UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

1. Semester - WS 2006

Abt. Technische Informatik

Gerätebeauftragter

Dr. rer.nat. Hans-Joachim Lieske

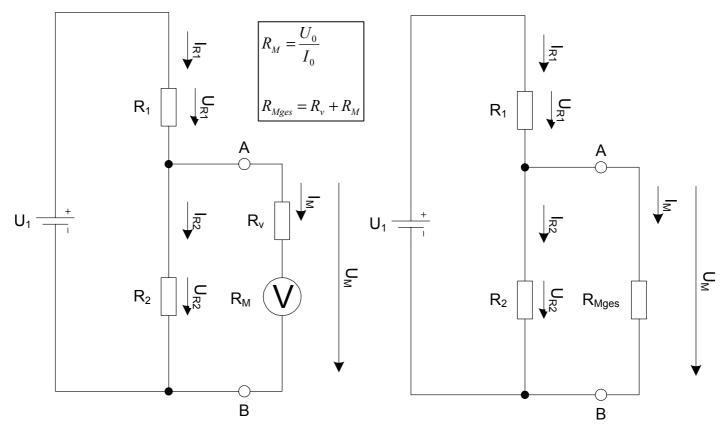
Tel.: [49]-0341-97 32213 Zimmer: HG 02-37

e-mail: lieske@informatik.uni-leipzig.de

www: http://www.informatik.uni-leipzig.de/~lieske

Sprechstunde: Mi. 14⁰⁰ – 15⁰⁰

Montag, 20. November 2006

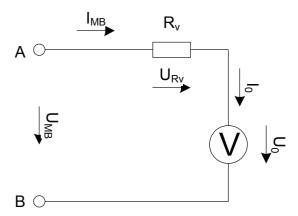

Aufgaben zu Übung Grundlagen der Technischen Informatik 1

3. Aufgabenkomplex

Spannungsmessung am belasteten Spannungsteiler Messbereichserweiterung an Strommessgeräten

3. Aufgabenkomplex - 1. Aufgabe Spannungsmessungen am belasteten Spannungsteiler

Gegeben sind folgende Schaltungen.


Bei Spannungsmessgeräten mit einem geringen Innenwiderstand kann es durch einen belasteten Spannungsteiler zu Fehlmessungen kommen.

Im Grundzustand hat das Messgerät den Messbereich U_0 =200mV und I_0 =100 μ A bei Vollausschlag. In dieser Betriebsart hat das Messgerät keinen Vorwiderstand R_V .

Aufgabe:

Berechnen Sie die Anzeige des Spannungsmessgerätes für den Leerlauf und die restlichen Messbereiche.

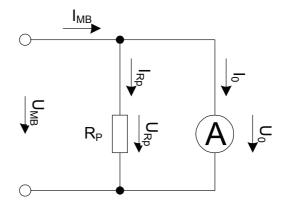
Werte: $U_1 = 40V$ $R_1 = 300k\Omega$ $R_2 = 100k\Omega$ $U_0 = 200mV$ $I_0 = 100\mu A$

- 1. Berechnen Sie den Innenwiderstand R_M des Messgerätes im Messbereich U_0 =200mV und I_0 =100 μA .
- 2. Berechnen Sie den Vorwiderstand R_{V-1} für die Messbereichserweiterung auf U_{MB-1}=5V
- 3. Berechnen Sie den Vorwiderstand R_{V-2} für die Messbereichserweiterung auf U_{MB-2}=10V
- 4. Berechnen Sie den Vorwiderstand R_{V-3} für die Messbereichserweiterung auf U_{MB-3}=50V
- 5. Berechnen Sie den Vorwiderstand R_{V-4} für die Messbereichserweiterung auf U_{MB-4}=100V
- 6. Berechnen Sie die Ströme I_{Rv-1} bis I_{Rv-4} .
- 7. Berechnen Sie den Messgerätewiderstand R_{Mges-1} für die Messbereichserweiterung auf 5V
- 8. Berechnen Sie den Messgerätewiderstand R_{Mges-2} für die Messbereichserweiterung auf 10V
- 9. Berechnen Sie den Messgerätewiderstand R_{Mges3} für die Messbereichserweiterung auf 50V
- 10. Berechnen Sie den Messgerätewiderstand R_{Mges-4} für die Messbereichserweiterung auf 100V

Das Messinstrument soll nun zur Spannungsmessung an dem Spannungsteiler R_1/R_2 genutzt werden. Je nach dem Messbereich hat das Messinstrument einen unterschiedlichen Innenwiderstand $R_{Mges} = R_V + R_M$ der die Messung beeinflussen kann.

- 11. Welche Spannung U_{M-0} ist am Spannungsteiler ohne das Messgerät (Leerlauf)
- 12. Welche Spannung U_{M-2} misst das Messgerät im 10V Messbereich
- 13. Welche Spannung U_{M-3} misst das Messgerät im 50V Messbereich
- 14. Welche Spannung U_{M-4} misst das Messgerät im 100V Messbereich

Je nach Messbereich hat das Messinstrument einen unterschiedlichen Innenwiderstand R_{Mges} . Somit wird der Spannungsteiler unterschiedlich belastet und das Messinstrument misst unterschiedliche Werte. Das erfolgt durch die Parallelschaltung von R_{Mges} für den entsprechenden Messbereich und R_2 .


Zur Vereinfachung wird hier weiterhin angenommen, dass das Messgerät in allen Messbereichen mit gleicher Genauigkeit messen kann d.h. zusätzlich zum Zeiger eine 4-stellige Digitalanzeige.

Die Angabe "-2" (z.B.: R_{V-2}) an den Inizes bedeutet, dass es sich hier um den Messbereich "10V" handelt. Analog bei den anderen Messbereichen. Formelzeichen ohne dieses Indize sind für alle Messbereiche gleich.

3. Aufgabenkomplex - 2. Aufgabe

Messbereichserweiterung an Strommessgeräten

Werte: $U_0 = 200 \text{mV}$ $I_0 = 100 \mu \text{A}$

Das gleiche Zeigerinstrument soll als Strommessgerät verwendet werden. Bestimmen Sie die Parallelwiderstände Rp für die verschiedenen Strommessbereiche.

- 1. Berechnen Sie den Innenwiderstand R_M des Messgerätes im Messbereich U_0 =200mV und I_0 =100 μA .
- 2. Berechnen Sie den Strom I_{Rp1} durch R_{p1} für die Messbereichserweiterung I_{MB1} =1mA. Berechnen Sie den Widerstand R_{p1} .
- 3. Berechnen Sie den Strom I_{Rp2} durch R_{p2} für die Messbereichserweiterung I_{MB2} =5mA. Berechnen Sie den Widerstand R_{p2} .
- 4. Berechnen Sie den Strom I_{Rp3} durch R_{p3} für die Messbereichserweiterung I_{MB3} =10mA. Berechnen Sie den Widerstand R_{p3} .
- 5. Berechnen Sie den Strom I_{Rp4} durch R_{p4} für die Messbereichserweiterung I_{MB4} =50mA. Berechnen Sie den Widerstand R_{p4} .
- 6. Berechnen Sie den Strom I_{Rp5} durch R_{p5} für die Messbereichserweiterung I_{MB5} =100mA. Berechnen Sie den Widerstand R_{p5} .
- 7. Berechnen Sie den Strom I_{Rp6} durch R_{p6} für die Messbereichserweiterung I_{MB6} =500mA. Berechnen Sie den Widerstand R_{p6} .
- 8. Berechnen Sie den Strom I_{Rp7} durch R_{p7} für die Messbereichserweiterung I_{MB7} =1A. Berechnen Sie den Widerstand R_{p7} .
- 9. Berechnen Sie den Strom I_{Rp8} durch R_{p8} für die Messbereichserweiterung I_{MB8} =5A. Berechnen Sie den Widerstand R_{p8} .
- 10. Berechnen Sie den Strom I_{Rp9} durch R_{p9} für die Messbereichserweiterung I_{MB9} =20A. Berechnen Sie den Widerstand R_{p9} .
- 11. Berechnen Sie die Spannungen U_{Rp1} bis U_{Rp7} .

Zur Vereinfachung wird hier angenommen, dass das Messgerät in allen Messbereichen mit gleicher Genauigkeit messen kann d.h. zusätzlich zum Zeiger eine 4-stellige Digitalanzeige.

Bemerkung:

Für alle Aufgaben gilt:

- 1. In allen Formeln mit Zahlen sind die Maßeinheiten mitzuschleifen.
- 2. Bei den Endergebnissen sind die Maßeinheiten zu verwenden, die, wenn vorhanden, aus einem Buchstaben bestehen. Während der Rechnung können Sie nach eigenem Ermessen verfahren.
- 3. Bei den Endergebnissen sind die $10^{\pm 3}$ Präfixe konsequent zu verwenden. Während der Rechnung können Sie nach eigenem Ermessen verfahren.
 - Präfixe nur verwenden, wenn eine Maßeinheit dahinter ist.
- 4. Alle Aufgaben auf insgesamt 4 Stellen genau berechnen, wenn in Aufgabe nicht anders angegeben.
- 5. Die Aufaben sind zu nummerieren, auch die Teilaufgaben.
- 6. Der Rechenweg muß ersichtlich sein. Gegebenenfalls das Schmierblatt anheften.
- 7. Jedes Blatt ist wie folgt zu nummerieren Seite/Gesamtzahl der Seiten (z.B. Seite 6/8)

Nichtbeachtung wird mit Punktabzug geahndet!

Präfixe zur Kennzeichnung des Vielfachen
von gesetzlichen Einheiten (dezimal)

	P. 1.		
Zeichen	Faktor	Bezeichnung	
	24		
Y	10^{24}	Yotta	
Z	10^{21}	Zetta	
Е	10^{18}_{15}	Exa	
P	10^{15}	Peta	
T	10^{12}	Tera	
G	10^{9}	Giga	
M	10^{6}	Mega	
k	10^{3}	Kilo	
	_		
m	10^{-3}	Milli	
μ	10^{-6}	Mikro	
n	10^{-9}	Nano	
р	10^{-12}	Piko	
f	10 ⁻¹⁵	Femto	
a	10^{-18}	Atto	
Z	10^{-21}	Zepto	
у	10 ⁻²⁴	Yokto	
Weniger gebräuchlich nur zu Information			
h	10^{2}	Hekto	
da	10^{1}	Deka	
	- 4		
d	10^{-1}	Dezi	
С	10^{-2}	Zenti	

Umgang mit den Präfixen am Beispiel einer 4 stelligen Genauigkeit:

---, - Präfix Maßeinheit

--, -- Präfix Maßeinheit

-, --- Präfix Maßeinheit

Beispiele:

 $216,4\mu F; 33,45kHz; 2,456M\Omega; 7,482A$