UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

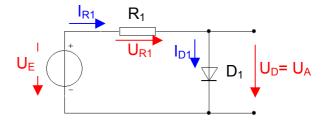
1. Semester - WS 2000/2001

Abt. Technische Informatik *Gerätebeauftragter* Dr. rer.nat. Hans-Joachim Lieske

Tel.: [49]-0341-97 32213 Zimmer: HG 05-22

e-mail: lieske@informatik.uni-leipzig.de

www: http://tipc023.informatik.uni-leipzig.de/~lieske/


Aufgaben zu Übung Grundlagen der Technischen Informatik 1

4. Aufgabenkomplex - 1. Aufgabe

Bestimmung des Arbeitspunktes einer Halbleiterdiode

Gegeben ist folgende Schaltung:

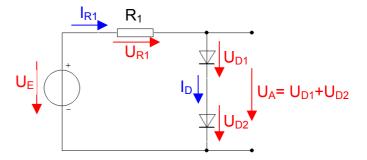
$$U_E = 6V$$
 $R_1 = 100\Omega$
Kennlinie der Diode 1

Aufgaben:

(Gesamtpunktzahl=10 Punkte)

- 1. Bestimmen Sie die mathematische Funktion der Kennlinie I_{D1} = $f(U_{D1})$ für beide Intervalle.
 - (2 Punkte)
- 2. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$ für den Widerstand R_1 . (2 Punkte)
- 3. Bestimmen Sie den Strom I(5V) [entspricht dem Spannungswert der letzten vertikalen Linie] für den Widerstand R₁. (2 Punkte)
- 4. Konstruieren Sie die Widerstandsgerade und bestimmen Sie den Schnittpunkt. (2 Punkte)
- 5. Bestimmen Sie die Spannung U_A des Arbeitspunktes.

- (1 Punkt)
- 6. Bestimmen Sie den Strom I_A des Arbeitspunktes. (1 Punkt)


Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächsten Strich runden.

4. Aufgabenkomplex - 2. Aufgabe

Bestimmung des Vorwiderstandes einer Dioden-Reihenschaltung

Gegeben ist folgende Schaltung:

 $U_{\rm E} = 3.3 V$ $I_A = 20mA$ Kennlinie der Diode 1 Kennlinie der Diode 2

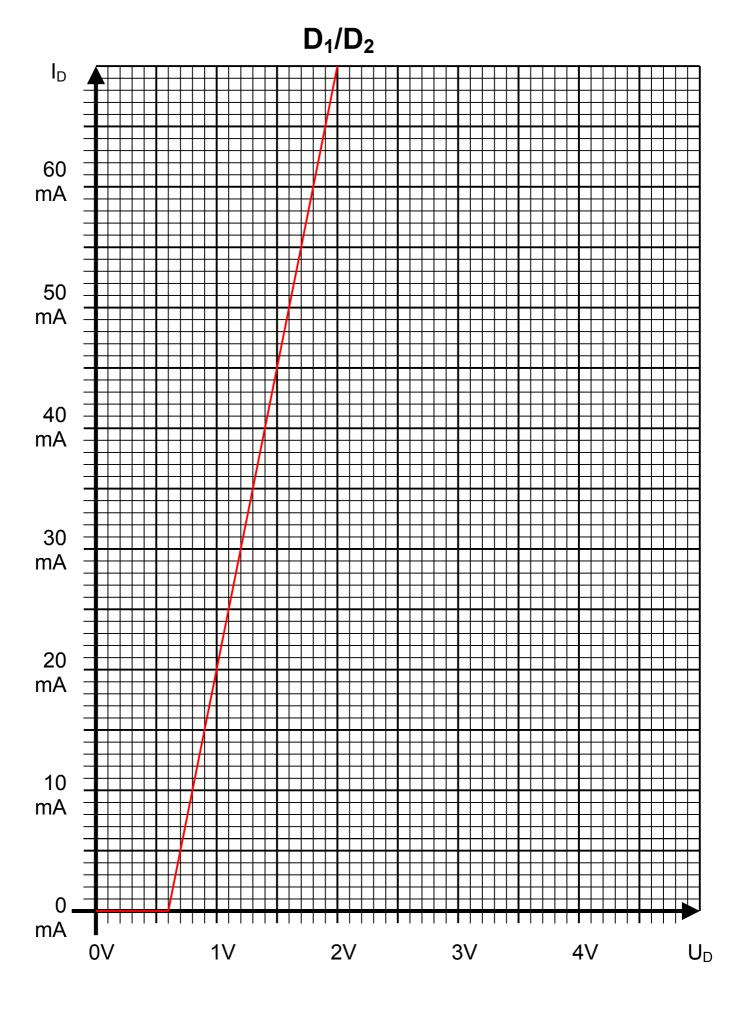
Aufgaben:

(Gesamtpunktzahl=10 Punkte)

- Konstruieren Sie die Ersatzkennlinie der Reihenschaltung der Dioden durch Addition der 1. Spannungen U_{D1} und U_{D2} für alle Ströme. (2 Punkte)
- 2. Bestimmen Sie die mathematische Funktion der Ersatzkennlinie I_D=f(U_A) für beide Intervalle.
 - (2 Punkte)

3. Bestimmen Sie die Spannung U_A des Arbeitspunktes. (2 Punkte) (1 Punkt)

4. Konstruieren Sie die Widerstandsgerade.


(2 Punkte)

5. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$.

Bestimmen Sie den Widerstand R₁.

(1 Punkt)

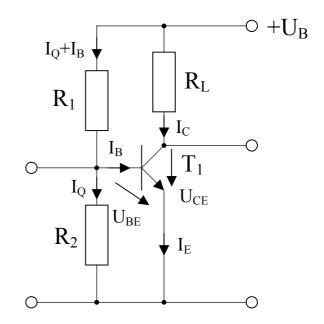
Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächsten Strich runden.

4. Aufgabenkomplex - 3. Aufgabe

Berechnung einer Transistorschaltung

Berechnen Sie folgende Schaltung.

Werte: $U_B = 5V$ $U_{CEA} = 2V$ $I_{CA} = 37mA$ $U_{BEA} = 0.7V$


Formeln:

$$U = I \cdot R$$

$$B = \frac{I_c}{I_B}$$

$$I_Q = 5 \cdot I_B$$

$$U_B = U_{R1} + U_{R2} = U_{RL} + U_{CE}$$

Aufgabe:

Berechnen Sie die Widerstände der Schaltung.

(Gesamtpunktzahl=15 Punkte)

- Zeichnen Sie mithilfe des Arbeitspunktes (U_{CEA} und I_{CA}) und der Betriebsspannung U_B die Widerstandsgerade für R_L im Kennlinienfeld.
 (2 Punkte)
- 2. Bestimmen Sie mithilfe der Widerstandsgeraden den Kurzschlußstrom I_K im Kennlinienfeld.

(2 Punkte)

- 3. Berechnen Sie Wert des Widerstandes R_L aus der Betriebsspannung U_B und den Kurzschlußstrom I_K . (2 Punkte)
- 4. Bestimmen Sie mithilfe des Kennlinienfeldes den Basisstrom I_{BA} für den Arbeitspunkt.

(2 Punkte)

5. Berechnen Sie Querstrom I_O.

(1 Punkt)

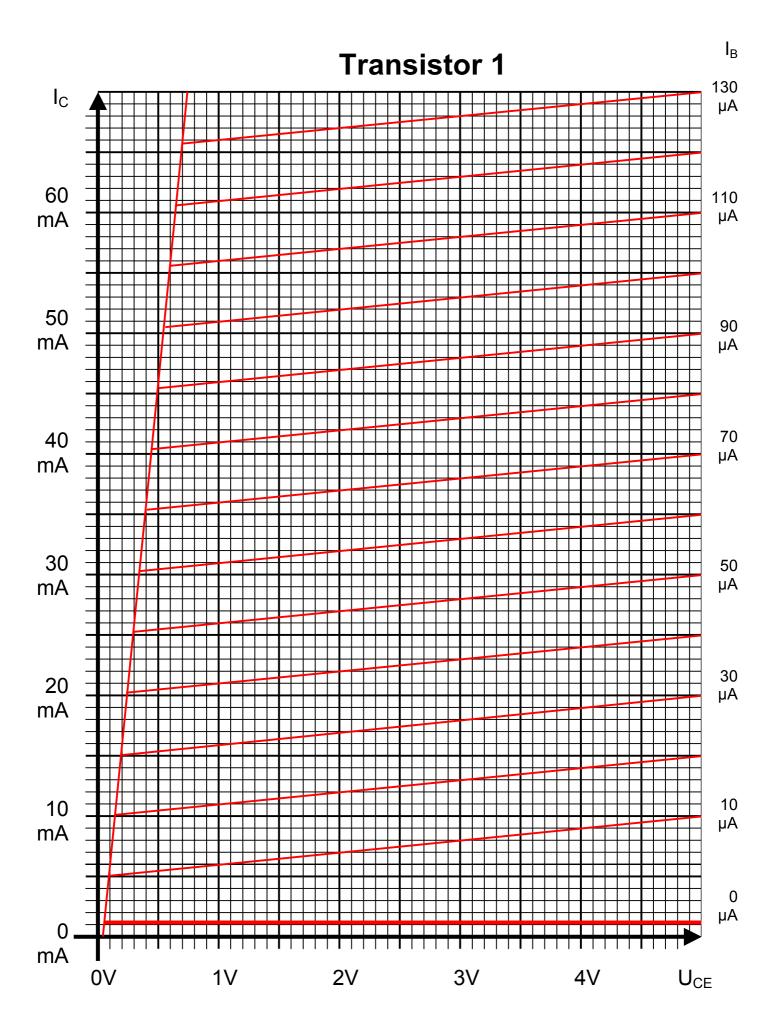
6. Berechnen Sie die Spannung über den Widerstand R₁.

(1 Punkt)

7. Berechnen Sie den Widerstand R₁.

(1 Punkt)

8. Berechnen Sie die Spannung über den Widerstand R₂.


(1 Punkt)

9. Berechnen Sie den Widerstand R₂.

- (1 Punkt)
- 10. Bestimmen Sie die Spannung U_{CE0} und den Strom I_{C0} für den nichtangesteuerten Transistor (I_B =0) mithilfe des Kennlinienfeldes. (1 Punkt)
- 11. Bestimmen Sie die Spannung U_{CEmax} den Strom I_{Cmax} und den Basisstrom I_{Bmax} für den vollausgesteuerten Transistor (I_{C} =max) mithilfe des Kennlinienfeldes. (1 Punkt)

Die Spannung unter Punkt 10 entspricht dem realen "high" - Ausgangspegell und die unter Punkt11 dem realen "low" - Ausgangspegel.

Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächsten Strich runden.

Bemerkung:

Für alle Aufgaben gilt:

- 1. In allen Formeln sind die Maßeinheiten mitzuschleifen.
- Bei den Endergebnissen sind die 10^{±3} Präfixe konsequent zu verwenden.
 Alle Aufgaben auf insgesamt 4 Stellen genau berechnen, wenn in Aufgabe nicht anders angegeben.
- 4. Die Aufaben sind zu nummerieren, auch die Teilaufgaben.
- 5. Der Rechenweg muß ersichtlich sein. Gegebenenfalls das Schmierblatt anheften.

Nichtbeachtung wird mit Punktabzug geahndet!

Präfixe zu Kennzeich	nung des Vielfachen von gesetzliche	n Einheiten (dezimal)
Zeichen	Faktor	Bezeichnung
Y	10 ²⁴	Yotta
Z	10 ²¹	Zetta
E	10 ¹⁸	Exa
P	10 ¹⁵	Peta
T	10 ¹²	Tera
G	109	Giga
M	10 ⁶	Mega
k	103	Kilo
m	10 ⁻³	Milli
μ	10 ⁻⁶	Mikro
n	10 ⁻⁹	Nano
р	10 ⁻¹²	Piko
f	10 ⁻¹⁵	Femto
a	10 ⁻¹⁸	Atto
Z	10 ⁻²¹	Zepto
V	10 ⁻²⁴	Yocto
v	Nur zur Information	
d	10 ⁻¹	Dezi
c	10 ⁻²	Zenti

Lösung

4. Aufgabenkomplex - 1. Aufgabe

Bestimmung des Arbeitspunktes einer Halbleiterdiode

1. Bestimmen Sie die mathematische Funktion der Kennlinie I_{D1} =f(U_{D1}) für beide Intervalle.

$$I = f(U) = a \cdot U + b$$

$$mit \quad a = \frac{I_2 - I_1}{U_2 - U_1} \quad und \quad b = I_1 - a \cdot U_1 = I_2 - a \cdot U_2$$

1.1. 1. Abschnitt

$$U_{1,1} = 0V$$
; $U_{1,2} = 0.6V$ $I_{1,1} = 0mA$; $I_{1,2} = 0mA$

$$a = \frac{0mA - 0mA}{0.6V - 0V} = 0mS$$

$$b = 0mA - 0mS \cdot 0V = 0mA - 0mS \cdot 0,6V = 0mA$$

1.2. 2. Abschnitt

$$U_{2,1} = 0.6V;$$
 $U_{2,2} = 2V$ $I_{2,1} = 0mA;$ $I_{2,2} = 70mA$

$$a = \frac{70mA - 0mA}{2V - 0.6V} = \frac{70mA}{1.4V} = 50mS$$

$$b = 0mA - 50mS \cdot 0.6V = 70mA - 50mS \cdot 2V = -30mA$$

1.3. 1. und 2. Abschnitt

$$I = f(U) = \begin{cases} 0mS \cdot U + 0mA & f\ddot{u}r & U \in [0;0,6]V \\ 50mS \cdot U - 30mA & f\ddot{u}r & U \in [0,6;2]V \end{cases}$$

2. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$ für den Widerstand R_1 .

$$U_E = 6V; \quad R_1 = 100\Omega$$

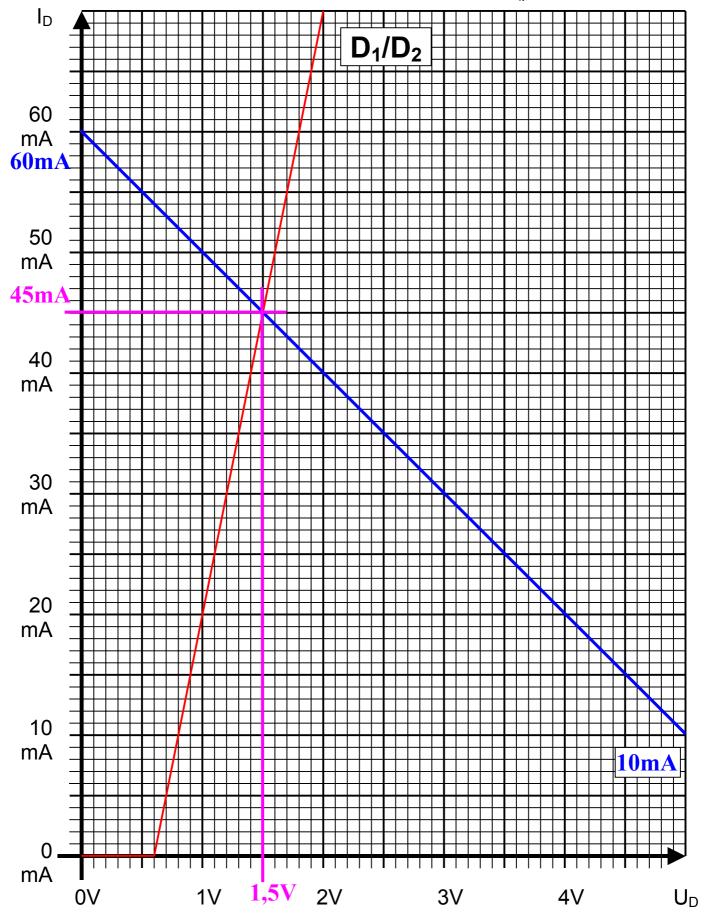
$$I_K = \frac{U_E}{R_1}$$

$$I_K = \frac{6V}{100\Omega} = 60 \, mA$$

3. Bestimmen Sie den Strom I(5V) [entspricht dem Spannungswert der letzten vertikalen Linie] für den Widerstand R₁.

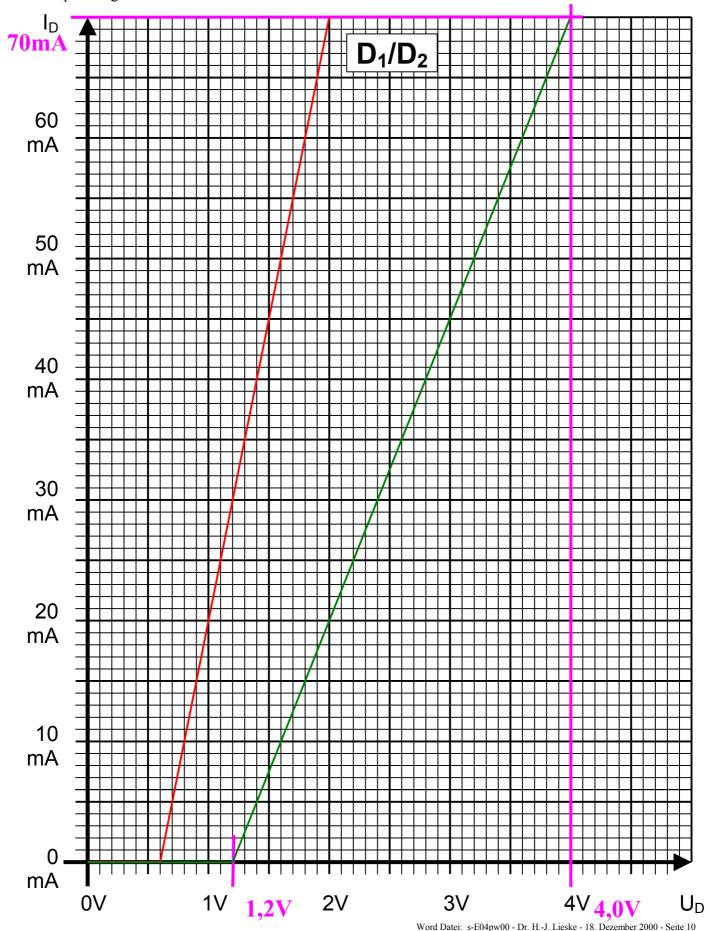
$$U_E = 6V; \quad R_1 = 100\Omega; \quad U_1 = 5V$$

$$R_1 = \frac{U_E}{I_k} = \frac{U_E - U_1}{I_1} \implies I_1 = \frac{U_E - U_1}{R_1} = \frac{(U_E - U_1) \cdot I_k}{U_E}$$


$$I_1 = \frac{6V - 5V}{100\Omega} = \frac{1V}{100\Omega} = 10mA = I(5V)$$

- 4. Konstruieren Sie die Widerstandsgerade und bestimmen Sie den Schnittpunkt.
- Bestimmen Sie die Spannung U_A des Arbeitspunktes. Bestimmen Sie den Strom I_A des Arbeitspunktes. 5.

 $U_A = 1,5V$


6.

 $I_A = 45 mA$

4. Aufgabenkomplex - 2. Aufgabe Bestimmung des Vorwiderstandes einer Dioden-Reihenschaltung

1. Konstruieren Sie die Ersatzkennlinie der Reihenschaltung der Dioden durch Addition der Spannungen U_{D1} und U_{D2} für alle Ströme.

2. Bestimmen Sie die mathematische Funktion der Ersatzkennlinie I_D=f(U_A) für beide Intervalle.

$$I = f(U) = a \cdot U + b$$

$$mit \quad a = \frac{I_2 - I_1}{U_2 - U_1} \quad und \quad b = I_1 - a \cdot U_1 = I_2 - a \cdot U_2$$

2.1. 1. Abschnitt

$$U_{1,1} = 0V$$
; $U_{1,2} = 1,2V$ $I_{1,1} = 0mA$; $I_{1,2} = 0mA$

$$a = \frac{0mA - 0mA}{1 \cdot 2V - 0V} = 0mS$$

$$b = 0mA - 0mS \cdot 0V = 0mA - 0mS \cdot 1,2V = 0mA$$

2.2. 2. Abschnitt

$$U_{2,1} = 1,2V;$$
 $U_{2,2} = 4V$ $I_{2,1} = 0mA;$ $I_{2,2} = 70mA$

$$a = \frac{70mA - 0mA}{4V - 1.2V} = \frac{70mA}{2.8V} = 25mS$$

$$b = 0mA - 25mS \cdot 1,2V = 70mA - 25mS \cdot 4V = -30mA$$

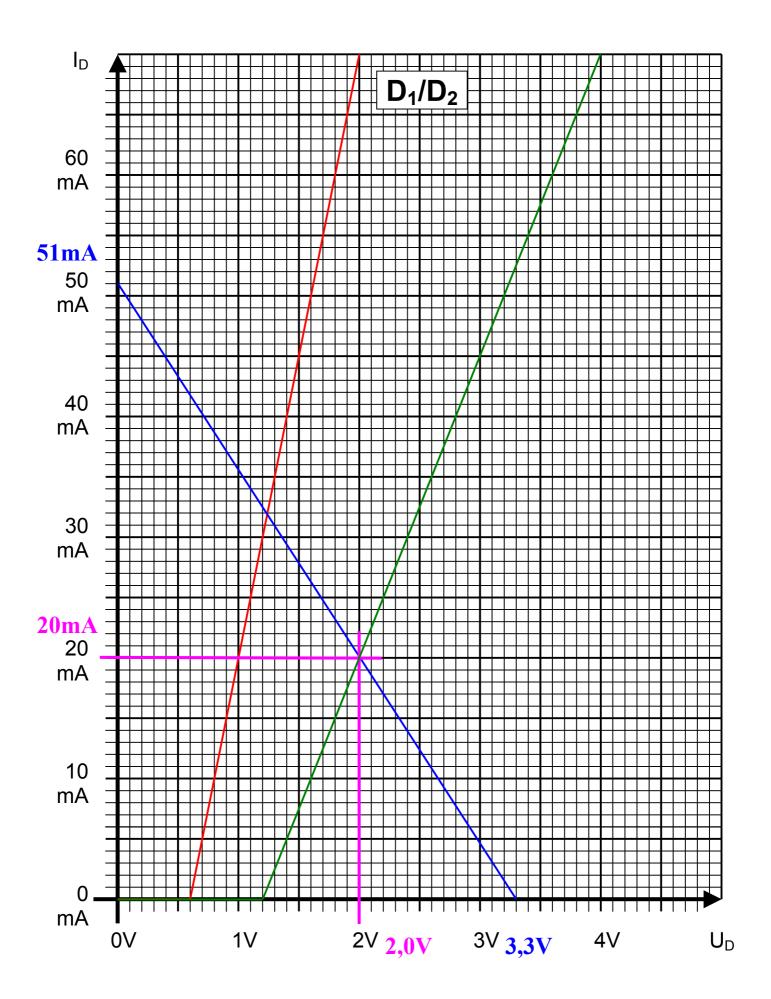
2.3. 1. und 2. Abschnitt

$$I = f(U) = \begin{cases} 0mS \cdot U + 0mA & f\ddot{u}r \quad U \in [0;0,6]V \\ 25mS \cdot U - 30mA & f\ddot{u}r \quad U \in [0,6;2]V \end{cases}$$

3. Bestimmen Sie die Spannung U_A des Arbeitspunktes.

$$U_A = 2V$$

- 4. Konstruieren Sie die Widerstandsgerade.
- 5. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$.


$$I_K = 51mA$$

6. Bestimmen Sie den Widerstand R₁.

$$U_E = 3.3V; I_K = 51mA$$

$$R_1 = \frac{U_E}{I_{\nu}}$$

$$R_1 = \frac{3.3V}{51mA} = 64.7\Omega$$

4. Aufgabenkomplex - 3. Aufgabe Berechnung einer Transistorschaltung

1V

0V

1. Zeichnen Sie mithilfe des Arbeitspunktes (U_{CEA} und I_{CA}) und der Betriebsspannung U_B die Widerstandsgerade für R_L im Kennlinienfeld.

 I_{B} 2. Bestimmen Sie mithilfe der Widerstandsgeraden den Kurzschlußstrom I_K im Kennlinienfeld.. I_{C} 130 Transistor 1 μΑ 62mA mA 110 μΑ 50 mA 90 μΑ 40 70 mA μΑ **37**m 30 50 mA μΑ 20 30 mA μΑ 10 10 mA μΑ mA

4V

3V

3. Berechnen Sie Wert des Widerstandes R_L aus der Betriebsspannung U_B und den Kurzschlußstrom I_K .

$$U_R = 5V$$
; $I_K = 62mA$

$$R_L = \frac{U_E}{I_K}$$

$$R_L = \frac{5V}{62mA} = 80,6\Omega$$

4. Bestimmen Sie mithilfe des Kennlinienfeldes den Basisstrom I_{BA} für den Arbeitspunkt.

$$I_{BA} = 70 \mu A$$

5. Berechnen Sie Querstrom I_O.

$$I_{BA} = 70 \,\mu A$$

$$I_O = 5 \cdot I_{BA}$$

$$I_{o} = 5.70 \,\mu A = 350 \,\mu A$$

6. Berechnen Sie die Spannung über den Widerstand R₁.

$$U_B = 5V; \quad U_{BEA} = U_{R2} = 0.7V;$$

$$U_{R1} = U_B - U_{BEA}$$

$$U_{R1} = 5V - 0.7V = 4.3V$$

7. Berechnen Sie den Widerstand R₁.

$$U_{R1} = 4.3V; \quad I_B = 70 \,\mu A; \quad I_Q = 350 \,\mu A$$

$$R_{1} = \frac{U_{R1}}{I_{R1}} = \frac{U_{R1}}{I_{Q} + I_{B}}$$

$$R_1 = \frac{4.3V}{70\,\mu A + 350\,\mu A} = \frac{4.3V}{420\,\mu A} = 10,238\,k\Omega \approx 10,2\,k\Omega$$

8. Berechnen Sie die Spannung über den Widerstand R₂.

$$U_{REA} = U_{R2} = 0.7V$$

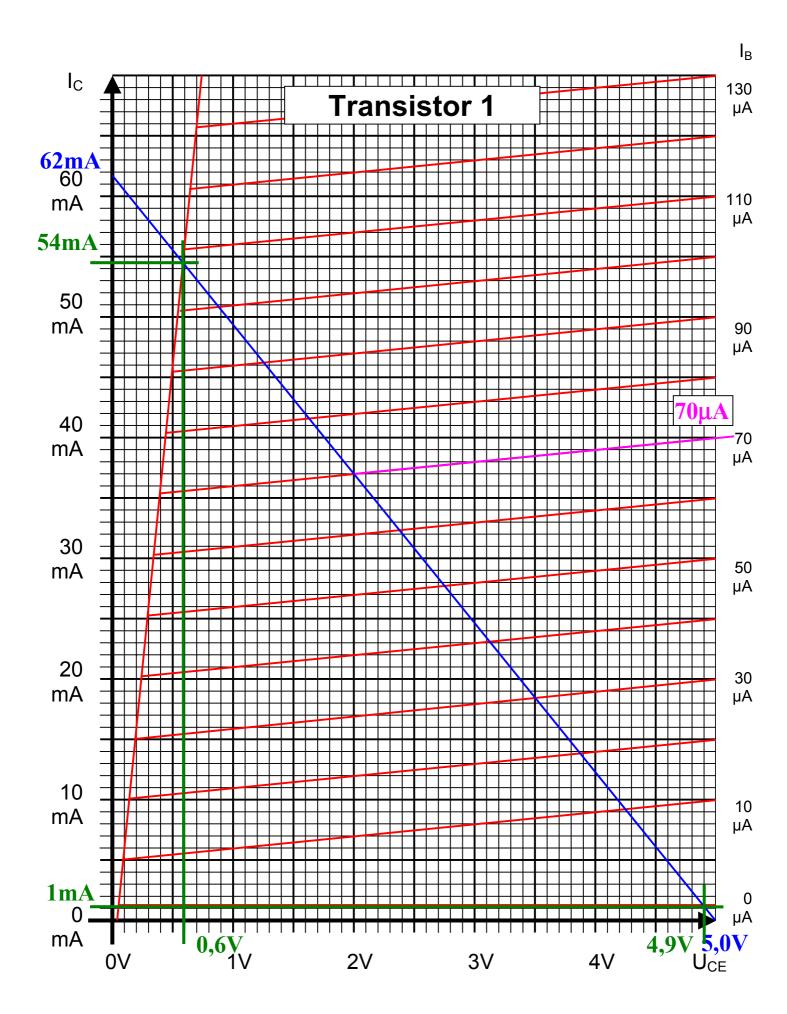
9. Berechnen Sie den Widerstand R₂.

$$U_{R2} = U_{BEA} = 0.7V; \quad I_O = 350 \,\mu A$$

$$R_2 = \frac{U_{R2}}{I_{R2}} = \frac{U_{R2}}{I_{Q}}$$

$$R_2 = \frac{0.7V}{350\,\mu A} = 2k\Omega$$

10. Bestimmen Sie die Spannung U_{CE0} und den Strom I_{C0} für den nichtangesteuerten Transistor (I_B =0) mithilfe des Kennlinienfeldes


$$U_{CE0} = 4.9V$$

$$I_{C0} = 1mA$$

$$I_{B0} = 0mA$$

11. Bestimmen Sie die Spannung U_{CEmax} den Strom I_{Cmax} und den Basisstrom I_{Bmax} für den vollausgesteuerten Transistor (I_{C} =max) mithilfe des Kennlinienfeldes.

$$\begin{split} &U_{CE\,\text{max}} = 0.6V \\ &I_{C\,\text{max}} = 54 mA \quad (auch \quad I_{C\,\text{max}} = 55 mA \quad noch \; g\"{u}ltig \,) \\ &I_{B\,\text{max}} = 110 \,\mu A \end{split}$$

