UNIVERSITÄT LEIPZIG

Institut für Informatik

Abt. Technische Informatik *Gerätebeauftragter*Dr. Hans-Joachim Lieske
Tel. [49] - 0341 - 97 32213
lieske@informatik.uni-leipzig.de

Aufgaben zum Fach Technische Informatik

1. Semester / Wintersemester 1997/98

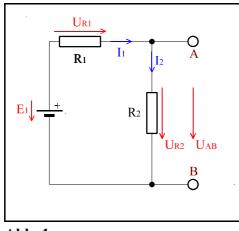
Aufgabe 1.3.1. - Belasteter Spannungsteiler

Bei der Spannungsmessung an elektrischen- und elektronischen Schaltungen kann es zu Verfälschungen des Meßergebnisses durch die Einwirkung des Innenwiderstandes des Meßgerätes kommen. Für die Aufgaben werden die Parameter des im Praktikum verwendeten Multitesters HC 1015 verwendet.

Beachten Sie, daß bei diesen Aufgaben die in der Vorlesung verwendete Pfeilrichtung verwendet wurde. Für Schaltung a) gilt demnach für $\Sigma E + \Sigma U = 0$: $U_{R1} + U_{R2} - E_1 = 0$ daraus folgt $E_1 = U_{R1} + U_{R2}$.

An der folgenden Schaltung soll die Spannung U_{AB} über R_2 mit einem Meßinstrument von $10~k\Omega/V$ (Meßwerk: $250~mV/100\mu A$ - R_i =2,5 $k\Omega$) im Meßbereich 50 V gemessen werden. Dabei ist der Innenwiderstand des Meßinstrumentes R_{MI} = $10k\Omega/V \cdot 50V$ = $500~k\Omega$.

Wie hoch ist die Spannung U_{AB} am Widerstand R₂?


a) ohne das angeschlossene Meßgerät

b) welchen Wert mißt das Meßgerät

Werte: $E_1 = 60V$ $R_1 = 350k\Omega$

 $R_2 = 250 k\Omega$

Wie groß ist die prozentuale Abweichung des gemessenen Wertes gegenüber dem Normalwert (ohne eingeschaltetes Meßgerät)?

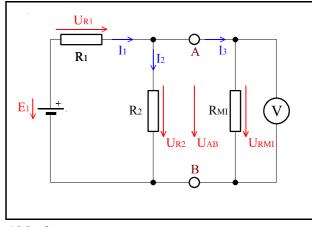


Abb. 1 Abb. 2

V= ideales Voltmeter (mit dem Widerstand ∞ zu betrachten)

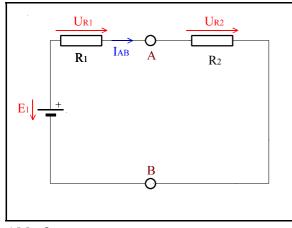
<u>Bemerkung für alle Aufgaben des Studienjahres:</u> AlleErgebnisse sind auszurechnen, Brüche sind nicht zugelassen! Bei den Endergebnissen sind die Dezimalpräfixe zu verwenden! Die Nichtbeachtung wird mit Punktabzug geahndet!

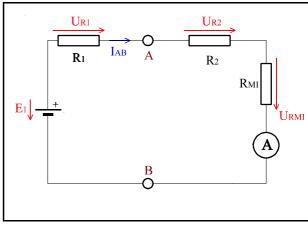
Dr. H-J Lieske/Uni. Leipzig/1996-1997/Version2

Datei: sa3aw97.wpd - 24. November 1997 - Seite 1

Aufgabe 1.3.2. - Spannungsabfall über einem Strommeßinstrument

Ebenso wie bei der Spannungsmessung kann es bei der Strommessung zu Verfälschungen des Meßergebnisses durch Einwirkung des Innenwiderstandes des Strommeßgerätes kommen.


An der folgenden Schaltung soll der Strom, der durch R_2 fließt mit einem Meßinstrument im Meßbereich 50 mA gemessen werden. Dabei ist der Innenwiderstand des Meßinstrumentes im verwendeten 50 mA Meßbereich R_{MI} = 5 Ω (Meßwerk: 250 mV/100 μ A - R_i =2,5 k Ω).


Wie hoch ist der Strom I über den Widerstand R₂ für die Fälle a) und b)?

Werte: $E_1 = 1{,}15 \text{ V}$ $R = 6 \Omega$

a) ohne das angeschlossene Meßgerät $R_1 = 6 \ \Omega$ b) welchen Wert mißt das Meßgerät $R_2 = 17 \ \Omega$

Wie groß ist die prozentuale Abweichung des gemessenen Wertes gegenüber dem Normalwert (ohne eingeschaltetes Meßgerät)?

Datei: sa3aw97.wpd - 24. November 1997 - Seite 2

Abb. 3 Abb. 4

A = ideales Amperemeter (mit dem Widerstand = 0 [Kurzschluß] zu betrachten)