/', '>', or
'@' will not be displayed properly.

Process Options
For many processes, there are processing options that you can specify. These
options include compiler options, such as custom arguments or processing
changes, and optimization options, such as node collapsing.

You use properties to specify these options. The properties available at any
given time depend on the selected source file, the selected process, and the
targeted device.

Viewing and Setting Process Option Properties
You can view current properties or set new properties for a process.

Compiling Source Files
The Project Navigator Auto-Update feature reprocesses sources when they are
needed to perform the process you request.

However, you can compile individual source files by selecting the file in the
Sources window, and then double-clicking Compile Logic in the Processes
window. Alternatively, you can double-click a report in the Processes window,
and the software will compile the source automatically.

Design Implementation Optimizing a Design

ispLEVER 1.0 Concepts 104

Optimizing a Design
The default options in the ispLEVER software are set up to achieve the highest
possible performance in the smallest possible device, for most designs. You can
choose to maximize design flexibility by spreading out logic or exercise tighter
control over the fitting process to achieve your design goals.

Each clock signal is evaluated and classified as a global clock or a non-global
clock. The Fitter attempts to place all global clock signals at global clock pins
(check the log file for the status of all clock signals after optimization). The
Fitter assigns all other clock signals to I/O pins and implements them as
Product Term clocks, if the architecture supports Product Term clocks. Input
pins and nodes that are defined but not referenced (not used by another
equation) are discarded from the design during optimization (warning messages
are generated).

Design Resources Check
Information about the internal architecture of the specified device is loaded and
resource checks are performed on the design. Errors are reported if the design
exceeds the device's product term, macrocell, pin, clock, set, reset, or output
enable control resources.

Logic Synthesis Options
Logic Synthesis options allow you to control how logic functions are optimized
before partitioning takes place.

Boolean Logic Reduction
This option removes redundant product terms from each equation. Unless your
equations have redundant logic to prevent problems (for example, in
combinatorial functions), you should always leave this option selected.

D/T Synthesis
This option lets the optimizer automatically choose between a D-Type or T-
Type register, thereby reducing the product term requirements. In some cases,
the speed of the design may improve if only D-Type registers are used in an M4
device. This option should be selected for most designs.

Input Register Optimization
This option allows the Fitter to automatically place single-variable registered
functions in input pad registers. This option should be selected for M4 devices
unless you are trying to prevent the use of input registers.

XOR Synthesis
This option enables or disables exclusive OR synthesis. When this option is
selected, the optimizer synthesizes XOR equations, if this can be achieved in
the design. When this option is cleared, the sum-of-product equations will be
generated. This option is device-dependent. Default state = Enabled.

Design Implementation Optimizing a Design

ispLEVER 1.0 Concepts 105

Node Collapsing
This option allows the optimizer to collapse intermediate combinatorial nodes
into registers and output pins, thus speeding up the design. Unless you have
handcrafted each equation in your design, you should leave this option selected.
This option should always be selected for designs that have been synthesized or
described in low-level combinatorial gates.

Speed
This option collapses all nodes up to the set Product Term limit, globally
optimized, without regard for the path.

Area
This option collapses all nodes up to the set Product Term limit, without
increasing area cost.

Fmax
This option causes the Logic Optimizer to automatically identify all critical
paths between any pair of registers, from clock-pin of one register to data-pin of
the other register (or the same register). The Logic Optimizer then attempts to
collapse/combine the logic nodes along the critical paths, reduce the logic level,
and allow the chip to run at a higher frequency.

Collapsing Max. Product Term
This option lets you control the Fitter optimization process by setting a
maximum limit on the number of Product Terms (PT) in each equation. In other
words, the Optimizer shapes the equations relative to the set number of PT. For
example, if the value is set to 35, the Optimizer stops collapsing equations
when it exceeds 35 PT.

This option works the opposite of Splitting Max. Product Term.

Collapsing Max. Input
This option lets you control the Fitter optimization process by setting a
maximum limit on the number of inputs in each equation. For example, if the
value is set to 32, the Optimizer stops collapsing inputs when it exceeds 32
inputs.

Splitting Max. Product Term
This option lets you control the Fitter optimization process by setting a
maximum limit on the number of Product Terms (PT) in each equation. In other
words, the Optimizer shapes the equations relative to the set number of PT. For
example, if the value is set to 35, the Optimizer splits equations if it has more
than 35 PT.

This option works the opposite of Collapsing Max. Product Term.

Example
An M4-32 design consists of six equations having 12 product terms each, and
one equation having 21 product terms. (An M4-32 macrocell can implement up
to 20 product terms without equation splitting.) The Fitter can implement each

Design Implementation Optimizing a Design

ispLEVER 1.0 Concepts 106

of the six smaller equations as single-macrocell equations, but the one larger
equation must be implemented using two macrocells. In its default mode, the
optimizer will split the 21-product term equation into one equation of 20
product terms and one equation of 2 product terms (the extra product term is
required to accept feedback from the second macrocell).

Reducing the equation-splitting threshold to 12 will result in less of an
imbalance in the number of product terms placed at each macrocell. Each of the
original 12 product term equations remains at a single macrocell, while the 21
product term equations is split into two macrocells: one with 12 product terms
and one with 10 product terms. Thus, none of the equations are using the
maximum capacity of its macrocell, which improves the odds of fitting the
design and makes it easier to add logic to the design later.

Note: Do not reduce the equation splitting threshold if doing so will cause many
equations to be split. If, for instance, the preceding example’s six smaller
equations had contained 15 product terms each, setting the gate-splitting
threshold to 12 would have caused all seven equations to be split, resulting in
16 under-utilized macrocells.

Example
Consider the following:

• A synchronous registered equation with 22 product terms

• Splitting Max. Product Term field set to 20

The equation will be split into two equations, one with 20 product terms and
one with 3 product terms. It will take two passes through the array to
implement the new equations.

Setting Logic Synthesis Options
You can set logic synthesis options using the Logic Synthesis tab on the Global
Constraints dialog box.

Utilization Options
Utilization options let you specify the percentage of device resources available
during each fitter run. You can choose to reduce the device resources available
during the initial fitter run, back annotate the pins, and then increase the
available device resources when making design changes.

Reducing available device resources during the fitter run may increase the fitter
runtime. For example, when the maximum number of block inputs is set too
low (<60%). This condition may cause the Fitter to take a long time grouping
(i.e. partitioning) logic equations into blocks because the blocks have fewer
available resources.

Logic Grouping
You can use logic grouping to exercise manual control over the partitioner.
Logic grouping lets you manually pack selected portions of your design into the
same block while setting up the global optimization options to spread out the
rest of the logic.

Design Implementation Optimizing a Design

ispLEVER 1.0 Concepts 107

Logic grouping can also be used to group selected inputs, outputs, and buried
logic functions into the same block or segment to achieve performance goals.

In cases where the partitioner is unable to find a solution, manually grouping a
small portion of the design may aid in the fitting process.

If you do attempt manual grouping, try to place logic with common inputs and
feedback in the same block. This minimizes the number of signals crossing
between blocks, which results in a lower demand for interconnection resources
and an increased likelihood of a successful fit.

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 108

Fitting a Design
The ispLEVER software has a single user interface with all options preset to
deliver the highest possible push-button performance. At the end of a successful
fitter run, the ispLEVER software generates a JEDEC file, as well as a fitter
report, so that you can see how the ispLEVER software has routed the design
and utilized resources on the part.

Assigning Pin and Node Locations
The ispLEVER software lets you pre-assign pin and node locations. You can
use the Location Assignment dialog box in the Constraint Editor to assign input
and output pins and buried nodes. The Macrocell, Block, and Segment list
boxes are context sensitive to the selected device; only applicable features are
available.

You can also use the drag and drop feature in the Package View of the
Constraint Editor to assign input, output and bidirectional pins.

Pin and Node Pre-Assignment
Pre-assigning pins lets you lay out your board at the same time as you are doing
logic design, thus shortening the design cycle. Pre-assigning nodes is usually
not required and is not recommended.

Pin Assignment Guidelines
If you want to pre-place signals (not recommended unless pinout configuration
is important), follow these guidelines:

• Do not place large equations to macrocells or pins at the beginning or end
of a block.

• Signals that share many common inputs should generally be grouped in the
same block (the Partitioner does this automatically). Signals that do not
share many common inputs should generally be distributed across several
blocks to avoid overburdening the switch matrix for a single block.

Large Functions at the End of a Block
The macrocells at the end of a block have access to fewer product terms than
other macrocells.

• Cell number 0, the first cell in all devices, can access the product term
clusters from adjacent, higher-numbered cells, but it cannot access any
lower-numbered cells (cell 0 being the lowest-numbered cell in the block).

• The last cell in a block can access the product term cluster from the
adjacent lower-numbered cell, but it cannot access any higher-numbered
cells.

If signals have not been assigned to macrocells, the Fitter will find a macrocell
replacement for all the signals that satisfy their product term requirements.

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 109

Adjacent Macrocell Use
In MACH devices, adjacent macrocells can share clusters. Therefore, with
designs having equations that use a high number of product terms, it is a good
idea not to place them in adjacent macrocells.

Modifying Assignments
You may want to modify current pin or group assignments.

Deleting Assignments
You can delete project assignments via the Constraint Editor. To do this, select
the entire row whose existing assignment(s) you want to delete. From the Edit
menu, select Delete Row(s). You may also right-click and select Delete
Row(s). In cases where you no longer want any of the current assignments, you
can delete all of them at the same time.

Ignoring Assignments
There may be times when you want to ignore, but not delete, the current
assignments. For example, after you complete a design, you may want to try
fitting it into a different device. In this case, the current pin assignments may
not be valid for the new device. The ispLEVER software lets you ignore current
constraints for the next Fitter run.

Power Control
Using the ispLEVER software, you can control power settings for your device.
By default, the device is always set to high power, high speed. However, you
can set the device or blocks of the device to low power mode. This setting
results in slightly decreased speed, but increased power savings. This is useful
for handheld and battery-operated devices.

Slew Rate Control
For the majority of Lattice devices, you can set the slew rate to either Slow or
Fast. By default, the slew rate is set to Fast. However, changing it to Slow can
result in less board noise.

Partitioning
After optimization, the design is partitioned into individual blocks on the
specified device. Partitioning is achieved by assigning logic to specific blocks,
based on the following considerations:

• Individual signal pre-placements and Grouping assignments

• A block's available internal resources (free macrocells, product terms, clock
signals, and so forth)

• The switch-matrix interconnect resources available to the block

The Partitioner considers commonality of signals, macrocell requirements,
Set/Reset requirements, product-term requirements, and other factors to
determine which partition is most likely to succeed in fitting the design. Only

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 110

partitions that are likely to succeed (according to the Partitioner's rules) are
attempted.

Balanced Partitioning
Controlling how the Partitioner works can be very important. There is one
important strategy for partitioning and that is called Balanced Partitioning. By
selecting the Balanced Partitioning option in the Global Constraints dialog box,
you are telling the Partitioner to spread all of the signals among all the blocks in
the device, rather than trying to fill a few blocks to their maximum potential.

There are advantages to either side of the strategy. If you turn balanced
partitioning on, you can save room in the device for any future functionality
you might want to add to existing logic. However, turning balanced partitioning
off lets you "pack" as much logic into the minimum number of blocks in the
device as possible, leaving some free blocks for future design enhancements.

Fitting (Place and Route)
Placement is the assignment of physical block resources such as I/O pins,
XORs, registers, and product-term clusters to logic equations. Routing is the
assignment of switch-matrix interconnect resources to logic equations, after the
logic equations are placed.

Placement
In the placement phase of the fitting process, individual equations are assigned
to physical resources, as follows:

• Logic equations that have been pre-assigned to pins are assigned first.

• Buried logic functions are placed in the remaining unused macrocells.

• Inputs are assigned to any available pin. These pins can be dedicated inputs
pins, clock/input pins, or I/O pins that correspond to macrocells that are
either unused or used to implement buried logic functions.

• Outputs can be assigned to any unused I/O pin.

Spread Placement
Controlling how the Placer works is also important. When you select the
Spread Placement option, you are telling the Placer to spread the signals in the
block as far out as possible.

Routing
In the routing phase, the Fitter attempts to route input, output, and feedback
signals to and from the physical resources assigned in the placement phase. If
the Fitter fails to route all signals, it tries another placement. The Fitter
continues trying different placements, and different routing attempts within
each placement, until a successful fit is found or the time allotted for fitting is
exceeded.

Fitter Options
The Global Constraints dialog box lets you set options for the Fitter. Using the
Global Constraints dialog box, you can tell the Fitter to pack as much logic into

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 111

the device as possible, spread the logic across the entire device, or use other
advanced options such as specifying device utilization. The following sections
describe these options.

Pack Design
The Pack Design option lets you pack as much logic into the device as possible.
This option allows you to achieve the highest possible performance in the
smallest possible device, for most designs. Each block may be completely
filled, leaving less room for any design changes or logic additions.

Spread Design
The Spread Design option spreads all of the logic across the entire device rather
than trying to fill each block to its maximum potential. This option allows you
to achieve the highest possible performance, while leaving room for any
additional functionality that you may want to add in the future. The fitter leaves
room to accommodate design changes to existing logic. Because each block
may be incompletely filled, the design may or may not require a larger device
to achieve a successful fit.

Advanced Options
The advanced options let you individually control the partitioning and
placement algorithms.

Balance Partitioning
The Balance Partitioning advanced option partitions the design evenly among
all the blocks in the device, so each block should have the same amount of
resources used. When this option is cleared, the software partitions the design
block-by-block, filling up one block at a time. This means that some blocks
may be filled up completely, while others may be unused.

Spread Placement
The Spread Placement advanced option places the signals evenly, or spreads
them out, among macrocells in the block. Spreading out the placement lets you
make minor changes to the existing output and node signals in the block. When
this option is cleared, the software assigns design signals to the first available
macrocell, making it easier to add new outputs or nodes to a block.

Fitter Effort
The Fitter Effort option is used to instruct the Fitter how much effort to apply to
a fit. The Low option enables a faster fitting process, but will be more likely to
result in failures to fit when the utilization gets higher. The High option
provides the most exhaustive search of the solution space, but takes more time.

Fitter Report Formats
Two Fitter Report formats are available in the ispLEVER software, text and
HTML.

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 112

• If you select the Fitter Report process associated with the target device, the
Fitter Report is opened in the Output Panel of the Project Navigator or in
the Report Viewer.

Note: By default, the ispLEVER software opens Fitter Report in the Output
Panel of the Project Navigator. If you want it opened in the Report Viewer,
select Using Report Viewer in the Log tab of the Environment Options
dialog box (Project Navigator: Options > Environment).

• If you select the HTML Fitter Report process associated with the target
device, the Fitter Report is opened with your local Internet Browser.

Formatting the Fitter Report
You can select various options that determine the information in the Fitter
report using the Fitter Report Options dialog box.

The Fitter Report
The Fitter Report displays statistics and information on the fitting process of
your design, including utilization numbers, pin assignments, etc. The Fitter
Report is also written into HTML format to allow user to browse through the
report easily.

The Fitter Report is divided into several sections, each briefly described below.

Project Summary
As the name implies, this section summarizes the design. It reports the name
and location of the project, and the date it was fitted. This section also reports
the targeted device and package, as well as the design source format.

Compilation Times
This section tells you how long it took the Fitter to fit the design in the
specified device. The name for each process step is listed, as well as the total
elapsed time. Prefit Time consists mainly of run-times of the design
compilation and optimization phases. Total Fit Time is the total run-time of the
design compilation, optimization, partition, placement and routing phases.

Design Summary
This section reports statistical information about the design, such as the number
of Inputs, Outputs, Bidir Signals, Flip-flops, Registered Functions, Product
Terms and Reserved Pins. It also points out the number of unique control
signals in the design.

Device Resource Summary
This section lists all of the resources available within the device and how much
of each resource has been used by the design. It also reports how much of each
resource is still available.

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 113

GLB Resource Summary
This section lists various GLB (and segment) level resource counts, such as
fanin (or array inputs), I/O pins, input registers, macrocells, logic product terms
and product term clusters.

GLB Control Summary
This section lists the totals for all control signals, and how much of each is
utilized by individual GLBs.

Optimizer and Fitter Options
This section displays all of the settings that were used to fit and optimize the
design. These include things such as Ignoring Constraints to the type of flip-
flop synthesis you have chosen. The information in this section is set with the
Constraints Options dialog box.

Pinout Listing
This section lists the I/Os and control signals on the device, and how they are
assigned.

 (Input, Output, Bidir, Buried) Signal List
This section reports information on individual I/Os, such as I/O type, location
assignment, the fan-out, and other signal attributes.

Signals Fan-out List
This section lists signal resources and the functions they fan-out to.

GLB (GLB name) Cluster Steering Tables
This section shows information about how functions and inputs are placed in a
GLB. It shows how product terms are steered to a macrocell on which a
function has been placed. It also contains information about what type of
control signal has been used.

GLB (GLB name) Logic Array Fanin
This section shows how design signals are mapped to individual GLB block
inputs.

Product Term Histogram
This section lists and sorts the equations according to the number of product
terms they use (in the logic only).

GLB Input Histogram
This section lists and sorts the equations according to their number of inputs,
which includes the logic and the ctrl signals, but not the global signals
(dedicated routing).

Post-Fit Equations
This section reports the equations in your design, after fitting. It begins with a
product term histogram and a GLB input histogram.

Design Implementation Fitting a Design

ispLEVER 1.0 Concepts 114

Backannotating Assignments
You can backannotate assignments from the Fitter output using the
Backannotation tab on the Constraints Options dialog box. This feature lets you
retain the assignments made by the Fitter so that they can be used in a future
fitting process.

You can only backannotate project assignments after the "Fit Design" process
has been successfully completed. An error message appears if the ispLEVER
software detects that this process did not complete successfully.

Design Implementation Constraint Editor

ispLEVER 1.0 Concepts 115

The Constraint Editor
The Constraint Editor lets you specify pin and node assignments, group
assignments, pin reservations, power level settings, and output slew-rates. It
reads the constraint file and displays the constraint settings. Modifications to
the constraint file are made via the function dialog boxes. Most of the attributes
can be modified directly in the sheet.

Pin assignments can be set in the Package View with drag-and-drop
functionality.

The Constraint Editor implements simple error checking to ensure that the user
assignments or constraints are applicable to the selected device and that there
are no conflicting assignments. If the user constraints do not apply to the
selected device, or are conflicting with the selected device, the Constraint
Editor displays these constraints in red. For instance, if the user changes the
device type after specifying some pin assignments, the Constraint Editor will
display the non-applicable pin assignments in red. The user can delete these
constraints in the function dialog boxes or via Tools > Clear Constraints
command in the Project Navigator.

Note that the design signal labels are only listed exclusively in the Location and
Group Assignment dialog boxes. For instance, if Signal "ld_new_alrm_time" is
assigned to a pin via the Location Assignment dialog box, then this signal will
not be listed in the Group Assignment dialog box, and vice versa. This feature
prevents conflicting assignments from being implemented.

Assigning Pins and Nodes
Pre-assigning pins and/or nodes allows designs to be fit with resources assigned
to the same physical locations. You can add pre-assignments of pins and nodes
to your design source files or make pin/node assignments in the Constraint
Editor.

Assigning Signals to Groups
It is sometimes advantageous to group signals that have a logic association into
the same logic block, such as segment and GLB. Grouping allows the Fitter to
control where the signals are placed inside the logic block. Group assignments
can be made in your design source files. You can also group signals using the
Constraint Editor.

Design Implementation Constraint Editor

ispLEVER 1.0 Concepts 116

Node Preserving
When a design is processed in the ispLEVER software, the Pre-fitters will
perform optimization on each of the sources, as well as the linked design, to try
to minimize the logic needed. Logic can be manually partitioned in order to
achieve speed and/or area requirements. There are a few methods that ensure
that nodes are not removed or collapsed into others when the Optimizers are
run. We call these methods Node Preserving. Node preserving has the opposite
effects of Node Collapsing.

Resource Reservations
Sometimes it is necessary to reserve pins, GLBs or segments for future use. The
ispLEVER software allows the reservation of logic resources in the devices.
This feature ensures that the Optimizers do not use those reserved resources and
that the Fitter does not use it when fitting the rest of the resources. You can
define resource reservations in your design source files to reserve pins, GLBs
or segments. The Constraint Editor also provides a feature for you to do
resource reservation in its Resource Reservation dialog box.

Slew Rate
For the majority of Lattice devices, you can set the slew rate to either Slow or
Fast. One advantage to changing slew rate to Slow is a reduction in board noise.

You can specify the slew rate of output and bidirectional pins in your design
source files. Slew rate can also be set in the IO Types Setting dialog box of the
Constraint Editor.

PULL
The I/O pins of the Lattice devices include internal circuitry to allow pin
functions. These functions include pull-up resistors, pull-down resistors, and
Bus-Friendly™ configurations. Using the "PULL" attribute can access these
features. You can set the PULL attribute either in your design source files or in
the IO Types Setting dialog box of the Constraint Editor.

Open Drain
The output and bi-directional pins of some Lattice devices can be set to an
"Open Drain" configuration. As with most opendrain configurations, the pin
drives low when it is logic 0 and is high-impedance when it is logic 1. You can
assign opendrain configuration to pins in your design source files.

I/O Type
Some of the Lattice devices include the I/O Type feature. This feature allows
the I/O pins to be configured to different I/O standards. You can specify I/O
Types either in your design source files or in the Constraint Editor.

PLL
Some of the Lattice devices contain PLL circuits. You can instantiate PLL in
your design source files to access PLL functions. You can also use the
Constraint Editor to set PLL attributes.

Design Implementation Constraint Editor

ispLEVER 1.0 Concepts 117

HSI
Some of the Lattice devices contain HSI circuits. You can instantiate HSI
modules in your design source files to access HSI functions. You can also use
the Constraint Editor to set HSI attributes.

Design Implementation ispEXPLORER

 ispLEVER 1.0 Concepts 118

The ispEXPLORER
The ispEXPLORER lets you run multiple passes of your design using different
combinations of Fitter/Optimizer settings and critical timing constraints to
achieve the best solution. Results are summarized in a single spreadsheet and
detailed reports for each run are accessible.

Overview of the ispEXPLORER
The ispEXPLORER software helps you select the best constraint settings for
your design by letting you run the design repeatedly with varied settings and
compare the results. The software gives you a single spreadsheet summary of
results and settings after completion, making it easy to compare one group of
settings with another.

The ispEXPLORER supports ispMACH 4000B/C, ispMACH 5000VG, and
ispMACH 5000VE devices only.

Use predefined or customized settings.
You can create a single run or multiple runs using different combinations of
settings. When you accept the settings for the predefined files, which is the
initial default setting, the software automatically creates a run for each of the
.lci files using the predetermined settings. When you use customized settings,
you can change each of the values. You can also select multiple values for each
setting and have the software keep running the design until it has exhausted all
possible combinations among the selected values or until it has reached a
specified run stop threshold.

Create multiple versions of design runs.
You can create multiple versions with different runs. Each time you click the
Start button, you have the choice of creating a new version or overwriting an
existing version. When you create a new version, the software creates a new
version directory inside your project folder and copies the design files into this
directory. It generates new constraint files based on the current project
constraint file, plus the new settings you select, and runs the design using these
settings. The results and settings for each run are then saved in subdirectories of
the new version directory.

Design Implementation ispEXPLORER

ispLEVER 1.0 Concepts 119

Save the best constraints for your project.
After experimenting with different settings to determine which constraint
settings are best for your design, you can save the constraints by using the Save
Setting pop-up command for a specific run. When you save these constraints in
ispEXPLORER, the software updates your project, replacing only the
constraints that you have changed; it does not replace the .lci files.

Design Implementation Report Viewer

ispLEVER 1.0 Concepts 120

The Report Viewer
You can use the Report Viewer to view, but not edit, the various report files
generated by the ispLEVER software. These reports include:

• Pre-fit equations

• Signal cross reference

• Fitter

• Timing simulation files

• Compiler listing

• Compiled equations

ispLEVER 1.0 Concepts 121

Design Verification

The Waveform Viewer
The Waveform Viewer displays the results of logic simulation. The nets whose
waveforms are to be displayed can be interactively chosen from the schematic.
Query functions can be used to trace signals to their source on the schematic.
Trigger functions can be used to locate the occurrence of a specific logic event.
Delays between events can be measured with markers.

Opening the Waveform Viewer
The Waveform Viewer is typically used in conjunction with a simulator. You
must run the simulator before you can run the Waveform Viewer; without
simulation information, the Waveform Viewer has no data to display. Therefore,
you "open" the Waveform Viewer by running the simulation.

Saving and Printing Waveforms
After completing a waveform analysis, you can save the Waveform Viewer
configuration using the Save command. The information saved consists of:

• Waveform names displayed

• Trigger conditions

Printing Waveforms
You can print the waveform display.

Waveform Viewer Configuration
The Waveform Viewer has several configuration variables. These variables are
modified using the commands on the Options menu.

Design Verification Waveform Viewer

ispLEVER 1.0 Concepts 122

Waveform Display
A waveform is a graphic representation of the state transitions for a single input
or output signal, or of a group of signals. Waveforms are displayed as traces
below a horizontal time line. The name of each signal is displayed on the left
side of the Waveform Viewer window. If a waveform represents a group of
signals, it is displayed as a bus with its values represented in binary, octal,
decimal, or hexadecimal. A group of waves may be displayed as a bus even
though it might not exist as a bus on the schematic.

The most fundamental operation in the Waveform Viewer is adding waveforms
to the display. Once waveforms are displayed, they can be moved, deleted,
copied, and converted to bus format using the procedures described in the
following sections.

Adding Waveforms
There are several ways to cause Waveforms to be displayed in the Waveform
Viewer. The standard method is to use the Probe Item command of the
Hierarchy Navigator and select the desired nets and busses. You can also add
waveforms when the Waveform Viewer starts, if it finds a configuration file
(.wav file) saved from a previous session. Waveforms may also be added
explicitly by using the Show command.

Finding the Signal You Want
In the Show Waveforms dialog box, the large list box at the left and the control
button above it simplify navigating the hierarchy to find the signals you want.
The list box initially displays the top level of the hierarchy. Clicking the Push
button displays the hierarchical level (if any) below the top level.

To move to a lower hierarchical level, highlight that level in the list box, and
then click the Push button. (If you are already at the lowest level, the button is
relabeled Pop, since you can only move upward in the hierarchy.) A display
line below the list box shows the full hierarchical path of the level you're
currently on.

All signals at a given level are shown in the right list box. To add a signal to the
display, click its name, and then click the Show button. (Or just double-click
the signal's name.) The signal is immediately added at the bottom of the
Waveform Viewer display.

The waveform display can contain up to 256 waveforms. Use the vertical scroll
bar to select the waveforms to view.

Using the Probe Item Command
If there is a schematic for the design, the Probe Item command is the easiest
way to add waveforms to the display. Click the desired net in the Hierarchy
Navigator, and the waveform for that net is added to the display. Buses from
the schematic can be probed, but the bus must be probed at the highest level at
which it exists in the hierarchy.

The Probe Item command is available only when the Waveform Viewer is used
with the Hierarchy Navigator.

Design Verification Waveform Viewer

ispLEVER 1.0 Concepts 123

Duplicating Waveforms
The Duplicate command copies waveforms. The Duplicate command is most
often used to add copies of global signals, such as clocks, to have a reference
signal near the event being examined. The original waveform remains in the
display.

Changing Waveform Locations
You can move a waveform from one display location to another using drag-
and-drop techniques.

Hiding Waveforms
The Hide command hides waveforms from the display without deleting them
from the data files.

Creating Bus Displays
You can create a bus display of two or more signals, whether or not they are
related.

Expanding Bus Displays
You can use the Expand Bus command to divide a bus into its constituent
components as reference signals only; you cannot edit these individual signals.

Changing the Bus Radix
The Waveform Viewer displays Bus values on the bus waveforms, and on the
prompt line if a bus is selected. You can change the bus radix using the Bus
Radix command.

Moving Around
Once the waveforms are displayed, there are several ways to manipulate the
waveform display area.

View Commands
The View commands change the horizontal time dimension. Different time
segments of the displayed waveforms can be viewed.

Zoom
In

Increases the horizontal magnification each time it's executed.
You see a shorter time segment in more detail. You can also
drag around any part of a waveform to view it in more detail.

Zoom
Out

Reduces the current magnification each time it's executed. You
see a longer time span with less detail.

Pan Slides the current viewing window across the waveforms. The
point you click becomes the new center point of the display.
The magnification does not change.

Full Fit Clicking inside the window fills the display with the full time
span of the displayed waveforms. Two options are then
available:

Design Verification Waveform Viewer

ispLEVER 1.0 Concepts 124

Click the location you want to see in more detail. This
returns the window to the previous magnification and pans
the view to the selected point.

Drag the mouse to form a box around the area you want to
zoom in on. The magnification is adjusted to display that
area.

Scroll Bars
The horizontal scroll bar under the waveform display positions the time scale.
The vertical scroll bar controls the position within the set of visible waveforms.

Moving the Query Cursor
Several commands from the Jump menu move the query cursor.

Tick Left,
Tick Right

Moves the cursor left and right by one small tick mark.
They are useful for slowly scanning a waveform, or for
accurately positioning the cursor at an event. The time
represented by one small tick mark changes as the scale
is changed with the View commands.

10 Left,
10 Right

Moves the query cursor to the left or right by one large
tick mark (equal to 10 small tick marks). The time,
represented by a large tick mark, changes as the scale is
changed with the View commands.

Time=0,
Time=End

Jumps to the beginning or end of the waveform.

To Marker Jumps to the current marker position.

To Time Lets the display centered on the time you specify.

Next Change Jumps to the next change in signal polarity.

Next Trigger Jumps to the next trigger point.

Marking Your Spot
The Place Marker command inserts a marker (a dashed, colored, vertical line)
when you click the Query cursor on a waveform. The marker is useful as a
reference point for measuring times between events. The time difference
between the time at the Query cursor and the time at the marker is displayed on
the prompt line.

Jumping to Events
Events are logic-level changes. A change in any signal in a bus is considered an
event on that bus. Timing measurements are usually made between events.

Several commands in the Waveform Viewer make it easier to find events and
align the cursor to events. These commands are especially helpful when the

Design Verification Waveform Viewer

ispLEVER 1.0 Concepts 125

display is zoomed out and the resolution is too low to accurately position the
cursor.

The Next Change command moves the query cursor to the next event on the
selected waveform. It's commonly used to measure the time difference from
one event to another.

Setting Signal and Bus Triggers
A trigger is an event that meets some specified criteria. The Set Trigger
command lets you apply one of several conditions to one or more waveforms.
A trigger event occurs when all the conditions on all the waveforms are met.
You can locate a highly specific event by applying these criteria to several
waveforms.

Trigger conditions on signals may be based either on the current state or on a
transition from one state to another. The condition may be that the signal is
High, Low or Unknown, or that the signal is at a Change in level, a Rising Edge
or a Falling Edge.

A trigger condition on a bus is based on the state of each signal in the bus. The
trigger condition for a bus has one character for each signal in the bus. The
character can be 0, 1, or X ("don't-care"). Any state matches an X.

You can mix signal and bus triggers. The Waveform Viewer displays all active
triggers in a list on the Trigger dialog box. When you set the triggers the way
you want them, close the Trigger dialog box.

The current state of the trigger conditions is normally displayed on the prompt
line. The trigger state is sometimes briefly overwritten by status messages from
commands.

Analysis Techniques
This section explains the waveform-analysis commands. You might find it
easier to use their accelerator keys than to select them from the menus.

Interaction with the Hierarchy Navigator
The Find Item command from the Hierarchy Navigator locates the part of the
circuit driving a particular waveform. The Hierarchy Navigator automatically
displays the appropriate schematic. The net associated with the waveform is
highlighted.

This command is useful when you find an interesting event in the waveform
display and want to locate the source of the event on the schematic. The Find
Item command works only with the Hierarchy Navigator.

The Query command highlights the net associated with the currently selected
waveform. If the query window in the Hierarchy Navigator is already open, its
contents change to reflect the latest net queried with the Query command in the
Waveform Viewer.

The Probe Item command adds waveforms to the Waveform Viewer display
when you probe a net in the schematic.

Design Verification Waveform Viewer

ispLEVER 1.0 Concepts 126

Displaying Simulation Values on a Schematic
The logic values determined during simulation are displayed on the schematic
loaded in the Hierarchy Navigator. As you click the query cursor at different
points along the time line, the logic values on the schematic change to those for
that simulation time. All logic values are displayed and updated, not just those
for waveforms in Waveform Viewer's display.

The logic values are displayed on the schematic in two ways

• A small colored square is attached to any probed symbol nodes on the
schematic. The color of the square indicates the logic value. (The default
value is yellow for high, blue for low.) These colored squares are useful
when the schematic is displayed at a low magnification and the text is too
small to be read.

• Inside the small colored square is the text representation of the logic value.
The text value is 0, 1, X (unknown), Z (high impedance) or the value of a
bus.

Viewing Reports
The View Report command reads error information from a file and displays the
errors interactively, one error to each line. Clicking a line moves the waveform
display to the corresponding error. If the View Report command is used with
the Hierarchy Navigator, the schematic is displayed and the pin driving the net
with the problem is highlighted.

Design Verification Waveform Editor

ispLEVER 1.0 Concepts 127

The Waveform Editor
The Waveform Editor lets you graphically create a test stimulus file by clicking
and dragging with the mouse. You see exactly what each waveform will look
like, as well as its timing relationship to all the other waveforms.

The Waveform Editor can be used as a standalone tool or interactively with the
Hierarchy Navigator.

Bus Pulses
Bus waveform pulses are shown as elongated hexagons. Bus pulses can have
any value that can be represented by the number of bits in the bus. For example,
any pulse in an eight-bit bus waveform can be assigned a value between 0 and
255.

Bus pulses are given default values, in sequential order: 0, 1, 2, 3, and so on.
You can change any of these values at any time. Click the bus pulse to which
you want to assign a new value, then type the new value in the Value edit box
of the Toolbox.

The format for bus value display and entry is set in the Display Options dialog
box invoked from the Options menu. If the number you entered is not displayed
correctly, be sure you are entering it in the currently selected Bus Radix format.

Patterns
You may find yourself drawing the same waveform over and over again. The
Waveform Editor allows you to name and define arbitrary waveforms, called
Patterns, which you can then add to or insert in any other waveform. When you
edit the Pattern waveform, all waveforms that use that Pattern change.

Patterns normally represent single-bit data. You can create a bus Pattern by
adding a bit range to the name, as shown below:

$buspat[7:0]

Bus Patterns cannot be added to single-bit waveforms, or vice versa. Also, the
number of bits in a bus Pattern must match the number of bits in the bus
waveform to which it is added.

Design Verification Waveform Editor

ispLEVER 1.0 Concepts 128

Hierarchical Patterns
Patterns can be defined hierarchically. That is, one Pattern can contain other
Patterns, which themselves include other Patterns, and so on. This feature
makes it possible to build complex Patterns from simpler "building block"
Patterns.

Note: Hierarchical Patterns cannot be defined recursively. In other words, you
cannot add a copy of a Pattern to itself.

Editing Patterns
You edit Patterns the same way as waveforms. When you change a Pattern, all
the waveforms containing it change.

You can edit either the Pattern itself, or an instance of that Pattern in another
waveform ("in-place" editing). If you edit the instance, the original Pattern is
also modified. All changes are shown immediately on the screen.

Note: You can do "in-place" editing, only if the waveform of the Pattern is
displayed (rather than a rectangle). The Pattern Waveforms checkbox in the
Display Options dialog box must be selected (or the Pattern Names checkbox
must be cleared).

Simulation Time
The Simulation Time is the total runtime for the simulation. The default value
is 1,000,000 times the Times Unit value. For example, if the Time Unit selected
is 0.01 ns, the default value in the Simulation Time edit box is 10,000.0 ns. You
can change the Simulation Time by clicking inside the edit box and typing the
value you want.

Note: A long Simulation Time combined with short Time Units may require an
excessive amount of computer time. Be sure you have selected values
appropriate for your design before you begin simulation.

Simulator Setup
The Waveform Editor uses the specifications in the [Export] section of the
simulator initialization file (simulator.ini) to define the exported
waveforms’ file format.

Stimulus File Format
The target simulator determines the stimulus file format. The simulator must be
specified in the .ini file so that the Waveform Editor knows which
simulator.ini file to read to obtain the correct conversion and formatting
instructions.

Saving Changes
The first time you use the File > Save command, the Waveform Editor creates
two files, project.wet and project.wdl. The .wet file contains the names of

Design Verification Waveform Editor

ispLEVER 1.0 Concepts 129

the nodes or signals you have created waveforms for. The .wdl file contains the
waveforms themselves, in WDL (waveform description language) format. You
can use the Save As command to save files under a different base name to
create multiple stimulus files for a single project.

Caution: You can perform an unlimited number of Undos and Redos until you
save the file. At that point, the files are updated and all Undo/Redo information
is lost. Do not save the file if there are still changes you want to Undo or Redo.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 130

The Performance Analyst
Analyst is a static timing analysis tool that lets you quickly determine the
performance of designs implemented in any Lattice Semiconductor device.

Worst-case signal delays are reported in a graphical spreadsheet format that you
can filter to verify the speed of critical paths and identify performance
bottlenecks.

How does it Work?
Static timing analysis is the process of verifying circuit timing by totaling the
propagation delays along paths between clocked or combinational elements in a
circuit. The analysis can determine and report timing data such as the critical
path, setup/hold time requirements, and the maximum frequency.

The Performance Analyst traces each logical path in the design and calculates
the path delays using the device’s timing model and worst-case AC specs
supplied in the device data sheet.

The timing analysis results are displayed in a graphical spreadsheet with source
signals displayed on the vertical axis and destination signals displayed on the
horizontal axis. The worst-case delay value is displayed in a spreadsheet cell if
there is at least one delay path between the source and destination. To more
easily identify performance bottlenecks, you can double-click a cell to view the
path delay details.

Analysis Types
The Performance Analyst performs six distinct analysis types: fMAX, tSU,
tPD, tCO, tOE, and tCOE. The first type, fMAX, is an internal register-to-
register delay analysis. fMAX measures the maximum clock operating
frequency, limited by worst-case register-to-register delay. The remaining five
types are external pin-to-pin delay analysis. Timing threshold filters, source and
destination filters, and path filters can be used to independently fine-tune each
analysis.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 131

fMAX

Maximum Clock Operating Frequency
The fMAX path trace analysis reports the worst-case fMAX (maximum clock
operating frequency) for each clock in the design. fMAX is equal to the
reciprocal of the worst case register-to-register delay.

The Performance Analyst reports all register-to-register delays in a spreadsheet
format with clock sources displayed. You can specify which clocks the
Performance Analyst reports in the spreadsheet and whether tracing is enabled
through all tracing paths. When there are no register paths in the design, the
Run button is disabled and the spreadsheet is empty.

The Performance Analyst does not attempt to report external fMAX, because it
cannot make assumptions about the arrival time of signals driving Lattice
CPLD device inputs and the tSU of devices driven by Lattice CPLD device
outputs. Therefore, it is up to you to determine the external fMAX based on the
operating requirements of the system.

Default fMAX Path Trace
The default fMAX path starts at the source register clock input and traces
through the clock-to-output path of the register, through any number of levels
of combinatorial logic (through internal feedback only), to the D, T, or CE
inputs of the destination register, including destination register setup time
(tSU).

The Performance Analyst assumes that the same clock signal and the same edge
of the clock signal clock the source and destination registers. However, delays
are calculated when the source and destination registers are clocked by two
clock signals or by different edge of the same clock signal. In the first case, the
delay obtained is actually the setup time of the destination register through the
clock-to-output path of the source register. In the second case, the actual fMAX
will be half of what is calculated by the tool.

tSU

Setup Time
The tSU path trace analysis reports setup and hold time for data and clock
enable signals with respect to a clock edge, or the register recovery time from
asynchronous S/R inputs. You can specify whether tracing is checked at the
register’s D/T, CE or S/R inputs.

Default tSU Path Trace
This data path starts at an input pin and then traces through any number of
levels of combinatorial logic to the D, T or CE inputs of a register. The internal
tSU of the register is added to the delay path. The value of the internal tSU is
dependent on the register being clocked by a global clock or product term
clock.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 132

Path Endpoints for tSU
tSU = (longest_data_path_delay) – (shortest_clock_path_delay) +
(internal_setup_time).

tHD = (longest_clock_path_delay) – (shortest_data_path_delay) +
(internal_hold_time).

For simplicity, in the Timing Analysis spreadsheet tHD will be shown as a "0"
if the calculation is negative, regardless of its value. However, the exact hold
time can be observed on the Expanded Delay Path window, which is opened by
double clicking in the spreadsheet cell.

Register D/T Inputs
Reports tSU / tHD at Register data-input (D/T).

Register CE Inputs
Reports tSU / tHD at Register Clock Enable (CE).

tPD

Propagation Delay Time
The tPD path trace analysis reports input pin to output pin delay of
combinatorial signals. You can specify whether reporting is enabled for paths
traced through asynchronous register inputs and transparent latches.

Default tPD Path Trace
This path starts at an input pin and traces through any number of levels of
combinatorial logic, through the data path of the output buffer, to the output
pin.

tCO

Clocked Output-to-Pin Time
The tCO path trace analysis reports clock-to-out delay starting from the primary
input, going through the clock of flip-flops or gate of latches, and ending at the
primary output. You can specify whether reporting is enabled for paths traced
through asynchronous register inputs, ripple clocks, or data-input of transparent
latch.

Default tCO Path Trace
This path starts at an input pin and traces through any number of levels of
combinatorial logic to the clock pin of a register. Tracing continues through the
clock-to-output path of the register and through any number of levels of
combinatorial logic, through the data path of the output buffer to the output pin.
Only a single register clock-to-output delay exists in this path.

When tracing input latch gate to output delays, the path starts at the pin, traces
through the gate-to-output path of the latch and through any number of levels of
combinatorial logic, through the data path of the output buffer to the output pin.
Only a single latch gate-to-output delay exists in this path.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 133

Paths are not reported if they trace through asynchronous register set/reset
inputs, ripple clocks, output enable paths, or transparent input latches.

tOE

Output Enable Path Delay
The tOE path trace analysis reports the input pin-to-output enable path delay
starting from the primary input, through the Enable of output buffers, ending at
the primary output. You can specify whether reporting is enabled for paths
passing through the asynchronous register inputs or data-input of transparent
latches.

Default tOE Path Trace
This path starts from the primary input pin and traces any number of levels of
combinatorial logic, through the Enable of output buffers, to the primary
output.

tCOE

Clock to Output Enable Time
This path trace analysis reports the input-clock-to-output-enable path delay
starting from the primary input, going through the clock of flip-flops or gate of
latches, going through the Enable of output buffer, and ending at the primary
output. You can specify whether reporting is enabled for paths traced through
asynchronous register inputs, ripple clocks, or data-input of transparent latch.

Default tCOE Path Tracing
This path starts from primary input pin and traces through the Register Clock,
through any number of levels of combinatorial logic, to the Enable of output
buffers.

Path Tracing Rules
The path tracing rules are designed to let you intuitively explore many aspects
of the design timing in an obvious fashion. Static timing analysis options let
you specify which rules the path tracing routines follow.

Tracing Enabled Through Bi-directional Paths
This path starts at the source register clock input, traces through the clock-to-
output path of the register, through any number of levels of combinatorial logic,
and through the data input of the output enable buffer to the output pin. Tracing
continues through the input pin and through any number of levels of
combinatorial logic to the D/T/CE input of the destination register, including
the destination register tSU.

Tracing Enabled Through Register Asynch S/R Inputs
When this path type is enabled, paths though register S/R inputs to their Q
outputs are treated as combinatorial logic.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 134

Tracing Enabled Through Transparent Latch D Inputs
When this path type is enabled, paths through data inputs of transparent
latches are reported.

Tracing Enabled Through Ripple Clocks
When this path type is enabled, tCO of registers clocked by ripple clocks are
reported.

Batch Timing

Running Timing Analysis in Batch Mode
There may be times when you want more precision and flexibility while running
timing analysis than is available with the Performance Analyst user interface.
For example, on the Options dialog you can select Bi-directional path tracing as
either "on" or "off." However, this selection applies to all Bi-directional I/Os in
design. There is no way to select an individual one or a partial set.

In addition to using the graphical user interface to run timing analysis, you can
run the Performance Analyst in "batch mode." This feature is called the Batch
Timer. The Batch Timer executes a user-predefined command file and puts the
result into a log file.

Batch Commands
There are four groups of commands supported in the Batch Timer:

• Set Operations

• Path Tracing

• Report

• Switch Control

Set Operations

SHOWSET PI | PO | CLOCK | GATED | LATCH | SR | OE
| CE | CLKIN | U_STOP | U_PASS|…

ADDSET setname added_set/pin

REMSET setname removed_set/pin

Set operation commands let you check pins located in the Timer set. These
include PI (primary input), PO (primary output), CLOCK (clock of FF/L),
GATED (D of FF/L), LATCH (D of Latch), SR (set/reset), OE (output-
enable), CE (clock-enable), CLKIN (global clock), U_STOP (user-defined-
stop for ignored false path), U_PASS (user-defined-pass for transparent latch),
and etc.

You can ignore any path passing through a particular point by putting it into
U_STOP. The command is ADDSET U_STOP macrocell_stopped.

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 135

Path Tracing

LONGEST set2set | pin2pin

SHORTESTset2set | pin2pin

Path tracing commands let you get paths between any two sets or any two
points. The path will be expanded and reported as each step in detail if it is
pin2pin mode. For example:

LONGEST p1 p0

LONGEST input_a reg_b.d

Report

REPORTSET [maxpath=n] [threshold=m] [excel=1|0]

REPORT file_name

Report commands let you specify the number of paths in each section that need
to report, can specify the delay threshold so that only paths longer than the
threshold needs to report and can specify the report in Excel-mode, i.e., tab’ is
inserted.

The Batch Timer can generate the Timing Report under the file name specified.

Switch Control

SWITCH passBI | passSR | passCLK |
passLatch 1|0

User can turns the switches ON (1) or OFF (0) to select the path-tracing enable
through Bi-directional, Set/Reset, Transparent Latch, or Ripple Clock trace
paths. For example:

SWITCH passCLK 1

Batch File Example
The following is an example of a batch timing analysis file. Comment lines
start with ‘//’. The file is not case sensitive. The example design is called
"alarmclk."

Batch Command File Example
// This is a sample batch command file for the
"alarmclk" design.

longest pi po

showset clock

longest clock sound_alrm

Design Verification Performance Analyst

ispLEVER 1.0 Concepts 136

switch passCLK 1

longest clock sound_alrm

report alarmclk.trp

ispLEVER 1.0 Concepts 137

Device Programming

The ispVM System
The ispVM™ System software (ispVM) supports both sequential and concurrent
(turbo) programming of all Lattice devices in a PC environment. The software
scans device chains automatically, and its built-in file manager lets you browse
for any required JEDEC, BSDL, ISC Data, or SVF files.

The ispVM software enables In-system Configuration (ISC) of non-Lattice
devices that are compliant with IEEE 1532, allowing you to program chains from
multiple vendors. The software also supports devices that are compliant with
IEEE 1149.1.

Non-Lattice devices can also be programmed through the vendor-supplied SVF
files.

Overview of ispVM System Software
The ispVM software processes designs through a combination of XCF and
BSDL structures. Most of Lattice’s devices use the IEEE 1149.1-1993
Boundary Scan Test Access Port (TAP) as the primary interface for in-system
programming. Additionally, the software programs non-Lattice designs that are
compliant with IEEE 1532 and supports those that are compliant with IEEE
1149.1.

Lattice Designs
Once a design has been compiled to a JEDEC file and device programming is
necessary, the fuse map data must be serially shifted into the device along with
the appropriate addresses and commands. Traditionally, programmable logic
devices have been programmed on PLD/PROM programmers, so the
programmer generates all the programming signals and algorithms. The
programmer also generates the external super voltage or high voltage required
by non-ISP devices (typically 12-14 volts). This super voltage requirement is

Device Programming ispVM System

ispLEVER 1.0 Concepts 138

one of the reasons dedicated programmers are used to program conventional
PLDs.

With In-System Programmable (ISP™) devices, the ISP programming super
voltage is generated within the device. Lattice ISP devices use nonvolatile
Electrically Erasable CMOS technology and require only TTL-level
programming signals. An integrated state machine controls the sequence of
programming operations, such as identifying the ISP device, shifting in the
appropriate data and commands, and controlling internal signals to program and
erase the Electrically Erasable cells in the device. Programming consists of
serially shifting the logic implementation stored in a JEDEC file into the device
along with appropriate addresses and commands, programming the data into the
Electrically Erasable CMOS logic elements, and shifting the data from the logic
array out for device programming verification.

Designs Compliant with IEEE 1532
The ispVM software provides programming support for in-system configurable
(ISC) non-Lattice devices that are compliant with the IEEE 1532 standard. This
allows you to program ISC devices from multiple vendors. It also allows you to
program them with your Automated Test Equipment (ATE), saving you a step in
the manufacturing flow.

The ispVM software includes a BSDL processing unit, which processes BSDL
files with the IEEE 1532 extension. The ISC compiler reads the BSDL file,
which contains your programming algorithm, and your ISC data file. It performs
both syntax and semantic checking and compiles the information into an
executable structure. If an ISC data file is not provided, then the software
compiles only the BSDL file.

Designs Compliant with IEEE 1149.1
Non-Lattice devices that are compliant with IEEE 1149.1 can be bypassed once
their instruction register length is defined in the chain description.
Programmable devices from other vendors can also be programmed through the
vendor-supplied SVF file.

Programming Basics
To successfully program devices in-system, there are a few simple requirements
that must first be met. The first of these requirements is that the devices on the
board must be correctly connected into an 1149.1 scan chain. This scan chain
can be used for either programming or testing the board. To program using the
ispVM™ System software, a description of the scan chain needs to be
developed. This description is called a chain file and contains basic information
about all of the devices in the chain. For the Lattice devices, this includes the
device type, the operation to be performed and the JEDEC file, if required by
the operation. Additional information in the chain file can include the state of
the I/O pins during programming along with security requirements. If non-
Lattice devices are present in the chain, the instruction register length is
required for these devices. The instruction register length can be found from the
BSDL file or the SVF file for the device.

Device Programming ispVM System

ispLEVER 1.0 Concepts 139

Another requirement for successful programming is thoughtful board design.
The signals used in a scan chain (TCK, TMS, TDI, and TDO) rarely operate as
fast as the data path signals on the board. However, correct board layout
methodologies such as buffering for large chains, termination resistors, etc. are
required to ensure trouble-free operation. Some Lattice devices have some
additional pins (TRST, ENABLE, ispEN, bscanEN, EPEN and TOE) that can
affect boundary scan programming and test if not taken care of properly. These
board layout methodologies are described later in this document.

After all of these requirements have been met, it should be relatively
straightforward to program any number of devices on a board. This
programming can be done using a PC, with either a Lattice ispDOWNLOAD
cable with the 8-pin AMP connector or the 10-Pin JEDEC connector attached
to the board, and a board test system.

JTAG Scan Chains
A scan chain can include any IEEE-1149.1 compliant, programmable or non-
programmable device or any IEEE 1532 programmable device. It can also
include any programmable devices that are compatible with IEEE-1149.1 but
do not have a boundary scan register. This is a decision that should be made
based on the test methodology being employed for the board. If the test
methodology employed is the traditional bed-of-nails approach used on board
test systems, all the devices can be included in the same chain.

All scan chains use the simple four-wire TAP. The TCK and TMS pins are
common to all devices included in the chain. TDI and TDO are daisy-chained
from one device to the next. The input to the chain is TDI and the output from
the chain is TDO. A diagram demonstrating a simple scan chain is shown in
Figure 1.

Programming Algorithm Basics
Programming a CPLD is similar to programming any memory device such as
an EPROM or FLASH memory. The device can be thought of as an array that
is programmed one row at a time. The programming information is provided to
the software in the form of a standard JEDEC file that needs to be converted
into the row and column fuse map data. Before an EEPROM device can be
programmed, it first has to be erased. After the device has been erased, the
programming data can be loaded and the device programmed. After the device
has been programmed, it will be verified by reading out the data in the device
and comparing it against the original.

Figure 2 shows the basic programming flow for the device. It does not include
JEDEC file data conversion into fuse map data, as it assumes that has already
been done. This programming flow will be the same regardless of the
programming hardware used. The primary difference between programming on
different hardware platforms (PC vs. Workstation) is the type of hardware
(parallel port vs. serial port) and the driver associate with it.

Note 1: Although it is not necessary, you should always perform a reset before
and after programming a device.

Device Programming ispVM System

ispLEVER 1.0 Concepts 140

Note 2: If the device will not be programmed in-circuit (i.e. via a cable or using
an embedded processor), then it is not necessary to preload or save the I/O
states.

Programming Times
The time it takes to program a device can often be a determining factor of
where in the manufacturing process a device, or group of devices, is
programmed. A board test system costing hundreds of thousands of dollars to
purchase and costing as much as one dollar per minute to operate can be an
expensive alternative for programming if programming times are too long. In
many instances, it is more cost-effective to buy a couple of PCs and program
the devices using these much cheaper systems.

The time it takes to completely program a device is based on the time it takes to
first erase the device, then program each row in the device, and then finally to
verify the device. The erase time for all devices is between 100 and 200ms. A
single row is programmed in 10 to 50ms, depending on the device. The Verify
process is the quickest of the required steps in the programming sequence and
is mainly dependent on the time required to shift the verify data out of any
given device.

To minimize the total programming time of a daisy chain of ISP devices, a
programming method called Turbo ispDOWNLOAD™ can be used to program
all the ISP devices in the chain concurrently. Turbo ispDOWNLOAD allows
any number of ISP devices to be programmed at the same time. When
programming a chain concurrently, the chain can be programmed in the time it
takes to program only the largest device plus some extra time in order to shift
instructions and data for multiple devices. For example, a chain of three devices
with programming times of 10, 7, and 7seconds can be programmed with Turbo
ispDOWNLOAD in a total of about ten seconds (the time it takes to program
the largest device). Serially, the programming time would be 24 seconds for all
three devices. Turbo ispDOWNLOAD is incorporated into the ispVM software.
This valuable feature of Lattice device technology is not available with many
other ISP CPLD device technologies.

The benefit of minimal programming times will be much more obvious on
board test systems, because they are included as a part of the test program and
are running at the fastest speed possible. Additionally, there is no translation
needed to or from JEDEC formatted data as this has already been done by the
ispVM System software.

USERCODE
User-programmable identification can ease problems associated with document
control and device traceability. The ispLSI 1000EA, 2000E, 2000VE, 2000VL,
2000V, 5000V, 8000/V, MACH 4/A, ispGDX/A, ispGDXV, ispMACH 4000,
and ispMACH 5000 families contain a 32-bit register accessible through the
optional IEEE 1149.1 USERCODE instruction. This user-programmable ID
register is basically a user’s "notepad" provided in electrically erasable (E2)
cells on each device.

In the course of system development and production, the proliferation of PLD
architectures and patterns can be significant. To further complicate the record-

Device Programming ispVM System

ispLEVER 1.0 Concepts 141

keeping process, design changes often occur, especially in the early stages of
product development. The task of maintaining which pattern goes into what
device for which socket becomes exceedingly difficult. Once a manufacturing
flow has been set, it becomes important to "label" each PLD with pertinent
manufacturing information, which is beneficial in the event of a customer
problem or return. A USERCODE register is incorporated into ISP devices to
store such design and manufacturing data as the manufacturer’s ID,
programming date, programmer make, pattern code, checksum, CRC, PCB
location, revision number, and/or product flow. This assists users with the
complex chore of record maintenance and product flow control. In practice, the
user-programmable USERCODE register can be used for any of a number of
ID functions.

Within 32 bits available for data storage, users may find it helpful to define
specific fields to make better use of the available storage. A field may use only
one bit (or all bits), and can store a wide variety of information. The
possibilities for these fields are endless, and their definition is completely up to
the user.

Even with the device’s security feature enabled, the USERCODE register can
still be read. With a pattern code stored in the USERCODE register, the user
can always identify which pattern has been used in a given device. As a second
safety feature, when a device is erased and re-patterned, the USERCODE
identification is automatically erased. This prevents any situation in which an
old USERCODE might be associated with a new pattern.

It is the user’s responsibility to update the USERCODE when reprogramming.
It should be noted that the USERCODE information will not be included in the
fusemap checksum reading.

Loading of the USERCODE instruction makes the USERCODE available to be
shifted out in the Shift-DR state of the TAP controller. The USERCODE
register can be read while the device is in normal functional operation, allowing
the device to be scanned while operating.

I/O States During Programming
During a programming cycle, all ispJTAG devices default to having their I/Os
tri-stated. In most situations, this probably will be acceptable and will not cause
any problems. However, there are situations that arise where it may cause some
contention. Through the boundary scan cells of Lattice devices, ispVM offers
the capability of setting all I/O pins to a state of "1", "0", HIGHZ, or don’t care,
and to set the state of each I/O pin individually.

Programming Hardware
All ISP programming specifications, such as the programming cycle and data
retention, are guaranteed when programming ISP devices over the commercial
temperature range (0 to 70 degrees C). It is critical that the programming and
bulk erase pulse width specifications are met by the programming platform to
insure proper in-system programming. The details of device programming are
transparent to the user if Lattice ISP programming hardware and software are
used.

Device Programming ispVM System

ispLEVER 1.0 Concepts 142

PC Hardware
Programming is most commonly done on a PC through a download cable
attached to the parallel port using the ispVM System software.

ispDOWNLOAD Cable
The ispDOWNLOAD cable is designed to facilitate in-system programming of
all Lattice ISP devices on a printed circuit board directly from the parallel port
of a PC. The ispVM System software generates programming signals directly
from the parallel port of a PC, which then pass through the ispDOWNLOAD
cable to the device(s). With this cable and a connector on the board, no
additional components are required to program a device. Refer to the
ispDOWNLOAD Cable Data Sheet for more detailed specifications and
ordering information.

Hardware design considerations for new boards include whether the hardware
designer will be using boundary scan test operations or low voltage (3.3V)
devices. In a system using 3.3V ISP devices, the ispDOWNLOAD cable
version 2.0 should be used. The cable operates with either a 3.3V or 5V Vcc
source.

Note: If you are using the ISP Engineering Kit Model 300, you must use the
ispDOWNLOAD cable Version 2.0, not version 1.

ISP Engineering Kit Model 300
The ISP Engineering Kit Model 300 provides designers with a quick and
inexpensive means of evaluating and prototyping new designs using Lattice
devices when compared to a standalone programmer. This kit is designed for
engineering purposes only and is not intended for production use. The kit
programs devices from the parallel printer port of a host PC. By connecting a
system cable (included) from the host PC to the ISP Engineering Kit with the
proper socket adapter, a device can be easily programmed using the ispVM
System. See Figure 3.

Note: If you are using the ISP Engineering Kit Model 300, you must use the
ispDOWNLOAD cable Version 2.0, not version 1.

Programming Software
The ispVM System software supports programming of all Lattice ISP devices
in a serial daisy chain programming configuration in a PC environment. Any
required JEDEC, ISC Data, or BSDL files are selected by browsing with a
built-in file manager. This software supports both sequential and concurrent
(turbo) programming of all Lattice devices and programming of ISC devices
compliant with IEEE 1152. Any non-Lattice devices that are compliant with
IEEE 1149.1 can be bypassed once their instruction register length is defined in
the chain description. Using ispVM, programmable devices from other vendors
can be programmed through the vendor supplied SVF file.

Device Programming ispVM System

ispLEVER 1.0 Concepts 143

Programming on a Board Test System
Programming on a board test system is made possible by using the ATE feature
to generate the necessary programming files needed for the different platforms.
The platforms supported include GenRad, Agilent (HP), and Teradyne board
test systems. A generic JEDEC vector format is generated to help support any
ATE not directly supported.

Programming on JTAG Test Systems
JTAG test systems differ from traditional board test systems in their basic test
methodology. These systems use only the four wire JTAG TAP to perform any
interconnect and functional tests. A simple language has been developed to
interface with the TAP and is used by most major JTAG test system vendors.
This language is known as the Serial Vector Format (SVF) and is supported by
the ispVM System software.

Embedded Programming
The ispVM Embedded source code is available for programming devices in an
embedded or customized environment. The programming source code is written
in ANSI-standard C language, which can be easily incorporated into an
embedded system or tester software to support programming of ISP devices.
This code supports such common operations as Program, Verify, Erase, and
Secure. After completion of the logic design and creation of JEDEC or ISC
Data files, the ispVM System software creates the data files required for in-
system programming on customer-specific hardware: PCs, testers, or embedded
systems.

Device Programming SVF Debugger

ispLEVER 1.0 Concepts 144

The SVF Debugger
SVF Debugger is software separate from the ispVM System that helps you
debug a Serial Vector Format (SVF) file. SVF Debugger allows you to program
a CPLD device, and then edit, check syntax, debug, and trace the process of an
SVF file.

Understanding SVF Files
The Serial Vector Format file (.svf) is the media for exchanging descriptions of
high-level 1149.1 bus operations. The SVF file is defined as an ASCII file,
which consists of a set of SVF statements. In general, the 1149.1 bus operations
consist of scan operations and movements between deferent stable states. Refer
to the Serial Vector Format Specification Rev E for detailed definitions of SVF
statement formats. Current SVF specifications are available from Asset-
Intertech website at www.asset-intertech.com.

SVF Debugger Software Support of SVF Operations
The SVF Debugger supports a selective set of SVF operations. The table below
lists SVF operations supported by the SVF Debugger.

SVF
Operation

Description Support Status

ENDDR Specifies default end
state for DR scan
operations.

Full Support

ENDIR Specifies default end
state for IR scan
operations.

Full Support

Device Programming SVF Debugger

ispLEVER 1.0 Concepts 145

HDR (Header Data
Register) Specifies a
header pattern, which
is placed at the
beginning of
subsequent DR, scan
operations.

Supports TDI keyword only.
SMASK, TDO and MASK are
not supported.

HIR (Header Instruction
Register) Specifies a
header pattern, which
is placed at the
beginning of
subsequent IR, scan
operations.

Supports TDI keyword only.
SMASK, TDO and MASK are
not supported.

RUNTEST Forces the 1149.1
bus to the
RUN_TEST/IDLE
state for a specified
number of clocks.

Full Support

SDR (Scan data Register)
Performs an 1149.1
Data Register scan.

Supports TDI, TDO and MASK
keywords. SMASK is ignored.

SIR (Scan Instruction
Register) Performs
an 1149.1 Instruction
Register scan.

Supports TDI, TDO and MASK
keywords. SMASK is ignored.

STATE Forces the 1149.1
bus to a specified
stable state.

Supports only single target state.
The debugger does not allow the
user to specify custom traverse
path.

TDR (Trailer Data
Register) Specified a
trailer pattern, which
is appended to the
end of subsequent
DR, scan operations.

Supports TDI keyword only.
SMASK, TDO and MASK are
not supported.

TIR (Trailer Data
Register) Specified a
trailer pattern which
is appended to the
end of subsequent IR
scan operations

Supports TDI keyword only.
SMASK, TDO and MASK are
not supported.

Device Programming Model 300 Programmer

ispLEVER 1.0 Concepts 146

The Model 300 Programmer
The ISP Engineering Kit Model 300 programmer is an engineering device
programmer that supports prototype development by allowing single-device
programming directly from a PC. The Model 300 programmer supports all
JTAG devices produced by Lattice, with device Vcc of 1.8, 2.5, 3.3, and 5.0V.

Overview
The Model 300 programmer is launched through the ispVM System software.
The following describes the Lattice devices and socket adapters that Model 300
supports, plus connection and application requirements.

Device Support
The Model 300 programmer supports all ispLSI, MACH4, MACH5, ispM4As,
M5/1s, ispGDX, ispGDS, and ispGAL devices, with device Vcc of 1.8, 2.5, 3.3,
and 5.0V.

Socket Support
The Model 300 supports the adapter pinout configuration of the existing Model
100 programmer. The Model 300 is compatible with existing Lattice socket
adapters and is also compatible with the Lattice’s approved 28-pin DIP third-
party programming socket adapters.

Connector Support
A 10-pin JTAG connector is available on the Model 300. It can be driven by the
Lattice Version 2 or later download cable, or it can be driven by the Vantis
download cable.

Device Programming Model 300 Programmer

ispLEVER 1.0 Concepts 147

Power Supply Support
The Model 300 programmer requires 9V AC or DC at 1A minimum, to provide
power for the programmer itself and for programming the target device.

Programming Software Support
Model 300 supported application version 1.0 is used. It can be launch by
ispVM System 9.0.x.

Special Features
With the exception of programmer power and a set of calibration control
switches, the Model 300 programmer is controlled entirely by the programming
software. When you select a device, you also select the adapter configuration
and target device Vcc. LED buttons indicate the power status and the selected
Vcc level.

Calibration Control Switches
A set of four slide DIP switches within the Model 300 provides override
capabilities. These are LOCAL, LSB, MSB, and VCC ON.

LOCAL
Off This is the normal operation, under software control. LSB and MSB
switches are disabled.

On Programming software is connected to TAP of M4A5-64/32
programmer control IC. This allows on-board programming of the control IC.
LSB and MSB switches are enabled.

LSB, MSB, VCC ON
When LOCAL is On, LSB and MSB select the Vcc level at the programming
adapter sockets, as indicated by the LED indicators. Switch VCC ON turns on
the programming socket adapter Vcc for measurement at the DVCC test point,
while the selected Vcc level is adjusted at R16, R18, R20, or R22. Switch VCC
ON is independent of switch LOCAL.

Software Control
The Model 300 programmer is controlled by the TRST, ENABLE (ispEN), TMS, TDI,
and TCK signals from the download cable. When in normal operation mode, the Model
300 programmer controls IC channels TMS, TDI, TCK, and TDO to/from the
programming adapter socket. TRST and ENABLE control the programmer’s operation
mode.

TRST ENABLE Description
0 0 DUT is target of JTAG signals, DUT Vcc is off

0 1 DUT is target of JTAG signals, DUT Vcc is on if Control Bit
7 = 1

1 0 Control IC TAP is target of JTAG signals, DUT Vcc is off

1 1 Control IC State Machine is target of JTAG signals, DUT
Vcc is off when State Machine is not in M4 Reset state

Device Programming Model 300 Programmer

ispLEVER 1.0 Concepts 148

When TRST and ENABLE are high and LOCAL is Off, JTAG signals interact
with the State Machine programmed into the M4A5-64/32 Control IC. Use this
State Machine to write or read Control Register bits for routing the JTAG
signals to the appropriate pins for the selected adapter and for controlling DUT
Vcc.

When TDI input is selected, data is shifted into the State Machine from TDI, to
write new data into the Control Register. When TDO input is selected, data is
rotated through the Control Register to read it out on TDO. It must be shifted
eight times to return the Control Register to its original pattern.

Control Register

Valid Adapter Code values are 0000, 0001, 0010, 0011, 0100, and 1100.

	ispLEVER v1.0 Concepts Manual
	Table of Contents
	Overview of ispLEVER
	ispLEVER Tools
	Constraint Editor
	Hierarchy Browser
	Hierarchy Navigator
	ispEXPLORER
	ispVM System
	Lattice Logic Simulator
	Library Manager
	Model 300 Programmer
	Performance Analyst
	Project Navigator
	Report Viewer
	Schematic Editor
	SVF Debugger
	Symbol Editor
	Text Editor
	Waveform Editor
	Waveform Viewer
	CPLD Process Flow
	Program Folder

	Learning ispLEVER
	ispLEVER Concepts
	ispLEVER Help
	ispLEVER Tutorial
	Example Projects
	Third-Party Documentation
	Product Literature

	Using ispUPDATE
	Starting the ispUpdate Program
	Using the Update Feature

	Using the Download Feature
	Launching the Patch Install Program

	Migrating from ispDesignEXPERT 8.x (8.2, 8.3, or 8.4) to ispLEVER
	MACH Devices
	ispLSI Devices

	Using ispLEVER Help
	Context-sensitive Help
	Running ispLEVER from the Command Line

	Contacting Lattice Semiconductor
	Headquarters
	Product Support

	Project Management
	The Project Navigator
	The Project Navigator Interface
	Valid Source Types
	Source Hierarchy
	Process Flows
	Source-Level Flow
	Project-Level Flow

	Initialization
	Using the Global Constraints Dialog Box to Control Optimization
	Using the Location Assignments Dialog Box to Pre-assign Pins and Nodes

	Describing a Project
	Design Hierarchy
	Tips for Defining Projects
	Where Source Files are Placed
	Processing a Design
	Tip for Saving and Naming Projects
	Forcing a Process to Run
	Reserved File Names
	Pop-up Menus

	Hierarchical Design
	What is a Hierarchical Design?
	Advantages of Hierarchical Design
	Hierarchy vs. Sheets
	Approaches to Hierarchical Design
	Hierarchical ABEL-HDL Design
	Hierarchical Schematic Design
	Hierarchical Verilog HDL Design
	Hierarchical VHDL Design
	Hierarchical Design Considerations
	Hierarchical Design Structure
	Hierarchical Naming
	Nets in the Hierarchy
	Automatic Aliasing of Nets

	Hierarchical Design Examples
	ABEL-HDL Hierarchy Example
	Top-level ABEL-HDL Module (top.abl)
	Lower-level ABEL-HDL module (add.abl)
	Schematic Hierarchy Example
	Lower-level ABEL-HDL Module for Add Block Symbol
	Schematic/Verilog HDL Hierarchy Example
	Lower-level Verilog HDL (mux2x1v.v)
	Schematic/VHDL Hierarchy Example
	Lower-level VHDL Module (mux2x1vhd.vhd)

	Design Entry
	ABEL-HDL Design
	Using a Template to Create an ABEL-HDL Source
	Entering Declarations
	Entering Logic Descriptions
	Entering Test Vectors

	Verilog HDL Design
	Adding a Verilog HDL Module to Your Design
	Creating a New Verilog HDL Module
	Synthesizing Your Verilog HDL Design

	VHDL Design
	Adding a VHDL Module to Your Design
	Creating a New VHDL Module
	Synthesizing your VHDL Design

	EDIF Design
	Importing an EDIF Netlist
	Translating EDIF Properties
	EDIF Properties
	PIN LOCATION Property
	GROUPING Property
	OUTPUT SLEW Property
	SIGNAL OPTIMIZATION Property
	OPEN DRAIN Property
	PULL Property
	OUTPUT VOLTAGE Property

	Schematic Design
	Introduction to Schematic Design
	Schematic Overview
	What is a Schematic?
	What do Schematics Consist of?
	Symbols
	Symbol Information
	Graphics and Text
	Pins
	Attributes

	Wires
	Wire Names
	Net Attributes
	I/O Markers
	Graphics
	Text
	Naming Schematic and Symbol Files
	Schematic Attributes
	Attribute Use
	Attribute Types
	Attribute Components
	Attribute Name
	Attribute Value
	Attribute Modifier
	Attribute Window

	Setting Attribute Values
	Default Values
	Displaying Attribute Values on a Schematic
	Schematic Editor
	Basic Schematic Editor Operation
	Error Recovery
	Network Operation
	Wiring the Schematic
	Nets
	Net Names
	Interconnection

	Entering Net Names
	Placing Net Names
	Legal Characters in Net Names
	Reserved Names
	Logical Inversion
	Specifying Signal Direction
	Buses
	Ordered Buses
	Unordered Buses
	Bus Taps
	Naming the Tap

	Connecting to Pins
	Bus Pins
	Nets on Iterated Instances
	Compound Names
	Single Names

	Bus and Net Connections to Iterated Instance
	Wiring Constraints
	Debugging and Verifying a Schematic
	"Unconnected Pin" Message

	Symbol Editor
	Symbol Elements
	Positioning Master Symbols
	Using Grids to Position Symbol Elements
	Positioning Pins
	Selecting a Line Weight
	Drawing Lines
	Drawing Rectangles
	Drawing Circles and Arcs
	Drawing Negation Bubbles
	Drawing Text
	Text Size and Justification
	Preparing Symbols for Schematics
	Pins
	Adding Pins
	Bus Pins

	Bus Pin Limitations
	Attributes
	Symbol Attributes
	Pin Attributes
	Attribute Windows

	Setting Symbol Origins
	Saving Symbols
	Printing Symbols
	Checking Symbols

	Hierarchy Navigator
	Attributes
	Attribute Modifiers
	Attribute Window
	Attribute Functions
	Attribute Types
	Attribute Names
	Attribute Numbers
	Attribute Values

	The Library Manager
	Why Use the Library Manager?
	Working with Binary Symbol Libraries

	The Hierarchy Browser
	Introduction to the Hierarchy Browser

	Mixed-Mode Design
	Text Editor

	Design Simulation
	Integrated Simulation
	Standalone Simulation
	Functional Simulation - CPLD Process Flow
	Lattice Logic Simulator
	Simulation Support
	Stand-alone Simulation
	Integrated Simulation

	Simulation in the ispLEVER Design Flow
	Design Entry
	Test Stimulus
	Creating Test Stimulus for Lattice Logic Simulator
	Creating Graphic Waveforms

	Creating Test Vectors
	Creating a VHDL Test Bench
	Creating a Verilog Test Bench
	Special Constants
	Using .P. to Pre-load Values in the State Machine
	Viewing Simulation Results
	Cross Probing
	Simulation Mode
	Showing Logic Values on Schematics
	Using Query to Navigate

	Design Implementation
	Synthesizing and Compiling
	Keeping Track of Processes
	Understanding the Compilation Process
	Compile (Logic or Schematic)
	Compile Logic (for logic sources)
	Compile Schematic (for schematic sources)
	Compile EDIF (EDIF)
	Check Syntax
	Compiler Listing
	Compiled Equations
	Signal Cross-Reference (EDIF)
	Process Options
	Viewing and Setting Process Option Properties
	Compiling Source Files

	Optimizing a Design
	Logic Synthesis Options
	Boolean Logic Reduction
	D/T Synthesis
	Input Register Optimization
	XOR Synthesis
	Node Collapsing
	Speed
	Area
	Fmax
	Collapsing Max. Product Term
	Collapsing Max. Input
	Splitting Max. Product Term
	Example
	Example
	Setting Logic Synthesis Options

	Utilization Options
	Logic Grouping

	Fitting a Design
	Assigning Pin and Node Locations
	Pin and Node Pre-Assignment
	Pin Assignment Guidelines
	Large Functions at the End of a Block
	Adjacent Macrocell Use

	Modifying Assignments
	Deleting Assignments
	Ignoring Assignments
	Power Control
	Slew Rate Control
	Partitioning
	Balanced Partitioning

	Fitting (Place and Route)
	Placement
	Spread Placement
	Routing

	Fitter Options
	Pack Design
	Spread Design
	Advanced Options
	Balance Partitioning
	Spread Placement
	Fitter Effort

	Fitter Report Formats
	Formatting the Fitter Report
	The Fitter Report
	Project Summary
	Compilation Times
	Design Summary
	Device Resource Summary
	GLB Resource Summary
	GLB Control Summary
	Optimizer and Fitter Options
	Pinout Listing
	(Input, Output, Bidir, Buried) Signal List
	Signals Fan-out List
	GLB (GLB name) Cluster Steering Tables
	GLB (GLB name) Logic Array Fanin
	Product Term Histogram
	GLB Input Histogram
	Post-Fit Equations

	Backannotating Assignments

	Constraint Editor
	Assigning Pins and Nodes
	Assigning Signals to Groups

	Node Preserving
	Resource Reservations
	Slew Rate
	PULL
	Open Drain
	I/O Type
	PLL
	HSI

	ispEXPLORER
	Overview of the ispEXPLORER
	Use predefined or customized settings.
	Create multiple versions of design runs.
	Save the best constraints for your project.

	Report Viewer

	Design Verification
	Waveform Viewer
	Opening the Waveform Viewer
	Saving and Printing Waveforms
	Printing Waveforms

	Waveform Viewer Configuration
	Waveform Display
	Adding Waveforms
	Finding the Signal You Want
	Using the Probe Item Command
	Duplicating Waveforms
	Changing Waveform Locations
	Hiding Waveforms
	Creating Bus Displays
	Expanding Bus Displays
	Changing the Bus Radix

	Moving Around
	View Commands
	Scroll Bars
	Moving the Query Cursor
	Marking Your Spot
	Jumping to Events
	Setting Signal and Bus Triggers

	Analysis Techniques
	Interaction with the Hierarchy Navigator
	Displaying Simulation Values on a Schematic
	Viewing Reports

	Waveform Editor
	Bus Pulses
	Patterns
	Hierarchical Patterns
	Editing Patterns
	Simulation Time
	Simulator Setup
	Stimulus File Format
	Saving Changes

	Performance Analyst
	How does it Work?
	Analysis Types
	fMAX
	Maximum Clock Operating Frequency
	Default fMAX Path Trace

	tSU
	Setup Time
	Default tSU Path Trace
	Path Endpoints for tSU
	Register D/T Inputs
	Register CE Inputs

	tPD
	Propagation Delay Time
	Default tPD Path Trace

	tCO
	Clocked Output-to-Pin Time
	Default tCO Path Trace

	tOE
	Output Enable Path Delay
	Default tOE Path Trace

	tCOE
	Clock to Output Enable Time
	Default tCOE Path Tracing

	Path Tracing Rules
	Tracing Enabled Through Bi-directional Paths
	Tracing Enabled Through Register Asynch S/R Inputs
	Tracing Enabled Through Transparent Latch D Inputs
	Tracing Enabled Through Ripple Clocks

	Batch Timing
	Running Timing Analysis in Batch Mode
	Batch Commands
	Set Operations
	Path Tracing
	Report
	Switch Control

	Batch File Example
	Batch Command File Example

	Device Programming
	ispVM System
	Overview of ispVM System Software
	Lattice Designs
	Designs Compliant with IEEE 1532
	Designs Compliant with IEEE 1149.1

	Programming Basics
	JTAG Scan Chains
	Programming Algorithm Basics
	Programming Times
	USERCODE
	I/O States During Programming
	Programming Hardware
	PC Hardware
	ispDOWNLOAD Cable
	ISP Engineering Kit Model 300

	Programming Software
	Programming on a Board Test System
	Programming on JTAG Test Systems
	Embedded Programming

	SVF Debugger
	Understanding SVF Files
	SVF Debugger Software Support of SVF Operations

	Model 300 Programmer
	Overview
	Device Support
	Socket Support
	Connector Support
	Power Supply Support
	Programming Software Support

	Special Features
	Calibration Control Switches
	LOCAL
	LSB, MSB, VCC ON

	Software Control
	Control Register

