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Abstract
Semantics based on weak admissibility were recently intro-
duced to overcome a problem with self-defeating arguments
that has not been solved for more than 25 years. The recur-
sive definition of weak admissibility mainly relies on the no-
tion of a reduct regarding a set E which only contains argu-
ments which are neither in E, nor attacked by E. At first
glance the reduct seems to be tailored for the weaker versions
of Dung-style semantics only. In this paper we show that
standard Dung semantics can be naturally reformulated us-
ing the reduct revealing that this concept is already implicit.
We further identify a new abstract principle for semantics,
so-called modularization describing how to obtain further ex-
tensions given an initial one. Its importance for the study of
abstract argumentation semantics is shown by its ability to
alternatively characterize classical and non-classical seman-
tics. Moreover, we tackle the notion of strong equivalence via
characterizing kernels and give a complete classification of
the weak versions regarding well-known properties and pos-
tulates known from the literature.

1 Introduction
Dung’s abstract argumentation frameworks (AFs) provide a
formally simple basis to capture the essence of different non-
monotonic formalisms (Dung 1995). They are focusing en-
tirely on conflict resolution among arguments, treating the
latter as abstract items without logical structure. Hence, the
only information available in AFs is the so-called attack re-
lation that determines whether an argument is in a certain
conflict with another one. Coherent world views, i.e. jointly
acceptable subsets of the arguments, are determined by so-
called semantics.

Until recently, most of the existing argumentation seman-
tics were either based on the concept of naivity or admissi-
bility (van der Torre and Vesic 2017). The former is satisfied
if the selected sets are maximal conflict-free. A set of argu-
ments S is admissible if each attacker of an element of S
is counterattacked by some element within S. This means,
naive sets do not have to defend themselves against any ar-
gument whereas admissible ones have to counterattack each
single attacker. In a recent paper (Baumann, Brewka, and
Ulbricht 2020) a mediating position between these two ex-
treme cases was introduced, so-called weak admissibility.
The new concept limits the effect of self-defeating argu-
ments, that is, arguments which attack themselves directly

or indirectly through an odd loop of arguments. Intuitively,
a self-defeating argument cannot rule out an argument it at-
tacks unless the self-defeat is eliminated by an argument
breaking up the odd loop from outside. The newly intro-
duced semantics satisfying weak admissibility are based on
the notion of a reduct of an AF. Intuitively, the E-reduct of
an AF is the part of the AF which is still undecided, given a
conflict-free set of arguments E is accepted.

Among others, the reduct induced by a certain extension
will be a central notion in the present paper. Let us con-
sider the following example illustrating some of the core
concepts we are going to investigate. Assume an agent liv-
ing in Europe is planning a trip. After carefully weighing
all options, the (exclusive) choice is between Paris and Las
Vegas. Moreover, the agent did not yet decide whether to
travel by train or airplane. Of course, Las Vegas is too far
away to travel by train. The agent’s knowledge base can thus
be expressed by the following simple AF:

train planeV egasParis

Assume the agent decides for Paris. By standard assump-
tions, this renders Paris “accepted”, Vegas “rejected” and
train as well as plane are still open. This can be formalized
by the reduct of the given AF which contains the arguments
that are not yet decided:

train planeV egasParis

This reduced AF possesses both train and plane as ac-
ceptable arguments, formalizing that the agent can reach
Paris both ways. With no further constraints imposed, this
means both {Paris, train} and {Paris, plane} should
be acceptable. The so-called modularization property will
formalize this observation. If, on the other hand, the
agent decides for Vegas, the argument plane is not chal-
lenged anymore in the corresponding reduced AF, yielding
{V egas, plane} as unique extension.

Although these concepts appear quite natural and are in-
deed implicit in many AF semantics proposed in the liter-
ature, the modularization property will turn out to be a sur-
prisingly powerful tool to investigate their properties and be-
havior.



In this paper we perform a rigorous investigation of such
abstract principles and present a number of far-reaching re-
sults. In particular:

• We rephrase some of the standard notions of abstract ar-
gumentation in terms of the reduct. This sheds new light
on the relationship between standard and weak admissi-
bility semantics.

• Subsequently we revisit the notion of weak defense and
show that it can be formulated more concisely and more
intuitively based on the reduct.

• We identify new interesting properties for semantics, most
notably the property of modularization, which go beyond
the properties studied so far in abstract argumentation.
These properties play a key role for the investigation of
former and newly introduced semantics.

• We analyze the behavior of weak admissibility semantics
w.r.t. well-known properties and postulates discussed in
the literature, e.g. those in (Baroni, Caminada, and Gia-
comin 2018) and (van der Torre and Vesic 2017).

• We address strong equivalence for weak admissibility se-
mantics via characterizing kernels. Moreover, we present
a comparison with classical kernels.

• We investigate the fragments of odd-cycle free and acyclic
AFs. In addition, we point at some very first complexity
results.

Due to the limited space we omit some technical proofs.

2 Background
Let us start by giving the necessary preliminaries.

2.1 Standard Concepts and Classical Semantics
We fix a non-finite background set U . An argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,R) where A ⊆ U represents a set of arguments and
R ⊆ A× A models attacks between them. In this paper we
consider finite AFs only (cf. (Baumann and Spanring 2015;
2017) for a consideration of infinite AFs). Let F denote the
set of all finite AFs over U . Given an AF F = (B,S) we
let A(F ) = B and R(F ) = S. The union F t G of two
AFs F and G is given as (A(F ) ∪A(G), R(F ) ∪R(G)).
Now assume F = (A,R). For U ⊆ A we let F ↓U=
(A∩U,R|U×U ). For a, b ∈ A, if (a, b) ∈ Rwe say that a at-
tacks b as well as a attacks (the set)E given that b ∈ E ⊆ A.
A set U ⊆ A is called unattacked if there is no a ∈ A \ U
attacking U . Moreover, E is conflict-free in F (for short,
E ∈ cf (F )) iff for no a, b ∈ E, (a, b) ∈ R. We say a set
E classically defends (or simply, c-defends) an argument a
if any attacker of a is attacked by some argument of E.

A semantics σ is a mapping σ : F → 22
U

where we have
F 7→ σ(F ) ⊆ 2A, i.e. given an AF F = (A,R) a semantics
returns a subset of 2A. In this paper we consider so-called
naive, admissible, complete, preferred, grounded and stable
semantics (abbr. na , ad , co, pr , gr , stb).
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (A).
1. E ∈na(F ) iff E is ⊆-maximal in cf(A),

2. E ∈ad(F ) iff E c-defends all its elements,
3. E ∈co(F ) iffE ∈ ad(F ) and for any x c-defended byE

we have, x ∈ E,
4. E ∈pr(F ) iff E is ⊆-maximal in co(F ),
5. E ∈gr(F ) iff E is ⊆-minimal in co(F ), and
6. E ∈stb(F ) iffE∈cf (A) and any a /∈E is attacked byE.

In addition, we also consider strong admissible sets rely-
ing on a recursive definition (Baroni and Giacomin 2007).

Definition 2.2. Let F = (A,R) be an AF. A set E ⊆ A
strongly defends a ∈ A if for any attacker b of a, there is
some c ∈ E\{a} attacking b andE\{a} strongly defends c.
A set E ⊆ A is strongly admissible in F (E ∈ ad s(F )) if
each a ∈ E is strongly defended by E.

Assume we are given an AF F and a semantics σ. Then
we say an argument a ∈ A is credulously accepted (skep-
tically accepted) if a ∈

⋃
σ(F ) (a ∈

⋂
σ(F )). If σ is

uniquely defined, i. e. |σ(F )| = 1 for each AF F = (A,R)
we may simply speak of accepted arguments as both notions
coincide. As usual, we slightly abuse notation and use σ ⊆ τ
for two semantics σ, τ if σ(F ) ⊆ τ(F ) for any AF F .

2.2 Reduct and Weak Admissibility
The reduct is a main subject of study in this paper. For a
compact definition, we use E+ = {a ∈ A | E attacks a} as
well as E⊕ = E ∪ E+ for a given AF F = (A,R). The
latter set is known as the range of E.

Definition 2.3. Let F = (A,R) be an AF and let E ⊆ A.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ E⊕.

By definition, FE is the subframework of F obtained by
removing the range of E as well as corresponding attacks,
i. e. FE = F↓A\E⊕ . Intuitively, theE-reduct contains those
arguments whose status still needs to be decided, assuming
the arguments in E are accepted. Consider therefore the fol-
lowing illustrating example.

Example 2.4 (Reduct and Admissibility). Let the F be the
AF depicted below. In contrast to {a} we verify the admis-
sibility of {b} in F . However, their reducts are identical and
contain the self-defeating argument c only.

a bc

F :

a bc

F {a} = F {b} :

Observe that the reduct does not contain any attacker of the
admissible set {b} in contrast to the non-admissible set {a}.

The reduct is the central notion in the definition of
weak admissible semantics (Baumann, Brewka, and Ul-
bricht 2020):

Definition 2.5. For an AF F = (A,R), E ⊆ A is called
weakly admissible (or w-admissible) in F (E ∈ adw(F )) iff

1. E ∈ cf (F ) and
2. for any attacker y of E we have y /∈

⋃
adw

(
FE
)
.



The major difference between the standard definition of
admissibility and the “weak” one is that arguments do not
have to c-defend themselves against all attackers: attackers
which do not appear in any w-admissible set of the reduct
can be neglected.
Example 2.6 (Example 2.4 ctd.). In the previous example
we observed {a} /∈ ad(F ). Let us verify the weak ad-
missibility of {a} in F . Obviously, {a} is conflict-free in
F (condition 1). Moreover, since c is the only attacker of
{a} in F {a} we have to check c /∈

⋃
adw

(
F {a}

)
(con-

dition 2). Since {c} violates conflict-freenes in the reduct
F {a} = ({c}, {(c, c)}) we find {c} /∈ adw

(
F {a}

)
yield-

ing
⋃
adw

(
F {a}

)
= ∅. Hence, c /∈

⋃
adw

(
F {a}

)
holds

proving the claim.
Now weakly preferred semantics is defined in the natural

way as ⊆-maximal w-admissible extensions.
Definition 2.7. For an AF F = (A,R), E ⊆ A is called
weakly preferred (or w-preferred) in F (E ∈ prw(F )) iff E
is ⊆-maximal in adw(F ).

The notion of weak defense will be studied in Sect. 4.2
and we will recall its definition there.

3 Semantics and their Reduct
The reduct was introduced to define weak admissibility. At
first sight, it may seem that this is the only use of a some-
what ad hoc concept. However, it turns out that the notion of
the reduct also helps to understand the behavior of classical
AF semantics, and in particular to identify interesting con-
nections between the classical and the new semantics. We
first collect some basic properties:
Proposition 3.1. Given an AF F = (A,R) and E,E′ ⊆ A.

1. IfE′ is unattacked in F , then it remains unattacked in FE .
2. Let E∪E′ ∈ cf (F ). Then, E c-defends E′ iff no attacker

of E′ occurs in FE .
3. Let E,E′ ∈ cf (F ). If E′ does not attack E in F and
E′ ⊆ A

(
FE
)
, then E ∪ E′ ∈ cf (F ).

4. Let E ∩ E′ = ∅. In any case, FE∪E
′ ⊆

(
FE
)E′

. If

E ∪ E′ ∈ cf (F ), then also FE∪E
′ ⊇

(
FE
)E′

.
We now show that classical semantics can be character-

ized concisely in terms of the reduct:
Proposition 3.2. Let F = (A,R) be an AF and E ∈ cf (A).
1. E ∈stb(F ) iff FE = (∅, ∅),
2. E ∈ad(F ) iff no attacker of E occurs in FE ,
3. E ∈ pr(F ) iff no attacker of E occurs in FE and⋃

ad
(
FE
)

= ∅, and
4. E ∈ co(F ) iff no attacker of E occurs in FE and no

argument in FE is unattacked.
We proceed with the central modularization property. It

formalizes the following intuitive idea: given a solid point
of view based on an AF (an extension) and a ”compatible”
point of view based on the remaining AF (an extension of the
reduct), these can be merged to again obtain a solid point of
view (an extension of the original AF).

Definition 3.3. A semantics σ satisfies modularization if for
any AF F we have: E ∈ σ(F ) and E′ ∈ σ

(
FE
)

implies
E ∪ E′ ∈ σ(F ).

It turns out that Dung’s standard semantics satisfy modu-
larization. We give the full proof of the following assertion
in order to familiarize the reader with the techniques involv-
ing the reduct. Many of the more elaborate results below
utilize analogous methods.
Proposition 3.4. Let F = (A,R) be an AF. Each semantics
σ ∈ {ad , co, pr , gr , stb} satisfies modularization.

Proof. Let us demonstrate how to infer these results using
the characterizations given in Proposition 3.2.

Consider σ = ad . Let E ∈ ad(F ) and E′ ∈ ad
(
FE
)
.

First we note that E ∪ E′ ∈ cf (F ): If E attacks E′, then
it is not possible that all arguments of E′ occur in FE (as
the range of E is removed in FE). Thus E′ ∈ ad

(
FE
)

would be impossible. Vice versa, if E′ attacks E, then oc-
currence of E′ in FE contradicts admissibility of E. Re-
garding defense, admissibility of E ensures that no attacker
of E occurs in FE and admissibility of E′ ensures that no
attacker of E′ occurs in

(
FE
)E′

. Due to Proposition 3.1,(
FE
)E′

= FE∪E
′
. Hence no attacker of E ∪ E′ occurs in

FE∪E
′

proving admissibility of E ∪ E′.
Now let σ = co. We already know from the previous case

that E ∪ E′ is admissible in F . Moreover, E′ being com-
plete in FE means (FE)E

′
does not contain unattacked ar-

guments (see Proposition 3.2). Again by
(
FE
)E′

= FE∪E
′

(Proposition 3.1), FE∪E
′

does not contain unattacked argu-
ments. Since E ∪ E′ defends itself, it is complete.

In case of σ ∈ {pr , gr , stb} we have σ(FE ) = {∅}: For
stb this is clear since FE is the empty AF by definition. As
gr is complete, the reduct FE does not contain unattacked
arguments yielding gr

(
FE
)

= {∅}. For σ = pr assume
E ∈ pr(F ) and E′ ∈ pr

(
FE
)
. Since pr ⊆ ad , mod-

ularization of ad yields E ∪ E′ ∈ ad(F ). As preferred
extensions are maximal in ad we deduce E′ = ∅.

In contrast, naive semantics does not satisfy modulariza-
tion. That is, a naive extension is not restrictive enough to
be compatible with naive extensions of the corresponding
reduct. A vanilla odd cycle suffices to illustrate this.
Example 3.5. Of course, E = {a1} is a naive extension of
F = ({a1, a2, a3}, {(a1, a2), (a2, a3), (a3, a1)}). The cor-
responding reduct is FE = ({a3}, ∅) possessing the unique
naive extension E′ = {a3}. Since E ∪ E′ /∈ cf (F ), naive
extensions cannot be modular.

It is easy to recognize that the previous example makes
use of the fact that E = {a1} does not defend itself against
{a3} and thus tolerates E′ = {a3} in the reduct FE . So one
might wonder whether there is a deeper connection between
modularization and admissibility. At a first glance, it ap-
pears to be a reasonable conjecture to assume admissibility
is necessary for modularization, i. e. a semantics σ satisfy-
ing the latter must satisfy σ ⊆ ad as well. In Section 4 we
will see however that this is not necessarily the case.



Let us return to the relation between classical semantics
and their reduct. As we have seen in the proof of Propo-
sition 3.4, preferred, grounded and stable semantics satisfy
σ
(
FE
)

= {∅}.
We will call this property meaningless reduct.

Definition 3.6. A semantics σ satisfies meaningless reduct
if for any AF F we have: E ∈ σ(F ) implies σ

(
FE
)

= {∅}.
Proposition 3.7. Each semantics σ ∈ {pr , gr , stb} satisfies
meaningless reduct.

The following obvious assertion will be frequently used
in the rest of the paper.

Proposition 3.8. If a semantics satisfies meaningless reduct,
then it also satisfies modularization.

Preferred and grounded semantics both satisfy meaning-
less reduct and thus also modularization. In order to distin-
guish them on an abstract level, we introduce further prop-
erties. As an intermediate step consider the following:

Definition 3.9. A semantics σ satisfies unattack inclusion
if for any AF F and any unattacked argument a, there is
some E ∈ σ(F ) with a ∈ E; σ satisfies strict unattack
inclusion if for any unattacked argument a, {a} ∈ σ(F ) and
additionally, ∅ ∈ σ(F ).

Apart from the possibly collapsing stable semantics all
classical Dung’s semantics satisfy unattack inclusion. As the
following Lemma formalizes, modularization even ensures
that all unattacked arguments occur in the same σ-extension,
if unattack inclusion is satisfied.

Lemma 3.10. Let σ be any semantics satisfying modular-
ization and unattack inclusion. If X is a set of unattacked
arguments in F , then there is some E ∈ σ(F ) with X ⊆ E.

We are now in the position to characterize grounded se-
mantics as ⊆-least semantics regarding credulous accep-
tance.

Proposition 3.11. For any semantics σ satisfying unattack
inclusion and modularization we have

⋃
gr(F ) ⊆

⋃
σ(F )

for any AF F .

A further central result of this paper is the following:
Strongly admissible semantics can be seen as the ⊆-least
semantics among all semantics satisfying strict unattack in-
clusion and modularization.

Theorem 3.12. For any semantics σ satisfying strict
unattack inclusion and modularization we have: ad s ⊆ σ.

Proof. We have to show: For any AF F , ad s(F ) ⊆ σ(F ).
We use the following characterization from (Baumann, Lins-
bichler, and Woltran 2016): A set E ⊆ A is strongly admis-
sible iff there are finitely many pairwise disjointA1, . . . , An
s.t. E =

⋃
1≤i≤nAi with A1 ⊆ ΓF (∅) and

⋃
1≤i≤j Ai c-

defends Aj+1.
We show: Given E ∈ ad s(F ), we also have E ∈ σ(F ).

For this, we assume E can be written as E =
⋃

1≤i≤nAi
with Ai as above and prove the claim by induction over n.

If n = 0, then E = ∅ yielding E ∈ σ(F ) by strict
unattack inclusion. Now assume E can be written as E =

⋃
1≤i≤n+1Ai with Ai as described above. By induction hy-

pothesis, E′ =
⋃

1≤i≤nAi ∈ σ(F ). By the choice of the
Ai,

⋃
1≤i≤nAi c-defends An+1, i. e. E′ c-defends An+1.

Moreover, E′ ∩ An+1 = ∅. Hence An+1 ⊆ A
(
FE

′
)

is unattacked in FE
′

by Proposition 3.1. Now assume
An+1 = {a1, . . . ak} (recall that A is finite). By strict
unattack inclusion, {a1} ∈ σ

(
FE

′
)

and hence modular-
ization yieldsE′∪{a1} ∈ σ(F ). SinceE′∪{a1} c-defends
An+1 \ {a1} = {a2, . . . , ak}, a straightforward induction
over the size of An+1 yields E′ ∪An+1 = E ∈ σ(F ).

4 Weak Admissibility Semantics
Let us now turn to the “weak” counterparts of Dung’s se-
mantics. In this section, we will discuss various properties
of weak admissibility semantics, revisit the notion of weak
defense, and evaluate these semantics in the light of our new
and existing criteria.

4.1 Weak Admissibility and Modularization
Our first observation - with a couple of interesting conse-
quences - is that adw satisfies modularization as well. Since
weakly admissible extensions are not admissible in general,
this in particular implies that a modular semantics σ does
not necessarily satisfy σ ⊆ ad .

Theorem 4.1. Let F = (A,R) be an AF and E ∈ adw(F ).
Suppose E ∩ E′ = ∅. Then E′ ∈ adw

(
FE
)

if and only if
E ∪ E′ ∈ adw(F ).

Proof. (⇒) The first observation we are going to make is
that E ∪ E′ is conflict-free: Since E′ occurs in the reduct
FE , E does not attack E′. Moreover, if E′ attacks E, then
E cannot be w-admissible. Now our claim follows by in-
duction over |A|, with trivial base case.

(inductive step) Assume the claim holds for each AF with
|A| ≤ n and let F = (A,R) where |A| = n + 1. The
case E = ∅ is trivial since F = F ∅. Thus let E 6= ∅ be
w-admissible in F . Assume E′ ∈ adw

(
FE
)

and assume
E ∪ E′ is not w-admissible. Since E ∪ E′ is conflict-free,
there is thus a set E′′ ∈ adw

(
FE∪E

′
)

attacking E ∪ E′.

Since FE∪E
′

=
(
FE
)E′

, E′′ ∈ adw
((
FE
)E′)

as well.
So we apply our induction hypothesis to obtain that E′ ∪
E′′ ∈ adw

(
FE
)
. We furthermore deduce that E′′ attacks

E, since E′′ was assumed to attack E ∪ E′, but E′ ∪ E′′ is
conflict-free. This means E′ ∪ E′′ ∈ adw

(
FE
)

attacks E,
contradicting w-admissibility of E.

(⇐) Assume E ∪E′ ∈ adw(F ). Then E′ is conflict-free.

Hence if E′ /∈ adw
(
FE
)
, there is E′′ ∈ adw

((
FE
)E′)

attacking E′. Since
(
FE
)E′

= FE∪E
′

this contradicts w-
admissibility of E ∪ E′.

Corollary 4.2. The semantics adw satisfies modularization.

Let us illustrate modularization for adw with a slightly
extended version of the AF considered in Example 2.4.



Example 4.3. Let F be the AF depicted below.

c dbaF :

Since E = {b} is only attacked by a self-attacker in its
reduct FE , E ∈ adw(F ). Now E′ = {d} ∈ adw

(
FE
)

is trivial since {d} is even admissible in FE .

c dbaFE :

By modularization we obtain E ∪ E′ = {b, d} ∈ adw(F ).
Indeed, adw(F ) = {∅, {b}, {d}, {b, d}}.

We want to stress that modularization also helps to restrict
a given semantics σ. For example, the AF F cannot pos-
sess {c} as w-admissible extension, because modularization
would enforce {b, c} contradicting adw(F ) ⊆ cf (F ).

c dbaF {c} :

Analogously to strong admissibility (Theorem 3.12) we
formulate a concise assertion regarding weak admissibil-
ity. Namely, adw can be seen as a ⊆-maximal semantics
among all semantics satisfying conflict-freeness and modu-
larization. This quite surprising result can without any doubt
be considered as the main theorem of this section.

Theorem 4.4. For any conflict-free semantics σ satisfying
modularization and adw ⊆ σ, we already have σ = adw.

Proof. Assume σ is as described. We show by induction
over the size of A that for each AF F = (A,R), we have
σ(F ) = adw(F ). If |A| = 0, then σ(F ) = {∅} = adw(F ).

(inductive step) Assume the claim holds for each AF with
at most n arguments and let F = (A,R) with |A| = n + 1.
Let σ ⊆ cf satisfy modularization and assume adw ⊆ σ.
Let ∅ 6= E ∈ σ(F ). We show that E ∈ adw(F ) as well.
From E ∈ σ(F ) we deduce that E is conflict-free. We have
thus left to show that E is not attacked by any w-admissible
argument in FE . So take E′ ∈ adw

(
FE
)
. By assump-

tion, adw ⊆ σ yielding E′ ∈ σ
(
FE
)
. By modularization,

E∪E′ ∈ σ(F ) and we hence infer E∪E′ ∈ cf (F ). In par-
ticular, E′ does not attack E which yields E is not attacked
by any w-admissible argument in FE . Thus E ∈ adw(F ).
Consequently σ(F ) ⊆ adw(F ).

This means weak admissibility is among the least restric-
tive conflict-free semantics satisfying modularization which
sheds a new light on semantics based on it. The initial mo-
tivation was to obtain a weaker version of defense, more
precisely to disregard self-defeating arguments. The con-
nection to satisfaction of the modularization property estab-
lished in Theorem 4.4 is thus rather surprising: Being more
liberal than adw already forces a semantics σ to either drop
conflict-freeness or modularization. Moreover, it is inter-
esting to see that strong admissible semantics is in a certain
sense the most restrictive modular semantics (Theorem 3.12)

while weak admissible semantics is among the most liberal
ones (Theorem 4.4).

The modularization property allows us to infer that a w-
preferred extension E does not tolerate existence of weakly
admissible arguments in the reduct FE . This yields a char-
acterization of prw similar to classically preferred exten-
sions, replacing preferred and admissible with w-preferred
and w-admissible, respectively (see Proposition 3.2).

Theorem 4.5. Let F = (A,R) be an AF. ThenE ∈ prw(F )
if and only if E is conflict-free such that

⋃
adw

(
FE
)

= ∅.

Proof. (⇐) Assume E is not w-preferred. The reason can-
not be an attacker in the reduct, so there is a setE ( E∗ such
thatE∗ is w-admissible. SetE′ = E∗\E, i. e. E∪E′ = E∗

with E′ 6= ∅. By Theorem 4.1 E′ ∈ adw
(
FE
)

which con-
tradicts

⋃
adw

(
FE
)

= ∅.
(⇒) If there is a non-empty E′ ∈ adw

(
FE
)
, then modu-

larization yields E∪E′ is w-admissible in F . Consequently
E is not maximal in adw(F ), a contradiction.

Since FE does not possess w-admissible arguments for
E ∈ prw(F ), we have prw

(
FE
)

= {∅}, implying prw

satisfies meaningless reduct and hence also modularization.

Corollary 4.6. The semantics prw satisfies meaningless
reduct and modularization.

4.2 Revisiting Weak Defense
In (Baumann, Brewka, and Ulbricht 2020) the following def-
inition of weak defense has been proposed in order to define
weakly complete semantics.

Definition 4.7. Let F = (A,R) be an AF. Given two sets
E,X ⊆ A. We say E weakly defends (or w-defends) X iff
for any attacker y of X we have,

1. E attacks y, or (c-defense)
2. y /∈

⋃
adw

(
FE
)
, y /∈ E and X ⊆ X ′ ∈ adw(F ).

Although this definition induces reasonable notions of
weakly complete extensions, the technical details are quite
unhandy (mentioning c-defense and y ∈ E as special cases)
and require both the reduct FE as well as the initial AF F . A
notion of defense which is based on the reduct only would be
more comparable to c-defense and induce a clearer behavior.

It is however worth mentioning that classical defense is
also usually applied to restricted situations: When defining
gr or co, one can usually assume that the defending set E
is admissible. Analogously, w-grounded and w-complete
extensions only mention weak defense restricted to situa-
tions where a w-admissible extension E w-defends a super-
set E ⊆ X .

Definition 4.8. For an AF F = (A,R), E ⊆ A is called
weakly complete (or just w-complete) in F (E ∈ cow(F )) iff
E ∈ adw(F ) and for any X , s.t. E ⊆ X and X w-defended
by E, we have X ⊆ E.

A set E ⊆ A is called weakly grounded (or w-grounded)
in F (E ∈ grw(F )) iff E is ⊆-minimal in cow(F ).



Our next step is to develop a more concise definition of
cow, which is easier to understand, but still equivalent to the
original one. Again, the modularization property will play a
central role: It will enable us to phrase defense as required
in Definition 4.8 in terms of the reduct only. We will also
see that mentioning c-defense as special case is superfluous.

Our revisited version of weak defense shall be as parallel
and analogous to classical defense as possible. We will thus
start by collecting some properties of the latter.

Proposition 4.9. Let F be an AF and let E ∈ ad(F ). The
set E c-defends X ⊆ A iff X is unattacked in FE .

Moreover, since admissibility satisfies strict unattack in-
clusion, we see that in this case, X is admissible in FE .
Thus moving to defense of supersets and renaming the sets
accordingly yields:

Proposition 4.10. Let F be an AF and E ∈ ad(F ). Then,
for any X , s.t. E ⊆ X and X = E ∪̇D, we have that E
c-defends X = E ∪̇D iff

• for any attacker y of D, y does not occur in FE ,
• D is admissible in FE .

Note that consideration of attackers y of E is not nec-
essary as E is assumed to be admissible itself. Now let
us turn to the corresponding weak notion. Recall that w-
admissibility of E does not require defense against all ar-
guments, but only against those that are themselves w-
admissible in the reduct FE . In light of Proposition 4.10
one would thus expect that w-defense requires X to be
unattacked by weakly admissible arguments in FE . How-
ever, this does not suffice to ensure weak admissibility of D
in FE . If we make this requirement explicit, we end up with
the following two conditions:

• for any attacker y of D, y /∈
⋃
adw(FE),

• D can be extended to a w-admissible extension of FE .

Indeed, the modularization theorem equips us with the
technical foundations which yield the desired, more con-
cise characterization of weak defense. Note in particular that
classical defense is not mentioned as special case anymore
and only FE is taken into consideration in the two items
below, not F itself. Thus the asymmetry observed for w-
defense is resolved, at least for the relevant cases:

Proposition 4.11. Let F be an AF and let E ∈ adw(F ).
Then, for any X , s.t. E ⊆ X and X = E ∪̇D, we have that
E w-defends X = E ∪̇D iff

1. for any attacker y of D, y /∈
⋃
adw(FE), and

2. there is a set D ⊆ D′ with D′ ∈ adw
(
FE
)
.

Given this more convenient definition of weak defense, let
us calculate weakly complete extensions for a slight modifi-
cation of our running example.

Example 4.12. Consider the AF F :

c dbaF :

Let us verify that E = {d} w-defends X = {b, d}.
Since {d} itself is w-admissible, the conditions of the above
proposition are met. We thus consider the reduct FE :

c dbaFE :

Now D = {b} is not attacked by a w-admissible argument
(since a is a self-attacker) and is itself w-admissible in FE .
Hence X = E ∪ D is defended by E. Thus {b} is not w-
complete (but of course {b, d} is). It is thus easy to verify
that cow(F ) = {∅, {c}, {b, d}}.

Now let us turn to the central property of our study. The
above characterization of weak defense shows that mention-
ing the reduct FE suffices. This enables us to prove satis-
faction of modularization.

Theorem 4.13. The semantics cow satisfies modularization.

Moreover, one can infer that the emptyset is w-complete
in FE , given E ∈ cow(F ). This yields meaningless reduct
for grw and thus modularization is immediate.

Proposition 4.14. The semantics grw satisfies meaningless
reduct and modularization.

4.3 Weak Semantics and Classical Criteria
So far, our analysis was focusing on the modularization
property and its consequences for classical Dung-style se-
mantics and their “weak admissible” counterparts. The
properties we investigated all evolved around the reduct of
a given extension. In order to broaden this structured anal-
ysis of the weak versions, let us head to the most important
criteria proposed in (Baroni and Giacomin 2007).

Definition 4.15. A semantics σ satisfies

• I-maximality if σ(F ) forms a ⊆-antichain for any AF F ,
• admissibility if σ ⊆ ad ,
• naivity if σ ⊆ na ,
• strong admissibility if for any AF F and E ∈ σ(F ) we

have: a ∈ E implies E strongly defends a,
• reinstatement if for any AF F and E ∈ σ(F ) we have:
E defends a implies a ∈ E,

• weak reinstatement if for any AF F and E ∈ σ(F ) we
have: E strongly defends a implies a ∈ E,

• CF-reinstatement if for any AF F and E ∈ σ(F ) we
have: If both E defends a and E ∪ {a} ∈ cf (F ), then
a ∈ E,

• directionality if for any AF F , if U is s.t. no a /∈ U attacks
any argument inU , then {E∩U | E ∈ σ(F )} = σ(F↓U ).

We want to mention that (dis-)satisfaction can be shown
with reasonable effort in most of the cases. For example,
neither σ ∈ {adw, prw, cow, grw} satisfies admissibility or
naivity. The most difficult case is directionality. Although
this is not as easy to see, both adw and prw are directional as
stated in Proposition 4.16 below. The case σ ∈ {cow, grw}
is left for future work. A summary of the results is reported
in Table 1.



ad co pr gr stb adw cow prw grw

Modularization 3 3 3 3 3 3 3 3 3
Meaningless reduct 7 7 3 3 3 7 7 3 3
Unattack inclusion 3 3 3 3 7 3 3 3 3
I-maximality 7 7 3 3 3 7 7 3 7
Admissibility 3 3 3 3 3 7 7 7 7
Naivity 7 7 7 7 3 7 7 7 7
Strong admissibility 7 7 7 7 7 7 7 7 7
Reinstatement 7 3 3 3 3 7 3 3 3
Weak reinstatement 7 3 3 3 3 7 3 3 3
CF-reinstatement 7 3 3 3 3 7 3 3 3
Directionality 3 3 3 3 7 3 ? 3 ?

Table 1: Semantics and their properties. Gray highlighted results taken from (Baroni and Giacomin 2007).

Proposition 4.16. adw and prw satisfy directionality.
As the table shows, all considered semantics (in partic-

ular the standard Dung semantics) satisfy the modulariza-
tion property. One could thus argue that modularization
is a rather generic criterion. It is all the more surprising
that this property is capable of “characterizing” both strong
(Theorem 3.12) as well as weak (Theorem 4.4) admissible
extensions and, in a certain sense, also grounded (Proposi-
tion 3.11) ones.

As a final remark, we want to mention that I-maximality
and modularization imply meaningless reduct. Discovering
further relations between the criteria is left for future work.
Proposition 4.17. If a semantics σ satisfies I-maximality,
modularization and σ(F ) 6= ∅ for each F , then meaningless
reduct is implied.

5 Strong Equivalence
In case of propositional logic we have that - in contrast to all
non-monotonic logics available in the literature - sharing the
same models guarantees intersubstitutability in any logical
context without loss of information. As an aside, it is not
the monotonicity of a certain logic but rather the so-called
intersection property which guarantees this behavior (Bau-
mann and Strass 2016). This means, analogously to other
non-monotonic logics one may easily find two AFs F and
G which possess the same σ-extensions but differ seman-
tically if augmented by a further AF H . We say that both
frameworks are strongly equivalent if the latter is impossi-
ble. Consider the following formal definition.
Definition 5.1. Given a semantics σ. Two AFs F and G are
strongly equivalent w.r.t. σ (for short, F ≡σs G) iff for each
AF H we have, σ(F tH ) = σ(G tH ).

It was the main result in (Oikarinen and Woltran 2011)
that strong equivalence can be decided by looking at the syn-
tax only. More precisely, they introduced the notion of a
kernel of an AF F which is (informally speaking) a graph
where redundant attacks w.r.t. F are deleted or added and
showed that syntactical identity of suitably chosen kernels
characterizes strong equivalence.
Definition 5.2. Let σ ∈ {stb, ad , gr , co,na}. For any AF
F = (A,R) we define the σ-kernel F k(σ) =

(
A,Rk(σ)

)
as:

Rk(stb)=R \ {(a, b) | a 6= b, (a, a) ∈ R},
Rk(ad)=R\{(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)}∩R 6= ∅},

Rk(gr)=R\{(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)}∩R 6= ∅},

Rk(co)=R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R},

Rk(na)=R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩R 6= ∅}.

The following characterization results for finite AFs are
taken from (Oikarinen and Woltran 2011; Baumann, Lins-
bichler, and Woltran 2016; Gaggl and Woltran 2013).

Theorem 5.3. Given two AFs F and G . We have,

1. F ≡σs G iff F k(ad) = Gk(ad) for any σ ∈ {ad , pr} and

2. F ≡τs G iff F k(τ) = Gk(τ) for any τ ∈ {gr , co,na, stb}.
To familiarize the reader with the presented kernels we

proceed with an illustrative example.

Example 5.4. Consider the following three AFs.

aF : b aG : b aH : b

In case of naive semantics we have F k(na) = H = Gk(na).
Consequently, F and G are strongly equivalent w.r.t. naive
semantics. For admissible semantics we infer their seman-
tical distinguishability since F k(ad) = F 6= G = Gk(ad).
Note that this is already explicit in F and G because
ad(F ) = {∅} 6= {∅, {b}} = ad(G). An explicit semantical
difference in case of weak admissibility cannot be verified
since adw(F ) = {∅, {b}} = adw(G).

The main motivation of the notion of weak admissibil-
ity is to restrict the effect of self-defeating arguments. This
means, a natural candidate of redundant information is an
attack stemming from a self-loop (like (a, b) in H ). More-
over, if the intuition is that we do not have to defend against
self-defeating arguments we might identify such defending
attacks as redundant as well (like (b, a) in H ). The following
definition captures this idea.

Definition 5.5. For any AF F = (A,R) we define the asso-
ciated adw-kernel as F k(adw) =

(
A,Rk(adw)

)
with

Rk(adw) =R \ {(a, b) | a 6= b, (a, a) ∈ R ∨ (b, b) ∈ R}.



ad co pr gr stb adw cow prw grw

characterized by k(ad) k(co) k(ad) k(gr) k(stb) k(adw) k(adw) k(adw) k(adw)

Table 2: Strong equivalence and characterizing kernels

As we will see in the main theorem of this section (Theo-
rem 5.8 below), the adw-kernel indeed induced the desired
behavior regarding strong equivalence: Two AFs F and G
are strongly equivalent w.r.t. σ ∈ {adw, cow, prw, grw} if
and only if their share the same adw-kernel. This proves that
strong equivalence for the weak admissible semantics can
also be decided by syntactical considerations. Surprisingly,
the kernel is the same for all weak admissibility semantics.
The two lemmata below pave the way for the main theorem.

Lemma 5.6. For any AF F and σ ∈ {ad , co, pr , gr} we
have, σw(F ) = σw

(
F k(adw)

)
.

Lemma 5.7. For two AFs F and G , F k(adw) = Gk(adw)

implies (F tH )
k(adw)

= (G tH )
k(adw) for each AF H .

Theorem 5.8. Let σ ∈ {adw, cow, prw, grw}. Given two
AFs F and G , F ≡σs G iff F k(adw) = Gk(adw).

Proof. (⇒) We show the contrapositive. Assume
F k(adw) 6= Gk(adw). We have to show F 6≡σs G .

If A
(
F k(adw)

)
6= A

(
Gk(adw)

)
, then w.l.o.g. there is

an a ∈ A(F ) \ A(G). Define H = (B, {(b, b) | b ∈ B})
with B = (A(F ) ∪A(G)) \ {a}. According to (Baumann,
Brewka, and Ulbricht 2020, Theorems 3.10, 5.14), self-
attacking arguments can be removed from an AF without
changing their σ-extensions (σ ∈ {adw, cow, prw, grw}).
Hence σ(F tH ) = σ(({a}, ∅)) and σ(G tH ) = σ((∅, ∅)).
We conclude {a} ∈ σ(F tH ) \ σ(G tH ).

Assume now the arguments coincide, i.e.A (F ) = A (G),
but R

(
F k(adw)

)
6= R

(
Gk(adw)

)
. Then w.l.o.g. there is an

(a, b) ∈ R
(
F k(adw)

)
\ R

(
Gk(adw)

)
. If a = b, we deduce

(a, a) ∈ R(F ) \ R(G). Consider again the AF H from
above. This time we obtain {a} ∈ σ(G t H ) \ σ(F t H ).
Consider now a 6= b and let us further assume that F and
G possess the same self-defeating arguments. We deduce
(a, b) ∈ R(F ) and thus (a, a), (b, b) /∈ R(F ) as well as
(a, a), (b, b) /∈ R(G). Since (a, b) /∈ R

(
Gk(adw)

)
we ob-

tain (a, b) /∈ R(G). Consider H ′ = (B′, {(b, b) | b ∈ B′})
with B′ = (A(F ) ∪A(G)) \ {a, b}. Applying (Baumann,
Brewka, and Ulbricht 2020, Theorems 3.10, 5.14) we de-
duce {a, b} ∈ σ(G t H ) \ σ(F t H ) yielding F 6≡σs G for
any single case.

(⇐) Let F k(adw) = Gk(adw). For any AF H we ob-
tain (F tH )

k(adw)
= (G tH )

k(adw) (Lemma 5.7). Con-
sequently, σw

(
(F tH )

k(adw)
)

= σw
(

(G tH )
k(adw)

)
.

Due to Lemma 5.6 we deduce σw (F tH ) = σw (G tH )
proving F ≡σs G .

We may now formally verify that any two of the three
AFs depicted in Example 5.4 are pairwise strongly equiv-
alent w.r.t. σ ∈ {adw, cow, prw, grw}. We summarize all
mentioned characterization results in Table 2.

The following proposition is about the comparison of
pairs of frameworks regarding strong equivalence under dif-
ferent semantics. This comparison is done via their char-
acterizing kernels. More precisely, we are considering the
question whether the equality w.r.t. a certain kernel does
have an impact regarding the equality w.r.t. an other one.
Interestingly, the newly introduced weak admissibility ker-
nel fits very natural in the already known results (Oikarinen
and Woltran 2011). In addition, we also introduce the kernel
k(ρ) which reverses the self-loop condition of the classical
stable kernel. This means, given the preconditions of Defini-
tion 5.2 we define Rk(ρ) = R \ {(a, b) | a 6= b, (b, b) ∈ R}.
It is left for future work to find a reasonable semantics ρ
which is characterized by the k(ρ)-kernel. For the sake of
clarity the relations are presented graphically.

Proposition 5.9. An arc from edge k(σ) to edge k(τ) means
that: whenever F k(σ) = Gk(σ), then F k(τ) = Gk(τ).

k(co)

k(gr) k(ρ)

k(ad) k(stb)

k(adw) k(na)

6 Fragments
In this section we briefly investigate subclasses of AFs
where odd, respectively arbitrary, loops do not occur. We
are interested in the relationship between weak admissibil-
ity and Dung semantics, and we will draw some conclusions
regarding computational complexity.

Definition 6.1. Let F = (A,R) be an AF. A sequence
(a1, a2, . . . , an, an+1) of arguments with ai ∈ A, a1 =
an+1 and (ai, ai+1) ∈ R for all i is called a cycle in F .
If n is odd, then it is an odd cycle. We call F acyclic if there
is no cycle and odd-cycle free if there is no odd cycle in F .

The main motivation for weak admissibility and defense
is to disregard self-defeating arguments. So one might ex-
pect the classical semantics and their “weak” counterparts to
coincide if no self-defeating argument is present. Although
this is true for preferred extensions (see Proposition 6.3 be-
low), the situation is more involved for complete semantics
as the following example illustrates.

Example 6.2. Let F be the following AF:

b c

a1F :

a2



Although surprising at a first glance, {c} is a w-admissible
extension of F . The intuitive reason is that the definition of
w-admissibility identifies b as a negligible argument since it
is not w-admissible in F {c}. Moreover, {c} defends neither
{a1, c} nor {a2, c}, so it is even w-complete.

This prediction of some arguments being negligible as in
the previous example renders some sets w-complete which
are not classically complete, even in the absence of odd-
cycles. We can however guarantee that no further arguments
are credulously accepted, as formalized below.

Proposition 6.3. If F = (A,R) is an odd-cycle free AF,
then pr(F ) = prw(F ).

Intuitively, this means that there might be some w-
complete extensions, that are not classically complete, but
the set of credulously accepted arguments coincide. How-
ever, the most interesting (and presumably most surprising)
observation we are going to make about odd-cycle free AFs
is related to w-grounded semantics.

Theorem 6.4. If F = (A,R) is an odd-cycle free AF, the w-
grounded extension is unique and given viaGw =

⋂
pr(F ).

Note that grw is not unique in general; an AF F might
possess multiple minimal cow-extensions (see (Baumann,
Brewka, and Ulbricht 2020)).

If the AF under consideration is even acyclic, then the
unique preferred extension coincides with the grounded one.
Given the relationships between the classical semantics and
our “weak” ones, we may infer a similar result.

Proposition 6.5. If F is an acyclic AF, then there is exactly
one w-complete extension of F .

Since the unique grounded extension is stable for acyclic
AFs (Dung 1995), this in particular implies that the seman-
tics coincide with their “weak” versions.

Corollary 6.6. If F is an acyclic AF, then σ(F ) = σw(F )
for each σ ∈ {ad , gr , co, pr}.

These observations yield some consequences for the com-
putational complexity of the weak admissibility semantics.
When restricted to odd-cycle free or even acyclic AFs, cred-
ulous and skeptical reasoning can be reduced to the corre-
sponding problems for the Dung-style counterparts. For the
general case, the computational complexity of the semantics
σ ∈ {adw, prw, cow, grw} is still under investigation.

7 Summary and Related Work
The investigation of argumentation semantics which rest
upon weaker notions of admissibility and defense than
Dung’s is rather new. This is somewhat surprising as poten-
tial problems with the original versions were already pointed
out by Dung himself. In this paper we presented fundamen-
tal new results regarding weak admissibility semantics as
well as classical ones. We showed that the reduct plays a
key role also in the classical semantics, which sheds new
light on the relationship between the new and the existing
semantics. Among others, we introduced the central prop-
erty of modularization playing a decisive role in finding new
extensions as well as in classifying semantics. We gave a

complete classification of the new semantics based on ab-
stract principles including the by now standard criteria like
directionality and reinstatement. We analyzed strong equiv-
alence and identified the relevant kernels which allow strong
equivalence to be checked by a purely syntactic transforma-
tion. Finally, we investigated the odd cycle-free and acyclic
fragments of AFs.

The recently published handbook chapter (Baroni, Gia-
comin, and Liao 2018) is engaged with modularity in AFs.
More precisely, it discusses and compares concepts like di-
rectionality and SCC-recursiveness (Baroni and Giacomin
2007), splitting (Baumann 2011) as well as decomposabil-
ity, among others. One underlying idea of all these concepts
is the division of an AF in different parts, s.t. the semantics
of the initial framework can be obtained by the semantics of
the smaller parts. Such divide and conquer approaches were
already successfully implemented. For instance, in (Bau-
mann, Brewka, and Wong 2011), it was shown that split-
ting methods may drastically improve the performance of
algorithms computing extensions. The need of fast algo-
rithms is already recognized in the community. In particular,
since 2015 there is a biennial International Competition on
Computational Models of Argumentation (ICCMA) (Gaggl
et al. 2018). The newly introduced modularization property
is closely related to the mentioned notions. The difference is
however that the latter is a tool to reduce the size of a given
AF and compute further extensions if given an initial one. It
is part of future work to investigate the potential boost on the
performance of state-of-the-art algorithms if modularization
is applied.

Weak admissibility satisfies conflict-freeness but violates
classical admissibility. Conflict-tolerant semantics in con-
trast give up the requirement of conflict-freeness (Arieli
2012; Grossi and Modgil 2015). For instance, in weighted
argument systems (Dunne et al. 2011) each attack is as-
signed a numerical weight and conflicts within extensions
are allowed as long as a certain predefined inconsistency
budget is not exceeded. The issue of self-defeat was already
studied in (Pollock 1987) which precedes Dung’s seminal
paper. Pollock analyzed argument-based defeasible reason-
ing and he proposed a semantics similar to grounded seman-
tics. This semantics considers self-defeat as self-attack only,
but not via arbitrary odd loops as we do.

The present paper induces several interesting future work
directions. A comprehensive study of the relationship be-
tween the criteria investigated in (Baroni, Giacomin, and
Liao 2018) and modularization would contribute to a deeper
understanding of the latter; also consideration of further
criteria from the literature (Amgoud and Besnard 2013;
Caminada and Amgoud 2007). Moreover, the capabilities of
modularization when trying to characterize semantics does
not appear to be exhausted at all. Thus finding further char-
acterizations, maybe with the help of additional abstract cri-
teria, is a promising future research direction. Since all se-
mantics considered in this paper are modular in the sense of
Definition 3.3, it might also be interesting to perform a more
abstract and principled investigation: Why is this property
implicit for so many standard AF semantics? Is modulariza-
tion always connected to a certain notion of admissibility?
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