UNIVERSITÄT LEIPZIG

Institut für Informatik

Seminaraufgaben

2.Semester – Sommersemester 2002

Abt. Technische Informatik Gerätebeauftragter

Dr. rer.nat. Hans-Joachim Lieske

Tel.: [49]-0341-97 32213 Zimmer: HG 02-37

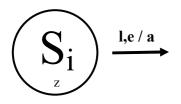
e-mail: <u>lieske@informatik.uni-leipzig.de</u> www: <u>http:/www.ti-leipzig.de/~lieske/</u> Sprechstunde:Mi. 14⁰⁰ – 15⁰⁰ (Vorlesungszeit)

Aufgaben zur Übung Grundlagen der Technische Informatik 2

3. Aufgabenkomplex - 1. Aufgabe

Entwicklung der Schaltung eines Automaten

Entwerfen Sie ein synchrones Schaltwerk, welches beliebig lange Dualzahlen bitweise von links nach rechts einliest (Eingang e)und dabei bitweise die entsprechende Graycode-Zahl von links nach rechts ausgibt (Ausgang a, pro Takt ein Bit)


Ein weiteres Eingangssignal l (Eingang l) gibt an, ob das gerade einzulesende Bit das letzte der Zahl ist. Es ist ein Mealy Automat zu verwenden. Das Schaltwerk ist mit JK-FlipFlops und T-FlipFlops zu realisieren.

Der Anfangszustand ist S_0 (l, e, z = 0.0.0).

Dualzahl	Graycode
0	0
1	1
10	11
11	10
100	110
101	111
110	101
111	100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000
10000	11000
• • •	• • •

- 1. Bestimmen Sie die Zustände.
- 2. Geben Sie das Übergangsdiagramm (Automatengraph) an.
- 3. Erstellen Sie die Übergangs- und Funktionstabellefür die Realisation mit JK-FlipFlops
- 4. Geben Sie die Ansteuergleichungen und die Ausgangsgleichung für die Realisation mit JK-FlipFlops an.
- 5. Zeichnen Sie die entworfene Schaltung für die Realisation mit JK-FlipFlops.
- 3. Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit T-FlipFlops
- 4. Geben Sie die Ansteuergleichungen und die Ausgangsgleichung für die Realisation mit T-FlipFlops an.
- 5. Zeichnen Sie die entworfene Schaltung für die Realisation mit T-FlipFlops.

Als Hilfe ein Muster des Aufbaus des Automatengraphen und der Übergangs- / Funktionstabelle:

JK-Flip-Flop

Übergangs- / Funktionstabelle								
Zahl	Eingangsvariablenl l,e,z	z^+	a	Z	z^+	j	k	nächster Zustand /Zahl
0	0 0 0							
1	0 0 1							
2	0 1 0							
3	0 1 1							
4	1 0 0							
5	1 0 1							
6	1 1 0							
7	1 1 1							

T-Flip-Flop

Übergangs- / Funktionstabelle								
Zahl	Eingangsvariablen l, e, z	z^+	a	z	z^+	Т		nächster Zustand /Zahl
0	0 0 0							
1	0 0 1							
2	0 1 0							
3	0 1 1							
4	1 0 0							
5	1 0 1							
6	1 1 0							
7	1 1 1							