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Abstract

This thesis investigates the learnability of conjunctive queries (CQs) under descrip­
tion logic (DL) ontologies. We focus on learning in the sense of Angluin’s exact 
learning and of probably approximately correct (PAC) learning. In both models, 
the learner tries to learn a target query, of which only limited information is made 
available. In exact learning, this information is made available by a teacher who 
answers certain types of questions truthfully, whereas in PAC learning it is made 
available through randomly drawn labeled data examples.

We are then interested in algorithms that the learner can execute to always learn 
the target query in polynomial time, even when the information about the target 
query is provided with regard to a DL ontology. Our aim is to determine for which 
classes of conjunctive queries and for which ontology languages such polynomial 
time learning algorithms exist, and which kinds of questions (membership queries 
and equivalence queries) are necessary for polynomial time learning in the exact 
learning model. For this, we build upon existing results on the exact learnability of 
queries without ontologies.

We show that membership queries alone suffice to learn unary acyclic connected 
CQs (that correspond to ℰℒℐ concepts) in polynomial time under DL-Liteℋℱ

core
ontologies, if the interaction of functionality constraints and existential restrictions 
in the ontology is limited. In contrast, it turns out that an exponential number 
of membership queries is required to learn the target query reliably under many 
extensions of DL-Liteℋℱ

core, including those that permit conjunctions in concepts 
like ℰℒ𝑟.

Furthermore, we consider teachers that answer both membership queries and 
equivalence queries, and show that chordal and symmetry-free CQs (and relevant 
subclasses thereof) are polynomial time learnable under ℰℒ𝑟 ontologies in this 
setting. This result does not extend to ℰℒℐ ontologies, under which it turns out 
that already simple query classes are not polynomial time learnable.

Finally, we review results that equivalence queries alone are not sufficient to learn 
simple path-shaped queries in polynomial time, unless NP = RP. Instead, we show 
that sample-efficient PAC learning of queries under ontologies is possible using 
a bounded fitting approach. We implement such an algorithm for tree-shaped 
CQs (that correspond to ℰℒ concepts) under ℰℒℋ𝑟 ontologies and show that the 
implementation compares favorably to an existing ℰℒ concept learning algorithm.
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Chapter 1

Introduction

Relational databases are one of the major success stories of computer science, allow­
ing data to be represented in a structured and processable way through relations. 
We might represent the data “john and jane are dogs” and “john is cute” in a database 
as the facts

Dog(john), Dog(jane), Cute(john)

where we use Dog and Cute as unary relation symbols. We can then query such 
a database using logical expressions. If we want to retrieve all dogs that are cute 
from the data, we might pose the query

𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥)

to our database and would receive as answer only john but not jane. Many pop­
ular languages for writing queries to databases, like SQL, correspond to logical 
expressions in some way. The above query could be written equivalently in SQL as:

SELECT id FROM Dog JOIN Cute USING (id);.

How can these expressions used to query databases be obtained? The obvious 
answer is that they are written manually by people who understand both the 
logical semantics of the query language and the domain of the data. However, 
not all users of databases are familiar with the data and not all users have the 
required logical expertise to formulate correct queries on their own. This situation 
was recognized already early in the history of relational databases, and means of 
providing automated support for query writing were developed [Zlo75a; Zlo75b].

Automated support becomes even more important when queries are not posed 
to databases alone, but to knowledge bases, as querying knowledge bases requires 
more logical expertise. In a knowledge base, data is combined with a so-called 
ontology that contains background knowledge in the form of logical statements. 
For example, if we know that in our domain every dog is cute, we could state this 
formally as

Dog ⊑ Cute

1



1 Introduction

and add this logical statement to our knowledge base.
This can serve multiple purposes. Commonly, background knowledge is used 

to obtain more complete answers to a query from incomplete data. If we retrieve 
answers from our knowledge base with the same query 𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥) as 
before, we now receive both john and jane as answers, although direct information 
about the cuteness of jane is missing from the data. Furthermore, ontologies are 
used for data integration, where they provide a uniform vocabulary to query data 
from multiple, heterogeneous data sources [Pog+08; Xia+18]. They also form a 
central component of the Semantic Web [HKR10].

The knowledge in ontologies is usually more complicated than stating that every 
dog is cute. Large knowledge bases like YAGO 4.5 contain many thousand such 
statements in their ontology, involving more complicated expressions [Suc+23]. 
This means that effort and logical expertise are required when working with ontolo­
gies or when formulating queries, which makes these tasks cost and time intensive. 
Hence, automated methods that support users in writing queries under ontologies 
are desirable. One way to provide this support is by learning queries.

Learning is, of course, an ever relevant topic in AI research, with many theoretical 
and practical results within the last decades. Query learning, as considered in this 
thesis, is a supervised task, as it builds upon input-output examples provided by 
a user. As learned classifiers, logical expressions such as queries have certain 
advantages over other forms of classifiers not based on logical formalisms: logical 
expressions are easier to inspect, to explain and to verify. These advantages also 
allow us to show strong formal guarantees for learning algorithms, using formal 
models of learning from computational learning theory.

In this thesis, we investigate the existence of efficient algorithms that learn queries 
under ontologies written in description logics.

Description Logic Ontologies

Description logics (DLs) are a family of knowledge representation languages origi­
nating in the 1980s from systems such as KL-ONE [BS85]. Most DLs can be viewed 
as decidable fragments of first order logic and are closely related to modal logics.

DL ontologies contain knowledge about concepts and roles. Concepts describe 
properties of things and are built from atomic symbols like Dog and Cute and 
constructors like ⊓, which describes and. For example, Dog ⊓ Cute is a concept 
that describes all things that are both a dog and cute. Roles describe relations 
between things. A role like isFriendOf could express that one thing is the friend of 
another thing. We can use roles to construct more complicated concepts like the 
concept ∃isFriendOf.Dog which describes all things that are a friend of something 
that is a dog. We can write this concept equivalently as the first order formula 

2



𝜑(𝑥) = ∃𝑦.isFriendOf(𝑥, 𝑦) ∧ Dog(𝑦) using Dog as a unary predicate and isFriendOf
as a binary predicate.

DL ontologies are then sets of statements about these concepts and roles. The 
most common form of statement is concept inclusion, which allows us to express 
“ every A is a B” knowledge. The concept inclusion Dog ⊑ Cute indicates that 
every dog is cute. Using the connection to first order logic, this inclusion can be 
equivalently written as the sentence

∀𝑥.�Dog(𝑥) → Cute(𝑥)�.

The various DLs differ in the ways complex concepts can be constructed from 
simpler ones and in the kinds of statements about concepts that can be made, and 
thus in the kinds of knowledge they can express. For example, some DLs, like 
DL-Litecore, do not allow concepts to be combined with ⊓, while ℰℒ does. Each 
DL gives rise to a separate ontology language, with its own expressiveness and 
computational properties.

One defining feature of knowledge bases that contain ontologies is the open world 
assumption, meaning that in contrast to traditional databases (which employ the 
closed world assumption), the absence of a fact in the data does not necessarily mean 
that its negation is true. For example, say that our data contains the fact Dog(jane), 
meaning that jane is a dog, but does not contain the fact Cute(jane), meaning that 
jane is cute. We then cannot conclude that Cute(jane) is false, but must consider that 
we do not know whether jane is cute. In fact, concluding that Cute(jane) is false in 
this case would contradict the background knowledge in our ontology that all dogs 
are cute. To enunciate this difference to the closed world assumption, we refer to 
our data as ABoxes (assertional boxes), that contain assertions about the world, as 
is usual in the area of DL.

As DL concepts are themselves logical expressions, we can use them as queries for 
knowledge bases, as so-called instance queries. If we query data for instances of the 
concept Dog⊓Cute, we get the same answers as for the query 𝑞(𝑥) ← Dog(𝑥)∧Cute(𝑥). 
Hence, algorithms that are able to learn certain kinds of queries efficiently can also 
be used to learn concepts. Concept learning is itself an active field of research, for 
much the same reasons as query learning: creating and extending ontologies are 
difficult and costly tasks that require both logical expertise and domain knowledge. 
Systems like DL-Learner [BLW16] and Ontolearn [DN23] aim to construct concepts 
from examples.

In this thesis, we focus on query learning under ontologies written in DLs from 
the ℰℒ and DL-Lite families. Both are limited in their expressivity, but are popular 
due to their favorable computational properties, making them suitable for reasoning 
about large ontologies and for use with large amounts of data.

3



1 Introduction

DL ontologies of the ℰℒ and DL-Lite families are used for various purposes. For 
example, they form the logical basis of certain profiles of the OWL 2 web ontology 
language1. ℰℒ is the core of the OWL 2 EL profile and allows efficient reasoning 
over the knowledge in an ontology. Large biomedical ontologies like SNOMED 
CT2 and GALEN are formulated in (dialects of) ℰℒ [RH97; Sch+09; SCC97].

DL-Lite forms the core of the OWL 2 QL profile and is designed to allow for 
efficient querying of data under ontologies [Cal+07]. DLs of the DL-Lite family are 
used in data intensive scenarios like data integration [Pog+08; Xia+18].

A formal definition of the description logics we use in this thesis and their 
semantics is given later in Chapter 3. For a thorough introduction to description 
logics, we refer to the textbooks [Baa+17] and [Baa+03].

Learning Queries

Learning a query can have various meanings. When we say that an algorithm learns 
queries, we must specify a learning model that defines what inputs the algorithm 
receives and what requirements we have for its outputs.

First, we have to specify a desired class of queries that the algorithm should pro­
duce. Depending on the use-case of query learning, some query classes can have 
more advantages than others, regarding understandability, interpretability, and 
learnability. The query 𝑞(𝑥) ← Dog(𝑥) ∧ Cute(𝑥) we have considered earlier belongs 
to the class of conjunctive queries (CQs). CQs are an extensively studied query 
class in the context of querying data under ontologies [BO15; Cal+13; CGL98; 
Eit+08; Gli+08]. They are a fragment of function-free first order logic with only 
conjunction and existential quantification. Equivalently, CQs correspond to the
SELECT-FROM-WHERE fragment of SQL, and are the central element of the basic graph 
patterns of SPARQL. As such, many queries posed to relational databases are CQs, 
which makes CQs learning relevant for many scenarios [BO15; Cal+13]. We are 
also interested in subclasses of CQs, like the class of ℰℒ instance queries.

Then, in all learning models that we will introduce, information about the be­
havior of the query to be learned will be communicated through data examples. A 
data example like

��Dog(john), Cat(josie)�, john�

includes some data {Dog(john), Cat(josie)} and a potential answer john. For the query 
𝑞(𝑥) ← Dog(𝑥), this is a positive example, since Dog(john) is included in the data. 
Otherwise, it would be a negative example for this query. Note that the examples do 
not refer to some fixed background database, but each comes with their own data. 

1https://www.w3.org/TR/owl2-profiles/
2http://www.ihtsdo.org/snomed-ct
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This allows us to specify the behavior of queries in all databases, and thus also to 
learn queries that yield the desired answers in all databases.

Specifically relevant for this thesis are the learning models of fitting, Angluin’s 
exact learning, which will be our main focus, and Valiant’s probably approximately 
correct (PAC) learning. Although these models seem quite different at first glance, 
we will see that they are closely connected.

To illustrate these learning models, and the effect of ontologies on learning, 
assume that we work under an ontology which includes the following statements:

Dog ⊑ Mammal, Cat ⊑ Mammal,
Mammal ⊑ Animal, Fish ⊑ Animal.

These concept inclusions express that both dogs and cats are mammals, mammals 
are animals, and fish are animals.

Fitting In the fitting model, a learning algorithm receives data examples as input, 
which are labeled either positively or negatively. A fitting algorithm then needs 
to find a query such that all positively labeled data examples are positive 
examples for this query, and all negatively labeled data examples are negative 
examples for this query.

If a fitting algorithm receives the example �{Dog(john)}, john� with a positive 
label, and the example �{Fish(julia)}, julia�, with a negative label, then it could 
return the query 𝑞𝐻(𝑥) ← Mammal(𝑥)3. It could not return the query 𝑞𝐻(𝑥) ←
Animal(𝑥), since this query yields the answer julia in the second example, 
which is labeled negatively.

This is a simple model of learning, that does not have strong requirements 
on the output query. Indeed, usually there are many queries that fit given 
data examples, and if the input data examples are labeled according to some 
query, the resulting fitting query need not be similar to that query. Especially, 
the fitting query could give answers that differ from the labeling query on all 
data that did not occur in data examples. The computation of fitting queries 
and concepts under ontologies is already well explored. In many cases, it 
has high computational complexity [Jun+22]. One way to deal with the high 
complexity is to give a learning algorithm access to more information, as in 
exact learning.

Exact Learning The exact learning model was first introduced by Angluin for learn­
ing regular languages from words [Ang87]. It is a model of active learning, in 

3The 𝐻 in 𝑞𝐻 stands for hypothesis.
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1 Introduction

which two parties, the learner and the teacher, interact in a game-like fashion. 
The teacher has some target query in mind, and the learner aims to identify 
this target query by asking certain kinds of questions, which the teacher must 
answer truthfully. In our case, both parties are aware of the ontology. The 
hope is that a smart learner can ask the right questions and thus identify the 
target query quickly, more quickly than in a passive learning setting.

Assume that the teacher has the query 𝑞𝑇(𝑥) ← Animal(𝑥)4 in mind. The 
learner tries to identify this query by first asking

“ Is julia an answer to 𝑞𝑇 in the data {Fish(julia)}?”.

In this case, the teacher responds with “ Yes”. Then, the learner could continue 
by asking

“ Is 𝑞𝑇 the query 𝑞𝐻(𝑥) ← Fish(𝑥)?”.

The teacher responds with “ No” and gives an example where the two queries 
differ:

“𝑞𝑇 and 𝑞𝐻 give different answers on the data {Dog(john)}”

The learner then concludes that john and jane must both be answers to 𝑞𝑇 and 
tries again:

“ Is 𝑞𝑇 the query 𝑞𝐻(𝑥) ← Animal(𝑥)?”,

to which the teacher replies “ Yes” — the learner has identified 𝑞𝑇.

Exact learning naturally models the situation where logical expertise and 
domain knowledge are not in the same hand, and a logic expert (the learner) 
constructs a query by interviewing a domain expert (the teacher). In the 
above example, two kinds of questions are used: the first question is a so-
called membership query, and the second and third questions are so-called 
equivalence queries5. These two are the most common kinds of questions that 
are considered in exact learning. We formally define them later.

Of course, the learner and the teacher do not need to be human in the exact 
learning model. In fact, we are looking for learning algorithms that play 
the role of the learner and always identify the target query in little time. 
Furthermore, exact learning has been successfully applied in settings where, 
for example, the teacher is not a human, but a trained neural network [Blu+23]. 
Exact learning of queries has already been investigated for multiple query 
classes [tCDK13; tCD22], but not yet under ontologies.

4The 𝑇 in 𝑞𝑇 stands for target.
5Some literature on learning queries calls these membership oracle and equivalence oracle to avoid 

confusion with the queries that are learned.
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PAC Learning The PAC model was introduced by Valiant [Val84] in the context of 
learning Boolean functions. In this model, the learner receives data examples 
that are drawn independently from some probability distribution and labeled 
according to a target query. Then, the learner needs to, with high probability, 
find a query that gives approximately the same answers as the target query 
on new examples drawn from the same distribution.
Assume that the target query is 𝑞𝑇(𝑥) ← Mammal(𝑥) and that we observe the 
dog john with probability 0.9 and the cat joan with probability 0.1. Equiva­
lently, the positive data example �{Dog(john)}, john� is drawn with probability 
0.9 from the example distribution and the positive example �{Cat(joan)}, joan�
is drawn with probability 0.1. Then, if we draw a small sample from the 
distribution, it is likely that the sample exclusively contains dogs. Since the 
learner only receives dogs as examples and all dogs are labeled positively, it 
might output the query 𝑞𝐻(𝑥) ← Dog(𝑥), which is not equivalent to 𝑞𝑇, but 
differs from 𝑞𝑇 on only 10 % of the examples drawn from the distribution.
In contrast to exact learning, a PAC learning algorithm does not require a 
teacher who is able to answer questions, but also does not exactly identify the 
target query, only a query that is with high probability close enough. Different 
from fitting algorithms, a PAC learning algorithm is required to generalize
from the input examples, to other examples from the same distribution. In 
general, how close the result of a PAC learning algorithm is to the target query 
depends on the size of the sample it receives.

For all these learning models, there are often naive learning algorithms that 
try all possibilities until they succeed. These kinds of learning algorithms are not 
useful in practice, and hence we demand a notion of efficiency from our learning 
algorithms. As usual in computer science, we consider algorithms with running 
times that grow polynomially with the size of the input to be efficient or tractable, 
and algorithms with running times that grow exponentially with the size of the 
input to be inefficient or intractable. Later, we define the introduced models of 
learning formally and discuss how they are related.

Overview

The results of this thesis mainly focus on the exact learning model. Due to the 
established connections between the models, we can draw from existing results 
concerning fitting of queries under ontologies, and our results have implications 
on the PAC learnability of queries under ontologies. Since the query classes we 
consider contain concept instance queries, our results also have implications on the 
learnability of concepts under ontologies.

7



1 Introduction

Each choice of query class and ontology language gives rise to a different exact 
learning setting that poses different requirements to learning algorithms. One 
query class might be efficiently learnable under one ontology language, but that 
must not also be the case under another ontology language. And for a second query 
class, the situation might be reversed. Hence, to understand the possible choices in 
learning queries under ontologies, we aim to answer:

Which query classes are efficiently learnable under which ontology languages?

Additionally, it is important to understand which kinds of questions the teacher 
needs to be able to answer for a query class to be efficiently learnable under an 
ontology language. We have seen both equivalence queries and membership queries. 
In practical scenarios, a teacher might only be able to answer certain kinds of 
questions, or a teacher who can answer all question could be too expensive to 
obtain. Hence, we also aim to answer:

Which questions needs the teacher to be able to answer for efficient learning of
a query class under an ontology language?

The remainder of this thesis is structured as follows:

Chapter 2 We begin with an overview of related approaches and results in the areas 
of query, concept, and ontology learning.

Chapter 3 Then, we formally define the relevant query classes and ontology lan­
guages, and precisely state the learning models and relevant known results, 
as well as define what we mean by efficient learning.

Chapter 4 We begin the investigation into exact learning by considering only mem­
bership queries. We give efficient learning algorithms for several combinations 
of query class and ontology language in this setting, and show that certain 
other combinations are not efficiently learnable.

Chapter 5 Then, we investigate exact learning with both membership queries and 
equivalence queries. This allows us to formulate efficient learning algorithms 
for query classes and ontology languages that were not efficiently learnable 
using only membership queries.

Chapter 6 Finally, we consider PAC learning of queries, which has a strong con­
nection to exact learning with only equivalence queries. We show that many 
query classes are not efficiently PAC learnable using the usual notion of effi­
ciency based on running time, but still PAC learnable from a small number 
of data examples. We also describe SPELL, our implementation of a PAC 
learning algorithm.

8



Chapter 7 We conclude with a summary of the results and comment on future 
directions.

We obtain the following results, concerning description logics of the DL-Lite and 
ℰℒ families as ontology languages and subclasses of CQs.

In Chapter 4 we show that ELIQs (unary, acyclic, and rooted CQs) are polynomial 
time exact learnable under DL-Liteℋℱ−

core  ontologies using only membership queries 
(Theorem 4.42), where the ℱ− indicates a restriction in the interaction between 
functionality constraints and existential restrictions. Furthermore, we show that 
ELIQs are not polynomial query learnable if this restriction is lifted (Theorem 4.29), 
or if the ontology language can use conjunctions (Theorem 4.28). As an interme­
diate step, we also show the independently interesting results that ELIQs permit 
construction of frontiers under DL-Liteℋℱ−

core  ontologies in polynomial time (Theo­
rem 4.23), and that certain generalizing sequences of CQs are bounded in length 
under ontologies (Theorem 4.35).

In Chapter 5 we show that conjunctions in the ontology language can be handled 
with equivalence queries. We first show that ELIQs are polynomial time exact 
learnable under DL-Liteℱ−horn ontologies (Theorem 5.17), and then that the large 
class of chordal, symmetry-free CQs (that contains non-unary CQs, cyclic CQs 
and CQs that are not rooted) is polynomial time exact learnable under ℰℒ𝑟 on­
tologies (Theorem 5.48). We complement this by showing that no subclass of CQs 
that contains all ELQs is polynomial query learnable under ℰℒℐ ontologies (Theo­
rem 5.50), and that learning ℰℒ𝒰 instance queries is as hard as learning Boolean 
formulas (Theorem 5.52).

In Chapter 6 we review the result that no class of CQs that contains all path queries 
is polynomial time PAC learnable, unless RP = NP (Theorem 6.7). In contrast, 
we show that all combinations of ontology language and query class are PAC 
learnable with polynomial sample complexity (Lemma 6.9), using a bounded fitting 
approach. Certain other fitting algorithms, that aim for different properties than 
the smallest size, are not sample-efficient PAC learning algorithms (Theorems 6.18, 
6.19 and 6.23). We describe an implementation of a bounded fitting based sample-
efficient PAC learning algorithm (Theorem 6.10) for learning ELQs under ℰℒℋ𝑟

ontologies based on a SAT solver and present benchmark results that show that this 
implementation compares favorably with an existing approach for ELQ learning.

Related Publications

Parts of this thesis have already been published in the following workshop and 
conference papers. In the introductions of the respective chapters, we describe in 
more detail the relationship of the presented material to these publications.
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Chapter 2

Related Work

The learning of logical expressions such as queries and concepts has received 
attention in various settings. In this chapter, we review the approaches that are 
most relevant to this thesis and remark on connections. We begin in Section 2.1 
with looking at approaches to fit concepts and queries to data, some of which take 
ontologies into account. Then, in Section 2.2 we review existing results on the exact 
learnability and PAC learnability of concepts and queries. Finally, we consider the 
connection to learning ontologies in Section 2.3.

2.1 Fitting Examples with Queries

The construction of queries that fit given data examples, such as in the query-by-
example paradigm or in query reverse engineering, is an active topic of database 
research, both from a practical and a theoretical perspective [Mar19]. The prob­
lem has been investigated, for example, for CQs [BR17; tCD15], SPARQL queries 
over RDF data [ADK16], path queries over graph databases [BCL15], and tree-
patterns [CW16]. As these investigations focus on databases, they do not take 
ontologies into account.

In the field of description logic, the construction of concepts that fit examples is 
also often desired for ontology engineering. One of the first and most developed 
approaches to this task is based on computing most specific concepts (MSCs) of 
the examples and computing the least common subsumer (LCS) of the obtained 
concepts [BKM99; CBH92]. However, under the usual semantics, MSCs of examples 
only exist for acyclic examples, and can otherwise only be approximated [KM02]. 
Additionally, the LCS of ℰℒ concepts under ℰℒ ontologies does not always exist 
when the ontology is cyclic [Baa03; BST07]. Zarrieß and Turhan characterize when 
ℰℒ the MSCs and LCSs exist under ℰℒ ontologies [ZT13]. Jung, Lutz, and Wolter 
determine the complexity of deciding whether the MSC or the LCS exists, and of 
verifying if a given concept is the MSC or the LCS, for both ℰℒ and ℰℒℐ concepts, 
and under ontologies [JLW20].

Closest to the learning problems considered in this thesis among the exist­
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ing research are the investigations into the fitting problem for queries under on­
tologies. This has been investigated for various query classes and ontology lan­
guages [Fun+19; GJS18; Jun+20; Jun+22; Ort19], See also the PhD thesis of Pul­
cini [Pul22] for an overview of the results on fitting queries under ontologies. We 
will review the relevant results later in Section 3.2.

In many cases, no query exists that fits data examples exactly, and therefore 
approximations of the notion of fitting have also been considered by Cima, Croce, 
and Lenzerini [CCL21].

Refinement-based Search and Inductive Logic Programming

In practice, systems like DL-Learner or DLFoil, that computing fitting description 
logic concepts or similar queries from labeled data examples, with or without an 
ontology, are often based on ideas from inductive logic programming (ILP), like 
refinement operators and the FOIL algorithm.

In general, ILP is concerned with learning logic programs that entail a given set 
of positive example facts but none of the given negative example facts under a set of 
background facts1 [ND97]. In the context of learning queries as used in this thesis, 
we can think of the background facts as an ABox, and of the logic program as the 
query that is to be learned. Then, the resulting query should return all the positive 
facts as answers and none of the negative facts.

In this sense, the ILP literature has obtained fitting algorithms as well as positive 
and negative PAC learnability results for various classes of CQs that are defined, for 
example, by limitations on the use of existential variables, determinacy conditions 
and restricted variable depth. An overview can be found in [ND97, Chapter 18]. 
These query classes are orthogonal to the classes of ELQs and ELIQs relevant in 
our setting.

ILP algorithms are often based on specific refinement operators. A (downward) 
refinement operator 𝜌 takes as input a query 𝑞 and returns a set of specializations
of 𝑞. Symmetrically, an upward refinement operator returns generalizations of 𝑞. 
Refinement operators are then the basis of a search procedure that, starting from 
some initial query, aims to find a query that fits all examples, by specializing to 
exclude all negative examples, or by generalizing to include all positive examples. 
In order for this search procedure to eventually arrive at a fitting query, it is often 
required that the used refinement operator is finite, proper, and complete.

Badea and Nienhuys-Cheng first proposed to use refinement operators to find 
fitting description logic concepts. They show that there is a complete but not finite 
refinement operator for concepts of the description logic 𝒜ℒℰℛ and argue that no 

1At least in the so-called normal problem setting
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complete and finite refinement operator for 𝒜ℒℰℛ can exist [BN00]. This is also 
the case for concepts of other expressive description logics like 𝒜ℒ𝒞 where finite, 
proper, and complete refinement operators also do not exist, already in the case 
without ontologies [LH10].

For ℰℒ concepts, there exist refinement operators that are finite, proper, and 
complete [LH09], but it is known that no such operator exists for ℰℒ concepts under 
ℰℒ ontologies [Kri19]. Only if the considered ℰℒ ontologies are of a restricted form, 
ℰℒ concept refinement operators can be finite, proper, and complete [LH09].

Important in this area is also the work of Kriegel [Kri18a; Kri18b; Kri21] that 
deals with the structure of the ℰℒ subsumption lattice that is implicitly traversed 
by search procedures to find a fitting ℰℒ concept. In this structure, concepts have 
direct upwards (downwards) neighbor concepts that are minimally more general 
(more specific). Even under the empty ontology, there are ℰℒ concepts of size 𝑛 that 
have a number of downward neighbors that is exponential in 𝑛, and there are ℰℒ
concepts of size linear in 𝑛 such that they can only be reached from ⊤ by a number 
of neighborhood-steps that is 𝑛-fold exponential in 𝑛. Hence, a complete search 
procedure for fitting ℰℒ concepts with refinement operators can be infeasible in 
certain situations.

Nonetheless, implementations of search procedures using refinement operators 
together with heuristics are in many cases able to quickly find fitting concepts 
or approximately fitting concepts. These algorithms aim for various degrees of 
completeness, depending on their use case. Such systems and algorithms are for 
example DL-Learner [BLW16], DL-FOIL [FdAE08; Fan+18], YINYANG [IPF07], 
DL-FOCL [RFdA20], and DRILL [DN23].

Other approaches for learning DL concepts not based on refinement operators are 
using answer set programming [Lis12; Lis16], learning 𝒜ℒ𝒞 concepts using bisim­
ulations [Tra+14], and trade off accuracy of the fitting concept for efficiency [SH19]. 
Except for the basic setting of fitting concepts, these do not have a strong relation to 
the results in this thesis.

2.2 Exact Learning of Queries

Closest to the subject of this thesis are existing results on exact learnability and PAC 
learnability of queries or concepts in the setting without ontologies. We introduce 
the most important ones briefly.

Ten Cate, Dalmau, and Kolaitis show that Global-As-View schema mappings (GAV 
schema mappings) are polynomial time exact learnable using membership queries 
and equivalence queries. A GAV schema mapping is a set of logical expressions of 
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the form
∀𝑥(𝜑(𝑥) → 𝜓(𝑥)),

where 𝜑 is a conjunction of atoms and 𝜓 is a single 𝑘-ary atom. If in all expressions 
of a GAV schema mapping the atom 𝜓 is identical, we can view it as a union of CQs 
(UCQ). Hence, UCQs are also polynomial time exact learnable using membership 
queries and equivalence queries [tCDK13]. Additionally, the learning algorithm of 
ten Cate, Dalmau, and Kolaitis can be modified to obtain the same result for CQs. 
The UCQ learning algorithm bears resemblance to the foundational exact learning 
algorithm for propositional Horn formulas by Angluin, Frazier, and Pitt [AFP92], 
which also inspired, for example, exact learning algorithms for first-order Horn 
formulas [AK02].

Furthermore, ten Cate, Dalmau, and Kolaitis show that CQs and UCQs are only 
polynomial time exact learnable using both membership queries and equivalence 
queries, only one type of query does not suffice [tCDK13; tCat+18]. Indeed, only 
subclasses of CQs, like the class of all ELIQs, fulfill the important precondition of 
being uniquely characterizable by data examples and are therefore polynomial time 
learnable using only membership queries [tCD22]. In Chapters 4 and 5, we build 
on these results and extend them to cases with ontologies. We review them there 
in more detail.

Fortin et al. investigate the unique characterizability of linear temporal logic (LTL) 
formulas. While many LTL formulas are not uniquely characterizable, they show 
that several fragments are. They also identify combinations of LTL and ELIQs that 
are uniquely characterizable, and show that these combinations are polynomial 
time learnable with only membership queries [For+22]. Jung et al. extend these 
results and consider the unique characterizability and learnability of queries that 
are combinations of LTL and ELIQs under DL ontologies [Jun+23a; Jun+23b]. 
Thereby, they also generalize the techniques and results presented in Chapter 4.

Ten Cate and Koudijs investigate the unique characterizability of fragments of 
modal logic with data examples. They show that the fragment of positive modal 
formulas that only use ◇, that are similar to ELQs, and the fragment of positive 
modal formulas that only use □ are uniquely characterizable, while their union or 
the full modal language are not finitely characterizable [tCK23; Kou22].

Haussler [Hau89] and Kietz [Kie93] show that acyclic CQs are not polynomial 
time PAC learnable from data examples unless RP = NP, and therefore also not 
exact learnable using only equivalence queries. We revisit their proofs in Chapter 6. 
Hirata shows that acyclic CQs that use ternary atoms are not polynomial time PAC 
predictable from data examples2 under certain cryptographic assumptions [Hir00; 
Hir05]. PAC prediction is a related learning model to PAC learning, where the 

2Data examples are called extended instances in the work of Hirata.
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learning algorithm need not output a hypothesis from a specific query class, but can 
output any algorithm that classifies examples in polynomial time. PAC learnability 
implies PAC predictability for classes of queries that can be answered in polynomial 
time. PAC prediction is also an interesting learning model in itself with many 
interesting results, but not further considered in this thesis.

Learning CLASSIC Concepts

In the area of description logics, PAC learnability (with and without membership 
queries) of concepts was investigated for the early description logic CLASSIC, with­
out considering any form of ontologies. CLASSIC concepts are built from many 
constructors not contained in ℰℒ or DL-Lite like universal restriction ∀𝑟.𝐶 and the 
same-as constructor that demands that two role paths end at the same individ­
ual [Bor+89]. However, CLASSIC has no way to express existential restrictions, 
which is the core feature of ℰℒ, and hence the expressive power of CLASSIC is 
incomparable to the one of ℰℒ.

Cohen and Hirsh consider PAC learnability of CLASSIC concepts from con­
cept examples that are labeled according to subsumption of the target concept. 
Specifically, a concept 𝐷 is a positive example of a target concept 𝐶𝑇 if 𝐷 ⊑ 𝐶𝑇
and a negative example if 𝐷 ⋢ 𝐶𝑇. Assuming RP ≠ NP, they show that already 
CoreCLASSIC concepts, which are CLASSIC concepts that use only conjunction, 
universal quantification and same-as, are not polynomial time PAC learnable from 
concept examples [CH92; CH94b; CH95]. Consequently, CoreCLASSIC concepts 
are also not polynomial time learnable with only equivalence queries, where the 
counterexamples returned from equivalence queries are concepts. It is interesting 
to note that this lower bound uses a definition of PAC learning in which the running 
time and the sample size may depend on the size of the target concept and the size 
of the examples, similar to the definition we will use.

Cohen and Hirsh also show that the fragment of CLASSIC without same-as and 
role inclusions, called C-CLASSIC, is polynomial time PAC learnable from concept 
examples [CH94a]. The key element of their learning algorithm is the ability to 
compute the least common subsumer of C-CLASSIC concepts in polynomial time.

Frazier and Pitt consider exact learnability of CLASSIC concepts in Angluin’s 
learning framework with membership queries and equivalence queries that both 
use concept examples. The fragment of CLASSIC they consider includes both the 
aforementioned CoreCLASSIC and C-CLASSIC. They show that CLASSIC concepts 
are not exact learnable in polynomial time with concept membership queries alone, 
but can be learned in polynomial time using both concept membership queries 
and equivalence queries [FP96]. Their learning algorithm works similarly to the 
ones we discuss in Chapter 5, constructing products to compute commonalities 
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with counterexamples and then minimizing the result using membership queries. 
However, it does not need to take ontologies into account. Since the expressive 
powers of ℰℒ and CLASSIC are incomparable, and the permitted membership 
queries and equivalence queries differ, results on learning CLASSIC cannot be 
transferred to learning ℰℒ concepts or CQs.

2.3 Learning Description Logic Ontologies

Related to the learning of concepts or queries under ontologies, is the learning of 
entire ontologies. This has been investigated in multiple settings that differ in the 
choice of examples. The aim of exact learning of ontologies is to identify unknown 
target ontologies in polynomial time through interaction with a teacher. To achieve 
polynomial time, lightweight ontology languages of the ℰℒ and DL-Lite families 
are considered as targets, since they allow for polynomial time reasoning.

In the first setting, the examples are concept inclusions. A concept inclusion 𝐶 ⊑ 𝐷
is a positive example for a target ontology 𝒪𝑇 if 𝒪𝑇 ⊧ 𝐶 ⊑ 𝐷 and a negative 
example if 𝒪𝑇 ⊧̸ 𝐶 ⊑ 𝐷. Konev et al. investigate the exact learnability of ontologies 
using concept inclusion membership and equivalence queries. They show that 
ℰℒ ontologies are not learnable with a polynomial number of queries, but two 
fragments of ℰℒ, ℰℒrhs and ℰℒlhs, are learnable in polynomial time [Kon+18]. In 
ℰℒlhs ontologies, the right-hand side of concept inclusions must be a concept name, 
and in ℰℒrhs ontologies, the same restriction holds for the left-hand side.

In the next setting, the examples are data retrieval examples. A data retrieval 
example is a tuple (𝒜, 𝑞, 𝑎) with 𝒜 an ABox, 𝑞 a query, and 𝑎 an individual from 
𝒜. It is a positive example for a target ontology 𝒪𝑇 if 𝒜, 𝒪𝑇 ⊧ 𝑞(𝑎) and a negative 
example if 𝒜, 𝒪𝑇 ⊧̸ 𝑞(𝑎). Konev, Ozaki, and Wolter show that in many cases, 
exact learning with data retrieval example membership queries and equivalence 
queries reduces to the case with concept inclusion examples, and thus obtain similar 
positive results: ℰℒlhs and ℰℒrhs ontologies are polynomial time learnable using 
ELQs or ELIQs in data retrieval examples, but ℰℒ ontologies are not learnable with a 
polynomial number of membership and equivalence queries using ELQs [KOW16].

Finally, another option is to learn ontologies with data retrieval examples, but 
where equivalence queries are limited to checking equivalence over a single fixed 
ABox. This does not necessarily result in an ontology that is equivalent to the 
target ontology, but to one that is query inseparable over this fixed ABox. In this 
setting, ℰℒ ontologies are polynomial time learnable using ELQs in the data retrieval 
examples [OPM20].

At first glance, learning ontologies seems to be closely related to learning concepts 
under ontologies, since an ℰℒ ontology may contain many ℰℒ concepts, and hence 
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any ontology learning algorithm has to construct concepts. However, there is no 
apparent natural reduction from any of these settings to the setting used in this 
thesis, and therefore no easy way to use the aforementioned positive and negative 
results. The challenge of such a reduction lies in the fact that ontology learning 
algorithms can produce arbitrarily structured ontologies as hypotheses, but the 
concept learning teacher requires a single concept as a hypothesis.

There are also approaches to learning ontologies that are not based on exact 
learning, and hence further removed from the learning setting considered in this 
thesis. Most prominent is the mining of concept inclusions from finite interpreta­
tions, inspired by formal concept analysis. There, a finite interpretation is taken as 
input and the aim is to compute an ontology that is a finite axiomatization of all 
concept inclusions that hold in this interpretation [BD08]. This procedure allows 
the extraction of ontological knowledge from existing data and, in contrast to exact 
learning, does not inherently require interaction with a teacher. Existing work 
mostly focuses on ℰℒ ontologies, and as ℰℒ axiomatizations may be of exponential 
size, many techniques have been developed to compute axiomatizations efficiently, 
or to approximate them [BD09; BDK16; Gui+21; Kri24].

The survey [Oza20] lists and compares these and other approaches to ontology 
learning.
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Chapter 3

Preliminaries

Before we begin to look into the learnability of queries under description logic 
ontologies, we first need to review relevant concepts and define what we mean 
when we say that something is learnable. In Section 3.1 we define the syntax and 
semantics of the description logic ontology languages and query classes we use, 
and review some of their properties. Then, in Section 3.2 we formally define the 
fitting problem and review known results about its computational complexity. We 
continue in Section 3.3 with the definition of the exact learning model for our setting 
and discuss some of its properties. Finally, in Section 3.4 we define the PAC model 
of learning and formally connect it to the exact learning model.

3.1 Description Logic and Conjunctive Queries

To present results for ontologies written in DLs of the ℰℒ and DL-Lite families in a 
unified way, we define all relevant DLs as sublanguages of the DL ℰℒℐℋℱ⊥.

Description Logic

Let NC, NR, and NI be countably infinite sets of concept names, role names, and indi­
vidual names, respectively. We use 𝐴, 𝐵 for concept names, 𝑟, 𝑠, 𝑡 for role names and 
𝑎, 𝑏 for individual names, with additional subscripts when necessary. A role 𝑅 takes 
the form 𝑟 or 𝑟− where 𝑟 is a role name and 𝑟− is called an inverse role. If 𝑅 = 𝑠− is an 
inverse role, then 𝑅− denotes the role name 𝑠.

An ℰℒℐ concept is formed according to the syntax rule

𝐶, 𝐷 ∶∶= ⊤ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐷 ∣ ∃𝑅.𝐶

where 𝐴 ranges over NC and 𝑅 over roles. An ℰℒ concept is an ℰℒℐ concept that 
does not use inverse roles. We refer to ⊓ as conjunction, and ∃ as existential restriction. 
We call an existential restriction ∃𝑅.𝐶 unqualified if 𝐶 = ⊤ and qualified if 𝐶 ≠ ⊤.

An ℰℒℐℋℱ⊥ ontology 𝒪 is a finite set of concept inclusions 𝐶 ⊑ 𝐷, role inclusions
𝑅 ⊑ 𝑆, (global) functionality constraints func(𝑅), role disjointness constraints 𝑅 ⊓ 𝑆 ⊑ ⊥, 
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and concept disjointness constraints 𝐶 ⊓ 𝐷 ⊑ ⊥, where 𝐶 and 𝐷 are ℰℒℐ concepts and 
𝑅 and 𝑆 are roles. We use 𝐶 ≡ 𝐷 as a shorthand for 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶, and do the 
same for roles.

The semantics of ℰℒℐℋℱ⊥ concepts and ontologies is defined in terms of in­
terpretations. An interpretation ℐ is a tuple (Δℐ, ⋅ℐ), where Δℐ is the domain, a 
non-empty set that may be finite or infinite, and ⋅ℐ is the interpretation function. 
The interpretation function assigns to each concept name 𝐴 ∈ NC a subset of Δℐ, to 
each role name 𝑟 ∈ NR a binary relation over Δℐ and to each individual name 𝑎 ∈ NI
an element 𝑎ℐ ∈ Δℐ. The interpretation function can be extended to assign each 
ℰℒℐ concept a subset of Δℐ by setting

𝑟−ℐ = {(𝑒, 𝑑) ∣ (𝑑, 𝑒) ∈ 𝑟ℐ},
⊤ℐ = Δℐ,

(𝐶 ⊓ 𝐷)ℐ = 𝐶ℐ ∩ 𝐷ℐ,  and

(∃𝑅.𝐶)ℐ = {𝑑 ∣ (𝑑, 𝑒) ∈ 𝑅ℐ and 𝑒 ∈ 𝐶ℐ}.

An interpretation ℐ satisfies a concept inclusion 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ, a role inclusion 
𝑅 ⊑ 𝑆 if 𝑅ℐ ⊆ 𝑆ℐ, a functionality constraint func(𝑅) if 𝑅ℐ is a partial function, a 
role disjointness constraint 𝑅 ⊓ 𝑆 ⊑ ⊥ if 𝑅ℐ ∩ 𝑆ℐ = ∅, and a concept disjointness 
constraint 𝐶 ⊓ 𝐷 ⊑ ⊥ if 𝐶ℐ ∩ 𝐷ℐ ⊑ ⊥.

An interpretation ℐ is a model of an ℰℒℐℋℱ⊥ ontology 𝒪, if it satisfies all inclu­
sions and constraints in 𝒪. For any concept inclusion, role inclusion, functionality 
constraint or role disjointness constraint 𝛼 we write 𝒪 ⊧ 𝛼 if every model of 𝒪
satisfies 𝛼. For two concepts 𝐶, 𝐷 we write 𝒪 ⊧ 𝐶 ≡ 𝐷 if 𝒪 ⊧ 𝐶 ⊑ 𝐷 and 𝒪 ⊧ 𝐷 ⊑ 𝐶.

We additionally restrict the interaction between role inclusions and functionality 
constraints in ℰℒℐℋℱ⊥ ontologies. If 𝒪 ⊧ 𝑅 ⊑ 𝑆 for roles 𝑅 ≠ 𝑆, then func(𝑆) ∉ 𝒪. 
This restriction of the interaction of role inclusions and functionality constraints 
implies that 𝒪 ⊧ func(𝑅) if and only if func(𝑅) ∈ 𝒪 for all roles 𝑅. Moreover, it 
corresponds to the restriction (𝐴3) used in [Art+09] for the DL DL-Lite(ℋℱ)

core  in order 
to make satisfiability checking and the data-complexity of query answering tractable. 
The restriction is also adopted for DL-Lite in [Kon+10]. We adopt it for similar 
reasons, and note that this makes our version of ℰℒℐℋℱ⊥ non-standard. We point 
out when results do not hold in absence of this restriction.

The inclusion of role disjointness constraints and concept disjointness constraints 
(instead of allowing ⊥ as a concept constructor), as well as the above restriction of 
role inclusions and functionality constraints, allows us to present several sublan­
guages of ℰℒℐℋℱ⊥ uniformly. We define these languages next.

• An ℰℒℐ ontology is an ℰℒℐℋℱ⊥ ontology that contains only concept inclusions.

22



3.1 Description Logic and Conjunctive Queries

• An ℰℒ𝑟 ontology is an ℰℒℐ ontology where inverse roles may only occur in 
concept inclusions of the form ∃𝑟−.⊤ ⊑ 𝐴 where 𝑟 is a role name and 𝐴 is 
a concept name. The 𝑟 stands for range restrictions, as concept inclusions of 
the form ∃𝑟−.⊤ ⊑ 𝐴 restrict the range of roles. The corresponding domain 
restrictions can be achieved without use of an inverse role as ∃𝑟.⊤ ⊑ 𝐴. We 
will also mention ℰℒ ontologies, which do not permit range restrictions, and 
ℰℒℋ𝑟 ontologies, that are ℰℒ𝑟 ontologies that may also use role inclusions.

• A DL-Liteℱhorn ontology is an ℰℒℐℋℱ⊥ ontology where all occurring existential 
restrictions are unqualified and that does not contain any role inclusions. For 
ontology languages of the DL-Lite-family, unqualified existential restrictions 
∃𝑅.⊤ are usually written as ∃𝑅, omitting the ⊤, and disjointness constraints 
𝐴 ⊓ 𝐵 ⊑ ⊥ are written as 𝐴 ⊑ ¬𝐵. We use the former notation for uniformity 
with DLs of the ℰℒ-family.

• A DL-Litehorn ontology is a DL-Liteℱhorn ontology that does not contain func­
tionality constraints.

• A DL-Liteℋℱ
core ontology is an ℰℒℐℋℱ⊥ ontology where all occurring existential 

restrictions are unqualified, and that does not contain any conjunctions. Note 
that due to the restriction of the interaction of role inclusions and functionality 
constraints, this language corresponds to DL-Lite(ℋℱ)

core  of [Art+09]. The same 
restriction is employed in DL-Lite𝒜 [Pog+08].
Note that role inclusions allow DL-Liteℋℱ

core ontologies to express a limited form 
of qualified existential restrictions. The concept inclusion 𝐴 ⊑ ∃𝑟.𝐵 can be 
expressed in DL-Liteℋℱ

core through an additional role name 𝑟𝐵 with 𝐴 ⊑ ∃𝑟𝐵.⊤, 
𝑟𝐵 ⊑ 𝑟, and ∃𝑟−𝐵.⊤ ⊑ 𝐵.

• A DL-Litecore ontology is a DL-Liteℋℱ
core ontology that does not contain any role 

inclusions and functionality constraints.

• A conjunctive ontology (conj) is an ℰℒℐ ontology without existential restrictions, 
that is, all concept inclusions have the form

𝐴1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊑ 𝐵1 ⊓ ⋯ ⊓ 𝐵𝑛

with 𝐴1, … , 𝐴𝑛, 𝐵1, … 𝐵𝑛 concept names.

We refer to these languages as ontology languages. Their definitions are summa­
rized in Table 3.1. Figure 3.1 shows an overview of the relationships of all these 
languages, where an arrow indicates that one language is syntactically contained 
in another.
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Table 3.1: Overview of the features of the relevant ontology languages.

ℒ 𝑟− 𝐶 ⊓ 𝐷 ∃𝑅.𝐶 ∃𝑅.⊤ func(𝑅) 𝑅 ⊑ 𝑆 ⊑ ⊥

ℰℒℐℋℱ⊥  ✓  ✓  ✓  ✓  ✓  ✓  ✓
ℰℒℐ  ✓  ✓  ✓  ✓
ℰℒ𝑟  ✓  ✓  ✓
DL-Liteℱhorn  ✓  ✓  ✓  ✓  ✓
DL-Litehorn  ✓  ✓  ✓  ✓
DL-Liteℋℱ

core  ✓  ✓  ✓  ✓  ✓
DL-Litecore  ✓  ✓  ✓
 conj  ✓

ℰℒℐℋℱ⊥

ℰℒℐ

ℰℒ𝑟

conj

DL-Liteℱhorn

DL-Litehorn

DL-Liteℋℱ
core

DL-Litecore

Figure 3.1: Relationship of the sublanguages of ℰℒℐℋℱ⊥.

ABoxes

An ABox 𝒜 is a finite set of concept assertions 𝐴(𝑎) and role assertions 𝑟(𝑎, 𝑏) with 
𝐴 a concept name, 𝑟 a role name, and 𝑎, 𝑏 individual names We write ind(𝒜) for the 
set of all individual names that occur in an ABox 𝒜. A pointed ABox is a tuple (𝒜, 𝑎)
of an ABox 𝒜 and a tuple of individual names 𝑎 ∈ ind(𝒜)∗. In general, we always 
use the notation ∘ to refer to a tuple. In the context of learning, we refer to a pointed 
ABox as a (data) example.

An interpretation ℐ is a model of an ABox 𝒜 if it satisfies all assertions in 𝒜, 
that is 𝑎ℐ ∈ 𝐴ℐ if 𝐴(𝑎) ∈ 𝒜 and (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ if 𝑟(𝑎, 𝑏) ∈ 𝒜. An ABox 𝒜 is satisfiable
under an ontology 𝒪 if 𝒜 and 𝒪 have a common model. We make the unique 
name assumption, that is 𝑎ℐ ≠ 𝑏ℐ for all 𝑎, 𝑏 ∈ ind(𝒜) with 𝑎 ≠ 𝑏. This is relevant 
for satisfiability under functionality constraints: the ABox {𝑟(𝑎, 𝑏1), 𝑟(𝑎, 𝑏2)} is not 
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satisfiable under an ontology that contains the functionality constraint func(𝑟), but 
can be if the unique name assumption is not adopted.

For a concept 𝐶, we write 𝒜, 𝒪 ⊧ 𝐶(𝑎) if for all models ℐ of 𝒜 and 𝒪, 𝑎ℐ ∈ 𝐶ℐ. 
We can view a concept as a (concept) instance query, and say that 𝑎 is an answer to 
the instance query 𝐶 posed to the ABox 𝒜 under the ontology 𝒪 if 𝒜, 𝒪 ⊧ 𝐶(𝑎).

We can view an ABox 𝒜 as a finite interpretation ℐ𝒜 with Δℐ𝒜 = ind(𝒜), 𝑎 ∈ 𝐴ℐ𝒜

if 𝐴(𝑎) ∈ 𝒜, and (𝑎, 𝑏) ∈ 𝑟ℐ𝒜 if 𝑟(𝑎, 𝑏) ∈ 𝒜, for all 𝑟 ∈ NR and 𝐴 ∈ NC. Analogously, 
every finite interpretation ℐ can be viewed as the ABox obtained by including the 
assertion 𝐴(𝑎) if 𝑎 ∈ 𝐴ℐ and the assertion 𝑟(𝑎, 𝑏) if (𝑎, 𝑏) ∈ 𝑟ℐ.

The underlying directed graph 𝐺𝒜 of an ABox 𝒜 has the vertices ind(𝒜) and the 
edges {(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜}. We say that an ABox 𝒜 is acyclic if 𝐺𝒜 is acyclic and there 
are no multi-edges: 𝑟(𝑎, 𝑏) ∈ 𝒜 implies that 𝑠(𝑎, 𝑏) ∉ 𝒜 for all role names 𝑠 with 𝑠 ≠ 𝑟. 
We say that an ABox 𝒜 is connected if 𝐺𝒜 is connected. We say that a pointed ABox 
(𝒜, 𝑎) is rooted if each connected component of 𝐺𝒜 contains an element of 𝑎. We 
say that 𝒜 is tree-shaped if 𝐺𝒜 is a directed tree and 𝒜 has no multi-edges. A unary 
data example (𝒜, 𝑎) is tree-shaped, if 𝒜 is tree-shaped and 𝑎 is the root of the tree.

Conjunctive Queries

A conjunctive query (CQ) 𝑞 of arity 𝑘 is an expression of the form

𝑞(𝑥) ← 𝜑(𝑥, 𝑦)

where 𝑥 is a tuple 𝑥1 ⋯ 𝑥𝑘 of variables, called answer variables, 𝑦 is a sequence 𝑦1, … , 𝑦𝑚
of variables, called existential variables, and 𝜑 is a conjunction of concept atoms 𝐴(𝑥)
and role atoms 𝑟(𝑥, 𝑥′) with 𝑥, 𝑥′ ∈ 𝑥 ∪ 𝑦, 𝐴 ∈ NC and 𝑟 ∈ NR. Note that the same 
variable can occur multiple times in 𝑥. A CQ is Boolean, if its tuple of answer 
variables is empty. We use var(𝑞) to refer to the set of all variables that occur in 
a CQ 𝑞. In a slight abuse of notation, we consider a CQ 𝑞 to be a set of its atoms 
when convenient and write 𝑟(𝑥, 𝑥′) ∈ 𝑞, to mean that the role atom 𝑟(𝑥, 𝑥′) occurs 
in the conjunction 𝜑 of 𝑞. Additionally, we use 𝑅(𝑥, 𝑥′) for a role 𝑟 to refer to the 
atom 𝑟(𝑥, 𝑥′) if 𝑅 is the role name 𝑟, and to the atom 𝑟(𝑥′, 𝑥) if 𝑅 is the inverse role 
𝑟−. The name existential variables becomes more meaningful, when we view CQs as 
first order logic formula. A CQ 𝑞(𝑥) ← 𝜑(𝑥, 𝑦) can be viewed as the first order logic 
formula 𝜓(𝑥) = ∃𝑦 𝜑(𝑥, 𝑦).

Motivated by the classic Chandra-Merlin theorem [CM77], we define the seman­
tics of CQs in terms of homomorphisms. A homomorphism from an interpretation 
ℐ to an interpretation 𝒥 is a function ℎ from Δℐ to Δ𝒥 such that for all 𝐴 ∈ NC and 
𝑑 ∈ 𝐴ℐ, ℎ(𝑑) ∈ 𝐴𝒥, and for all 𝑟 ∈ NR and (𝑑, 𝑒) ∈ 𝑟ℐ, (ℎ(𝑑), ℎ(𝑒)) ∈ 𝑟𝒥. For a function ℎ
from Δℐ to Δ𝒥 we denote with img(ℎ) the image {ℎ(𝑑) ∣ 𝑑 ∈ Δℐ} ⊆ Δ𝒥 of ℎ. For tuples 
𝑑 = 𝑑1 ⋯ 𝑑𝑛 and 𝑒 = 𝑒1 ⋯ 𝑒𝑛 we write ℎ(𝑑) = 𝑒 if ℎ(𝑑𝑖) = 𝑒𝑖 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.
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An essential fact about homomorphisms that we will use freely is that if ℎ is 
a homomorphism from an interpretation ℐ1 to an interpretation ℐ2, and 𝑔 is a 
homomorphism from ℐ2 to an interpretation ℐ3, then the composition of ℎ and 
𝑔, that is, the function ℎ′ with ℎ′(𝑑) = 𝑔(ℎ(𝑑)) is a homomorphism from ℐ1 to ℐ3. 
For interpretations ℐ, 𝒥, and all tuples 𝑑 over Δℐ and all tuples 𝑒 over Δ𝒥 we write 
ℐ, 𝑑 → 𝒥, 𝑒 if there is a homomorphism ℎ from ℐ to 𝒥 with ℎ(𝑑) = 𝑒. Since we can 
view ABoxes as finite interpretations, we extend this definition to ABoxes, and, for 
example, write 𝒜, 𝑎 → ℬ, 𝑏 to mean ℐ𝒜, 𝑎 → ℐℬ, 𝑏 where 𝒜 and ℬ are ABoxes and 
𝑎 ∈ ind(𝒜) and 𝑏 ∈ ind(ℬ).

With each CQ 𝑞(𝑥), we associate its canonical data example (𝒜𝑞, 𝑥). The ABox 𝒜𝑞
uses as individual names the variables of 𝑞, contains the concept assertion 𝐴(𝑥)
for each concept atom 𝐴(𝑥) ∈ 𝑞 and contains the role assertion 𝑟(𝑥, 𝑦) for each role 
atom 𝑟(𝑥, 𝑦) ∈ 𝑞. The answer variables 𝑥 of 𝑞 are then used as the tuple of individual 
names in the data example (𝒜𝑞, 𝑥). Similarly, we associate with each pointed ABox 
(𝒜, 𝑎) a its canonical CQ 𝑞𝒜(𝑎), that uses as variables the individual names in 𝒜 and 
contains a corresponding atom for every assertion in 𝒜. Since these two concepts 
are so similar, we will often view ABoxes as CQs and vice versa, via their canonical 
counterparts.

With a homomorphism from a CQ 𝑞 to an interpretation ℐ, we mean a homo­
morphism from 𝒜𝑞 to ℐ. Let 𝑞(𝑥) be a CQ of arity 𝑘, ℐ an interpretation, and let 𝑒
be an 𝑘-tuple over Δℐ. If there is a homomorphism ℎ from 𝒜𝑞 to ℐ with ℎ(𝑥) = 𝑒, we 
write 𝑞(𝑥) → ℐ, 𝑒. If such a homomorphism exists, we say that 𝑒 is an answer of 𝑞 in 
ℐ, written as ℐ ⊧ 𝑞(𝑒).

Let 𝒪 be an ontology, 𝒜 an ABox and 𝑞 a CQ of arity 𝑘. We say that 𝑎 ∈ ind(𝒜)𝑘 is 
an answer of 𝑞 in 𝒜 under 𝒪 and write 𝒜, 𝒪 ⊧ 𝑞(𝑎) if ℐ ⊧ 𝑞(𝑎) for every model ℐ
of 𝒜 and 𝒪. This is known as the certain answers of 𝑞. From these definitions, it is 
clear that 𝒜𝑞, 𝒪 ⊧ 𝑞(𝑥) for every CQ 𝑞(𝑥) and ontology 𝒪. Similarly to ABoxes, we 
say that a CQ 𝑞 is satisfiable under 𝒪 if there is a common model of 𝒜𝑞 and 𝒪. Note 
that, using these definitions, a CQ being unsatisfiable does not mean that it does 
not have any answers.

Let 𝑞 and 𝑝 be CQs of the same arity 𝑘. We write 𝑞 ⊆𝒪 𝑝 and say that 𝑞 implies 𝑝
under 𝒪 if, for all ABoxes 𝒜 and tuples 𝑎 ∈ ind(𝒜)𝑘,

𝒜, 𝒪 ⊧ 𝑞(𝑎) implies 𝒜, 𝒪 ⊧ 𝑝(𝑎).

This relationship is also referred to as query implication or query containment. We 
write 𝑞 ≡𝒪 𝑝 and say that 𝑞 and 𝑝 are equivalent under 𝒪 if both 𝑞 ⊆𝒪 𝑝 and 𝑝 ⊆𝒪 𝑞. 
From these definitions, it is easy to see that, for every 𝒪, ⊆𝒪 is a pre-order and ≡𝒪
is an equivalence relation. If 𝑞 ⊆𝒪 𝑞′ and 𝑞 ≢𝒪 𝑞′ we say that 𝑞′ is a generalization of 
𝑞 and that 𝑞 is more specific than 𝑞′.
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𝑞1

𝑟

𝑠 𝑡

𝑞2

𝑟 𝑠

𝑡

𝑞3

𝑟

𝑠𝑡

Figure 3.2: Examples of the different query classes. The queries 𝑞1, 𝑞2, 𝑞3 are all 
CQs, only 𝑞2, 𝑞3 are ELIQs, and only 𝑞3 is an ELQ. Black vertices are 
answer variables, white vertices are existential variables.

Example 3.1. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵} and the CQs

𝑞1(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) ∧ 𝐵(𝑥1),
𝑞2(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1),
𝑞3(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1).

Then, 𝑞1 ⊆𝒪 𝑞2 and 𝑞1 ⊆𝒪 𝑞3. Due to the concept inclusion in 𝒪, it is also the case that 
𝑞2 ⊆𝒪 𝑞1 and 𝑞2 ⊆𝒪 𝑞3. Hence, 𝑞1 ≡𝒪 𝑞2. However, 𝑞3 ⊈𝒪 𝑞2 and 𝑞3 ⊈𝒪 𝑞1. Therefore, 
𝑞3 is a generalization of 𝑞1 and 𝑞2.

We are further interested in two subclasses of CQs that naturally correspond to 
concept instance queries. A CQ 𝑞(𝑥) is acyclic, rooted, or tree-shaped if (𝒜𝑞, 𝑥) is 
acyclic, rooted, or tree-shaped, respectively. We use these properties to define the 
following query classes:

ELIQ The ℰℒℐ queries, or ELIQs, are the class of unary, acyclic and rooted CQs. 
Each ℰℒℐ concept 𝐶 naturally corresponds to an ELIQ 𝑞 (and vice versa) such 
that 𝒜, 𝒪 ⊧ 𝐶(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For example, the ℰℒℐ concept 𝐶 =
∃𝑟.⊤ ⊓ ∃𝑠−.∃𝑡.⊤ corresponds to the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥2, 𝑥0) ∧ 𝑡(𝑥2, 𝑥3), 
which is displayed as 𝑞2 in Figure 3.2.

ELQ The ℰℒ queries, or ELQs, are the class of unary, tree-shaped, and rooted CQs. 
Each ℰℒ concept 𝐶 naturally corresponds to an ELQ 𝑞 (and vice versa) such 
that 𝒜, 𝒪 ⊧ 𝐶(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For example, the ℰℒ concept 
∃𝑟.(∃𝑡.⊤⊓∃𝑠.⊤) corresponds to the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1)∧𝑠(𝑥1, 𝑥2)∧𝑡(𝑥1, 𝑥3), 
which is displayed as 𝑞3 in Figure 3.2.

As a direct consequence of these definitions, every ELQ is an ELIQ, and every ELIQ 
is a CQ. Figure 3.2 shows examples of queries in these classes. The CQ 𝑞1 is neither 
an ELIQ nor an ELQ, since it is not unary and contains a cycle.
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For ELIQs, we adopt notation related to trees and speak about successor and 
predecessor variables, subtrees and leafs. In particular, we can view an ELIQ 𝑞(𝑥0)
as a tree rooted at 𝑥0 where all edges are directed away from 𝑥0, and each edge is 
labeled with a role name 𝑟 or an inverse role name 𝑟−. We then denote with 𝑞𝑥 the 
ELIQ obtained from taking all atoms in the subtree below the variable 𝑥 and making 
𝑥 the answer variable. With each variable in an ELIQ 𝑞, we associate a codepth, where 
leaf variables have codepth 0, and non-leaf variables have the codepth that is the 
minimum of their successors plus one.

Example 3.2. Consider the ELIQ

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥0, 𝑥3) ∧ 𝐴(𝑥1) ∧ 𝑠(𝑥2, 𝑥1).

The role atoms 𝑟(𝑥0, 𝑥1) and 𝑠(𝑥0, 𝑥3) are directed away from the answer variable 𝑥0
and the role atom 𝑠(𝑥2, 𝑥1) is directed towards 𝑥0. We can also view 𝑠(𝑥2, 𝑥1) as an 𝑠−
atom, that is directed away from 𝑥0. Furthermore, the ELIQ 𝑞𝑥1, that is the subtree 
rooted at 𝑥1, is

𝑞𝑥1(𝑥1) ← 𝐴(𝑥1) ∧ 𝑠(𝑥2, 𝑥1).

The codepth of 𝑥2 in 𝑞 is 0, the codepth of 𝑥1 is 1, and the codepth of 𝑥0 is 2.

A signature Σ is a set of concept and role names. For a query class 𝒬, we denote 
with 𝒬Σ the class of all queries from 𝒬 that only use symbols in Σ. Note that all 
query classes 𝒬 we have defined are infinite, and, assuming that Σ contains a role 
name, all 𝒬Σ are infinite as well. For any syntactic object 𝑜 (like concepts, ontologies, 
ABoxes or queries), we use sig(𝑜) to denote the set of concept and role names used 
in 𝑜, and ‖𝑜‖ to denote the size of 𝑜, that is, the number of symbols needed to write 𝑜
as a word encoded over a finite fixed alphabet, where each occurrence of concept 
or role names contributes one symbol.

The Direct Product

Closely related to conjunctive queries and homomorphisms is the operation of 
constructing a direct product of two interpretations. The direct product of two 
interpretations ℐ1 and ℐ2 is the interpretation ℐ1 × ℐ2 defined by setting

Δℐ1×ℐ2 = Δℐ1 × Δℐ2,
𝐴ℐ1×ℐ2 = 𝐴ℐ1 × 𝐴ℐ2, for all 𝐴 ∈ NC,
𝑟ℐ1×ℐ2 = {((𝑑1, 𝑑2), (𝑒1, 𝑒2)) ∣ (𝑑𝑖, 𝑒𝑖) ∈ 𝑟ℐ𝑖 for 𝑖 ∈ {1, 2}}, for all 𝑟 ∈ NR.

Let 𝑎 = 𝑎1 … 𝑎𝑛 and 𝑏 = 𝑏1 … 𝑏𝑛 be tuples of the same arity. With 𝑎 ⊗ 𝑏 we denote 
the tuple (𝑎1, 𝑏1) … (𝑎𝑛, 𝑏𝑛). From the definition of direct products, it is clear that 
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|Δℐ1×ℐ2 | = |Δℐ1 | ⋅ |Δℐ2 |. Hence, the product of finite interpretations can be computed 
in polynomial time. The important standard properties of direct products are 
summarized in the following lemma.

Lemma 3.3. Let ℐ1, ℐ2, and 𝒥 be interpretations and 𝑒1, 𝑒2 and 𝑒 tuples. Then, the 
following are equivalent.

1. 𝒥, 𝑒 → ℐ1, 𝑒1 and 𝒥, 𝑒 → ℐ2, 𝑒2;

2. 𝒥, 𝑒 → ℐ1 × ℐ2, 𝑒1 ⊗ 𝑒2.

The same applies to ABoxes and CQs viewed as finite interpretations. A direct 
consequence of Lemma 3.3 is that ℐ1 ⊧ 𝑞(𝑒1) and ℐ2 ⊧ 𝑞(𝑒2) if and only if ℐ1 × ℐ2 ⊧
𝑞(𝑒1 ⊗ 𝑒2).

Reasoning

Associated with ontologies and queries are certain decision problems, referred to 
as reasoning tasks, that involve reasoning with the logical statements in the ontology. 
Their computational complexity varies, depending on the query class and the 
ontology language. Here, we briefly introduce the main reasoning tasks that are 
relevant for learning queries under ontologies, and comment on their combined 
complexity.

The first basic reasoning task is satisfiability: Given an ABox 𝒜 and an ontology 
𝒪, decide whether 𝒜 is satisfiable under 𝒪. Conjunctive, ℰℒ𝑟 and ℰℒℐ ontologies 
do not contain disjointness or functionality constraints and every ABox is therefore 
satisfiable under those ontologies. Ontologies written in ℰℒℐℋℱ⊥ may constraints, 
and deciding satisfiability of ABoxes is ExpTime-complete [KRH13]. For DL-Liteℱhorn, 
DL-Litehorn, DL-Liteℋℱ

core, and DL-Litecore ontologies, satisfiability can be decided in 
P [Art+09].

Another basic reasoning task is concept subsumption: Given as input an ontology 𝒪, 
and concepts 𝐶, 𝐷, decide whether 𝒪 ⊧ 𝐶 ⊑ 𝐷. In ontology languages with concept 
disjointness constraints, this can be decided by answering whether 𝐶 viewed as an 
ABox is not satisfiable under 𝒪∪{𝐶⊓𝐷 ⊑ ⊥}. Therefore, deciding concept subsump­
tion is in P for DL-Liteℱhorn, DL-Litehorn, DL-Liteℋℱ

core and DL-Litecore, and in ExpTime
for ℰℒℐℋℱ⊥. For ontology languages without concept disjointness constraints, 
separate reasoning algorithms are necessary to decide concept subsumption. For 
conjunctive or ℰℒ ontologies, concept subsumption can be decided in P [Bra04]. 
For ℰℒℐ ontologies, deciding concept subsumption is ExpTime-complete [BBL08], 
and therefore the same is true for ℰℒℐℋℱ⊥ ontologies.

Since we are interested in querying under ontologies, the computational com­
plexity of query answering under ontologies are also relevant: Given an ontology 𝒪, 
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Table 3.2: Summary of the (combined) complexity of various reasoning tasks

ℒ  Satisfiability 𝒪 ⊧ 𝐶 ⊑ 𝐷 𝒜, 𝒪 ⊧ 𝑞𝐸𝐿𝐼𝑄(𝑎) 𝒜, 𝒪 ⊧ 𝑞𝐶𝑄(𝑎)

ℰℒℐℋℱ⊥ ExpTime-c ExpTime-c ExpTime-c ExpTime-c
ℰℒℐ  trivial ExpTime-c ExpTime-c ExpTime-c
ℰℒ  trivial  in P  in P NP-c
DL-Liteℱhorn  in P  in P  in NP NP-c
DL-Litehorn  in P  in P  in NP NP-c
DL-Liteℋℱ

core  in P  in P NP-c NP-c
DL-Litecore  in P  in P  in P NP-c
∅  trivial  in P NP-c

a CQ 𝑞, and a data example (𝒜, 𝑎), decide whether 𝒜, 𝒪 ⊧ 𝑞(𝑎). Already in the 
case without an ontology, answering CQs is NP-complete [CM77]. For ontolo­
gies written in more expressive DLs such as ℰℒℐ and ℰℒℐℋℱ⊥, answering CQs 
is ExpTime-complete [Eit+08]. However, for ontologies written in ℰℒ or DLs of 
the DL-Lite family, where concept subsumption is in P, answering CQs remains 
NP-complete [Cal+05; Ros07].

The complexity of query answering improves when we restrict 𝑞 to be an ELIQ. 
In fact, acyclicity of 𝑞 suffices. Then, answering an ELIQ is in P in the case with­
out ontologies [Yan81]. Moreover, it remains in P for ℰℒ and DL-Litecore ontolo­
gies [Bie+13]. The role inclusions in DL-Liteℋℱ

core ontologies unfortunately make 
answering ELIQs NP-complete [KKZ11]. For ontologies written ℰℒℐ and ℰℒℐℋℱ⊥
the ExpTime-complete concept subsumption dominates the complexity of query 
answering, and ELIQ answering is not easier than CQ answering.

All mentioned complexity results are summarized in Table 3.2. When investi­
gating query answering under ontologies, one is commonly also interested in data 
complexity, that is, the computational complexity of query answering when the 
ontology and the query are assumed to be fixed. Low data complexity for query 
answering is one of the main motivations of the DL-Lite family of DLs. However, 
data complexity is not so relevant for us, as we will not assume that ontologies or 
specific queries are fixed when learning queries.

Universal Models

An important property of ℰℒℐℋℱ⊥ and all of its sublanguages is that they are 
contained in the Horn fragment of first order logic. This gives ℰℒℐℋℱ⊥ ontologies 
the universal model property, meaning that they possess a single model that is homo­
morphically contained in all of their models. Next, we review the construction of 
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such models and their properties.
For this, it is useful to assume that ontologies are in normal form. An ℰℒℐℋℱ⊥

ontology is in normal form if all concept inclusions in it are of one of the following 
forms

𝐴1 ⊑ ∃𝑅.𝐴2 ∃𝑅.𝐴1 ⊑ 𝐴2 𝐴1 ⊓ 𝐴2 ⊑ 𝐴3

where 𝐴1, 𝐴2, 𝐴3 are concept names or ⊤ and 𝑅 is a role. It is well known that 
every ℰℒℐℋℱ⊥ ontology can be converted into normal form in polynomial time, 
by introducing additional concept names [Baa+17].

For a set 𝑀 of concept names, we write ⨅ 𝑀 as a shorthand for ⨅𝐴∈𝑀 𝐴. Let 𝒜 be 
an ABox and 𝒪 an ℰℒℐℋℱ⊥ ontology. We define the interpretation 𝒰𝒜,𝒪 as follows. 
For 𝑎 ∈ ind(𝒜), sets of concept names 𝑀, 𝑀′, and a role 𝑅, we write 𝑎 ⇝𝑅

𝒜,𝒪 𝑀 if

1. 𝒜, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(𝑎) and 𝑀 is maximal with this condition, and

2. there is no 𝑏 ∈ ind(𝒜) with 𝒜, 𝒪 ⊧ 𝑅(𝑎, 𝑏) and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏).

We write 𝑀 ⇝𝑅
𝒪 𝑀′ if 𝒪 ⊧ ⨅ 𝑀 ⊑ ∃𝑅. ⨅ 𝑀′ and 𝑀′ is maximal with this condition.

A trace for 𝒜 and 𝒪 is a sequence 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 for 𝑛 ≥ 0, where 𝑎 ∈ ind(𝒜), 
𝑅1, … , 𝑅𝑛 are roles that occur in 𝒪, and 𝑀1, … , 𝑀𝑛 are sets of concept names that 
occur in 𝒪 such that

1. 𝑎 ⇝𝑅1
𝒜,𝒪 𝑀1, and

2. 𝑀𝑖 ⇝𝑅𝑖+1
𝒪 𝑀𝑖+1 and func(𝑅−

𝑖 ) ∈ 𝒪 implies 𝑅𝑖+1 ≠ 𝑅−
𝑖 , for 1 ≤ 𝑖 < 𝑛.

We say that a trace 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 starts with 𝑎 ∈ ind(𝒜) and has length 𝑛. We call 
a trace proper if it has length at least one, that is, it is not an element of ind(𝒜).

The set T of all traces for 𝒜 and 𝒪 forms Δ𝒰𝒜,𝒪. We define ⋅𝒰𝒜,𝒪 for all 𝐴 ∈ NC
and all 𝑟 ∈ NR as follows.

𝐴𝒰𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪
{𝑡𝑅𝑀 ∈ T ∣ 𝐴 ∈ 𝑀},

𝑟𝒰𝒜,𝒪 ={(𝑎, 𝑏) ∈ ind(𝒜)2 ∣ 𝒜, 𝒪 ⊧ 𝑟(𝑎, 𝑏)} ∪
{(𝑡, 𝑡𝑠𝑀) ∣ 𝑡𝑠𝑀 ∈ T, 𝒪 ⊧ 𝑠 ⊑ 𝑟} ∪
{(𝑡𝑠−𝑀, 𝑡) ∣ 𝑡𝑠−𝑀 ∈ T, 𝒪 ⊧ 𝑠 ⊑ 𝑟}.

Example 3.4. Consider the ABox 𝒜 = {𝑟(𝑎, 𝑏)} and the ontology

𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ 𝑠.𝐵, 𝑟 ⊑ 𝑠, func(𝑟)}.
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Figure 3.3: The ABox 𝒜 and the infinite interpretation 𝒰𝒜,𝒪 for 𝒜 = {𝑟(𝑎, 𝑏)} and 
𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.𝐵, 𝑟 ⊑ 𝑠, func(𝑟)}.

An initial segment of the interpretation 𝒰𝒜,𝒪 is displayed in Figure 3.3. In 𝒰𝒜,𝒪, the 
trace 𝑎𝑠{𝐵} is an 𝑠-successor of 𝑎, as 𝑎 ⇝𝑠

𝒜,𝒪 {𝐵}. Note that 𝑎⇝̸𝑠
𝒜,𝒪{𝐴} and 𝑎⇝̸𝑟

𝒜,𝒪{𝐴}
due to the 𝑟(𝑎, 𝑏) assertion in 𝒜. Since 𝒜, 𝒪 ⊧ 𝐴(𝑏), 𝑏 ⇝𝑠

𝒜,𝒪 {𝐴} and 𝑏 ⇝𝑟
𝒜,𝒪 {𝐴}. 

Therefore, the traces 𝑏𝑠{𝐴} and 𝑏𝑟{𝐴} are attached to 𝑏.

Note that 𝒰𝒜,𝒪 is usually infinite. To each element 𝑎 ∈ ind(𝒜), the traces starting 
with 𝑎 are attached in a tree-like structure. The traces do not necessarily form 
an acyclic interpretation, as role inclusions can introduce multi-edges, but their 
underlying graph is acyclic. Therefore, we also use tree terminology when talking 
about traces. Commonly, we use the subtree below 𝑎 or the subtree attached to 𝑎 to mean 
the restriction of 𝒰𝒜,𝒪 to the traces starting with 𝑎.

The interpretation 𝒰𝒜,𝒪 is then a universal model of 𝒜 and 𝒪, the properties of 
which are made precise by the following lemma. Its proof is standard, see, for 
example, [Bot+16].

Lemma 3.5. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝒜 an ABox that is 
satisfiable under 𝒪. Then

1. 𝒰𝒜,𝒪 is a model of 𝒜 and 𝒪;

2. for every model ℐ of 𝒜 and 𝒪, there is a homomorphism ℎ from 𝒰𝒜,𝒪 to ℐ with 
ℎ(𝑎) = 𝑎ℐ for all 𝑎 ∈ ind(𝒜).

3. for all 𝑘-ary CQs 𝑞(𝑥) and all 𝑎 ∈ ind(𝒜)𝑘, 𝒜, 𝒪 ⊧ 𝑞(𝑎) if and only if 𝒰𝒜,𝒪 ⊧ 𝑞(𝑎).

We call a model that fulfills Point 3 of Lemma 3.5 CQ-universal. Occasionally, we 
will also use models that are 𝒬-universal for some query class 𝒬 that are not CQs 
and mean that they fulfill Point 3 not for all CQs, but for all queries in 𝒬.
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The definition of 𝒰𝒜,𝒪 is very close to standard definitions of universal models for 
ℰℒℐℋ⊥ [BO15], that is, ℰℒℐℋℱ⊥ without functionality constraints, with additional 
considerations to accommodate these functionality constraints. Compare it also 
to definitions of universal models for ℰℒℐℋℱ⊥ without the restriction on the 
interaction of role inclusions and functionality constraints, such as in [LP22]. Due 
to the restriction, we can use single roles instead of sets of roles in our definition 
of traces. Note that this means that 𝒰𝒜,𝒪 is not a model of ℰℒℐℋℱ⊥ ontologies in 
which the interaction of functionality constraints and role inclusions is not restricted.

Example 3.6. Consider the ABox 𝒜 = {𝐴(𝑎)} and the ontology

𝒪 = {𝐴 ⊑ ∃𝑟1.⊤, 𝐴 ⊑ ∃𝑟2.⊤, 𝑟1 ⊑ 𝑠, 𝑟2 ⊑ 𝑠, func(𝑠)},

which is not an ℰℒℐℋℱ⊥ ontology according to the definition in Section 3.1, as 
func(𝑠) ∈ 𝒪, but there is a role 𝑟1 with 𝑟1 ⊑ 𝑠 ∈ 𝒪. Then, 𝒰𝒜,𝒪 contains the traces 𝑎𝑟1∅
and 𝑎𝑟2∅ with (𝑎, 𝑎𝑟1∅), (𝑎, 𝑎𝑟2∅) ∈ 𝑠𝒰𝒜,𝒪, which violates the functionality constraint 
func(𝑠) ∈ 𝒪.

We will often consider models 𝒰𝒜,𝒪 where 𝒜 is a CQ 𝑞 viewed as an ABox 𝒜𝑞. 
In these cases, we will write 𝒰𝑞,𝒪 instead of 𝒰𝒜𝑞,𝒪. The following lemma is a direct 
consequence of Point 3 of Lemma 3.5 and the homomorphism-based semantics of 
CQs.

Lemma 3.7. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑝(𝑦), 𝑞(𝑥) CQs such that 
𝑝 is satisfiable under 𝒪. Then, 𝑝 ⊆𝒪 𝑞 if and only if 𝒜𝑝, 𝒪 ⊧ 𝑞(𝑦) if and only if 𝒰𝑝,𝒪 ⊧ 𝑞(𝑦).

Occasionally, when composing homomorphisms, we will need to extend the 
domain of homomorphisms from queries to their universal model.

Lemma 3.8. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form, 𝒜 an ABox, 𝑞(𝑥) a CQ, 
and 𝑎 a tuple over ind(𝒜). Every homomorphism ℎ from 𝑞 to 𝒰𝒜,𝒪 with ℎ(𝑥) = 𝑎 can be 
extended to a homomorphism ℎ′ from 𝒰𝑞,𝒪 to 𝒰𝒜,𝒪 with ℎ′(𝑥) = 𝑎.

The proofs of these lemmas are standard and omitted.

3.2 The Fitting Problem

In the fitting model of learning, the learning algorithm receives labeled data exam­
ples as input and must compute a query that fits the labeled examples. Formally, a 
labeled data example is an example (𝒜, 𝑎) together with the label + (positive example) 
or − (negative example). A CQ 𝑞 fits a collection of labeled examples 𝐸 under an ontology 
𝒪 if
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• 𝒜, 𝒪 ⊧ 𝑞(𝑎) for all (𝒜, 𝑎, +) ∈ 𝐸, and

• 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for all (𝒜, 𝑎, −) ∈ 𝐸.

Observe that 𝐸 is not a set, that is, 𝐸 is allowed to contain duplicate data examples. 
This is not essential here, but makes the definition of fitting closer to PAC learning. 
The decision problem at the core of computing a fitting query given examples is as 
follows.

Definition 3.9 (Fitting problem). Let 𝒬 be a query class and ℒ an ontology language. 
The fitting problem for 𝒬 and ℒ is the problem to decide, given an ℒ ontology 𝒪, a 
signature Σ, and a set of labeled examples 𝐸, whether there is a query 𝑞 ∈ 𝒬Σ that 
fits 𝐸 under 𝒪.

The fitting problem is also referred to as the separability problem, the weak sep­
arability problem, or query-by-example [Fun+19; GJS18; Jun+20]. The name weak 
separability refers to the contrast to strong separability. In the strong separability 
problem, it is required that ℬ, 𝒪 ⊧ ¬𝑞(𝑏) for all negative examples (𝒜, 𝑎, −) ∈ 𝐸. In 
our setting, this does not make sense since ℬ, 𝒪 ⊧ ¬𝑞(𝑏) is never true due to the 
open world assumption and choice of ontology language. However, for stronger 
ontology languages that can express negation, like 𝒜ℒ𝒞, strong separability may be 
desired. See for example [BN00; Fan+18; Leh+14] for works on strong separability. 
Since we only consider lightweight description logics where reasoning is possible 
in polynomial time, only fitting in the above sense of weak separability is useful to 
us.

As it lies at the core of many query engineering problems, the complexity of 
the fitting problem has been investigated both in the setting of databases without 
ontologies and in the setting of knowledge bases.

Willard showed that computing a fitting CQ, even under the empty ontology, 
is coNExpTime-complete [tCD15; Wil10]. Part of this high complexity lies in the 
fact that the size of a fitting CQ may be exponential in the size of the examples. 
In the case of ELQs, the size of a fitting query may even be double-exponential. 
Fortunately, the existence of a fitting ELQ (or ELIQ) under the empty ontology can 
be decided in ExpTime based on a simulation-based characterization, and is indeed 
only ExpTime-complete [BR17]. The same is true for deciding the existence of fitting 
ELQs under ℰℒℐ ontologies [Fun+19], as finite models, although of exponential 
size, of ℰℒℐ ontologies that are ELQ-universal exist. Since all relevant features 
of DL-Litehorn are available in ℰℒℐ, this also applies to ELQs under DL-Litehorn
ontologies.

Finite ELIQ- or CQ-universal models of ℰℒ or ℰℒℐ ontologies do not exist. Never­
theless, under Horn-𝒜ℒ𝒞 ontologies (which includes all ℰℒ ontologies), the fitting 
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Table 3.3: Known complexity results of the fitting problem for 𝒬 and ℒ

ℒ  ELQ  ELIQ  CQ 

ℰℒℐ ExpTime-c  undecidable  undecidable 
ℰℒ ExpTime-c ExpTime-h coNExpTime-c 

DL-Litecore / DL-Litehorn ExpTime-c ExpTime-h coNExpTime-h 
∅ ExpTime-c ExpTime-c coNExpTime-c 

problem for CQs is not harder than in the case without ontologies and can be de­
cided in coNExpTime [GJS18]. For ELIQs under ℰℒ ontologies, the exact complexity 
is not known, but the ExpTime-hardness from the case under the empty ontology 
transfers. Unfortunately, under ℰℒℐ ontologies, the fitting problem for ELIQs and 
CQs even becomes undecidable [Fun+19]. This is slightly worrying, as therefore 
no algorithm that searches for fitting ELIQs under ℰℒℐ ontologies can be complete 
and terminating. However, exact learning and PAC learning algorithms work under 
the assumption that a fitting query exists and therefore do not necessarily need to 
solve an undecidable problem.

For DLs of the DL-Lite family, only few bounds on the complexity of the fit­
ting problem for CQs or ELIQs are known, as existing results mostly focus on 
UCQs [CCL21; Ort19]. In general, deciding the existence of a fitting UCQ is com­
putationally simpler than the existence of a fitting CQ, as a fitting query for each 
positive example can be determined separately, and then joined in a disjunction. 
This makes the fitting problem for UCQs under the empty ontology only coNP-
complete.

Table 3.3 summarizes the mentioned results. It is interesting to note that the 
size of a fitting query is not the only source of the high complexities of the fitting 
problems. These problems remain at least NP-hard, even if algorithms take a bound 
on the size of the fitting query as input [tCat+24]. We revisit this in Chapter 6.

For learning queries, we are not only interested in deciding if a fitting query 
exist, but also wish to obtain a fitting query. For this, we use the notion of fitting 
algorithms.

Definition 3.10 (Fitting algorithm). Let 𝒬 be a query class and ℒ an ontology 
language. A fitting algorithm for 𝒬 and ℒ is an algorithm that takes as input a 
signature Σ, an ℒ ontology 𝒪 with sig(𝒪) ⊆ Σ, and a set of labeled examples 𝐸, and 
returns a query 𝑞 ∈ 𝒬Σ that fits 𝐸 under 𝒪 if such a query exists.

Of course, fitting algorithms according to Definition 3.10 are not algorithms in 
the usual sense, as it is not required to terminate if no fitting query exists in 𝒬Σ. 
Additionally, fitting algorithms may return any query if no fitting query exists. We 
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chose this definition for uniformity with the other learning models, where a fitting 
query is guaranteed to exist. These issues do not occur in practice, as for many 
combinations of 𝒬 and ℒ there are upper bounds on the size of a fitting query, like 
the aforementioned bounds on ELQs and CQs, which can be used to ensure that a 
fitting algorithm in the sense of Definition 3.10 always terminates. Furthermore, 
as query answering is usually computationally easier than the fitting problem, it 
can in a second step be verified that the result of a fitting algorithm in the sense of 
Definition 3.10 really fits the input examples.

3.3 Exact Learning

Angluin’s exact learning framework [Ang88b] models learning as an interactive 
process involving two parties, a learner and a teacher. It was conceived in the context 
of learning finite automata from word examples in polynomial time [Ang87]. We 
informally described this framework in Chapter 1. In this section, we define it 
formally, specialized to our setting of learning queries under ontologies.

Both the learner and the teacher agree on a query class 𝒬 and know an ontology 
𝒪, as well as a signature Σ, but only the teacher knows a target query 𝑞𝑇 ∈ 𝒬Σ. The 
learner then attempts to identify 𝑞𝑇 by posing two different kinds of questions to 
the teacher that we already saw in Chapter 1:

Membership query Given an example (𝒜, 𝑎), the teacher responds with yes if 𝒜, 𝒪 ⊧
𝑞𝑇(𝑎) and no otherwise.

Equivalence query Given a hypothesis query 𝑞𝐻 ∈ 𝒬Σ, the teacher responds yes if 
𝑞𝐻 ≡𝒪 𝑞𝑇. If this is not the case, the teacher produces a counterexample, that 
is, an example (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎) or vice versa.

Note that in membership queries, sig(𝒜) is unrestricted.
It may be confusing that membership queries and equivalence queries are called 

queries when we already aim to learn conjunctive queries. These two sorts of queries 
are not related. Sometimes membership queries are renamed to membership oracle 
calls to avoid this confusion [tCD22], but we choose to keep the name membership 
query, since it is established in the exact learning literature. Similarly, exact learning 
is often concerned with learning concepts, which are defined to be sets of examples, 
and not syntactic objects, like the description logic concepts defined in Section 3.1. 
We mostly avoid this clash of terms by defining our learning models for query 
classes and not for abstract classes of concept.

In both membership queries and equivalence queries, the teacher must respond 
correctly and truthfully, but the counterexamples provided by the teacher do not 
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have to be helpful. In fact, the learner must be able to identify the target query even 
if the teacher acts as an adversary.

In the exact learning framework, we desire a learning algorithm for the learner to 
execute that identifies 𝑞𝑇 in all cases.

Definition 3.11 (Exact learning algorithm). Let 𝒬 be a query class and ℒ an ontology 
language. An exact learning algorithm for 𝒬 under ℒ ontologies is an algorithm 𝐀
that, for all signatures Σ, all ℒ ontologies 𝒪 with sig(𝒪) ⊆ Σ, and all 𝑞𝑇 ∈ 𝒬Σ, when 
started with input 𝒪 and Σ, and allowed to ask membership and equivalence queries 
that are answered with regard to 𝑞𝑇, 𝐀 returns a hypothesis 𝑞𝐻 ∈ 𝒬Σ with 𝑞𝐻 ≡𝒪 𝑞𝑇.

If there exists an exact learning algorithm for 𝒬 under ℒ ontologies, then 𝒬 is 
exactly learnable under ℒ ontologies.

Using this definition, every enumerable query class is exactly learnable under 
every ontology language. This is because there always is a learning algorithm that 
enumerates all queries in 𝒬Σ ordered by size and returns the first query for which 
the teacher responds positively to an equivalence query. For the query classes we 
are interested in, this means that the algorithm makes a number of equivalence 
queries that is exponential in ‖𝑞𝑇‖, as there is an exponential number of queries that 
are smaller than 𝑞𝑇. This is often not practical, especially when equivalence queries 
need to be answered by a human teacher. Hence, we are interested in notions of 
efficient exact learnability, where the learner is not permitted to make this exponential 
number of equivalence queries.

Polynomial time learnability The first notion of efficiency restricts the algorithm to 
run in polynomial time.

The query class 𝒬 is polynomial time learnable under ℒ ontologies, if there 
is an exact learning algorithm 𝐀 for 𝒬 under ℒ ontologies, and there is a 
polynomial 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜) such that at each point during the run of 𝐀, the 
time used by 𝐀 is bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜), where 𝑛𝒜 is the size of the 
largest counterexample returned by an equivalence query so far.

Note that this notion is slightly more restrictive than demanding the total 
running time of 𝐀 to be bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜). This is because we 
want to allow 𝑝 to depend on 𝑛𝒜, in order to give 𝐀 enough time to read large 
counterexamples whose size is not bounded by the other parameters. But in 
certain scenarios bounding the total running time this way could be abused 
by learning algorithms: 𝐀 could first perform an exponential search for 𝑞𝑇 as 
described above, and then, with knowledge of 𝑞𝑇, ask an equivalence query 
that forces the teacher to produce an exponentially sized counterexample, 
thereby sufficiently raising the running time bound [Ang90].
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Polynomial query learnability For some choices of 𝒬 and ℒ, polynomial time learn­
ability seems implausible due to reasons not directly linked to the learning 
itself. For example, when learning under ℰℒℐ ontologies, ExpTime-complete 
reasoning problems may need to be solved by the learner. In these cases, we 
might relax the bound on the running time of the learning algorithm, but still 
demand that the number of membership queries and equivalence queries is 
bounded to forbid exhaustive search strategies.

A query class 𝒬 is polynomial query learnable under ℒ ontologies, if there is an 
exact learning algorithm 𝐀 for 𝒬 under ℒ ontologies, and there is a polynomial 
𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜) such that at each point during the run of 𝐀, the sum of the 
sizes of the inputs to membership and equivalence queries up to that point 
is bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜) and every query returned by 𝐀 has size at 
most 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜).

The bound on the size of the output of 𝐀 is non-standard in this definition. 
Without it, a learning algorithm could identify 𝑞𝑇 using membership queries 
and equivalence queries of size bounded by 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜), and then 
return a query equivalent to 𝑞𝑇, but exponentially larger. This is not desirable, 
since it breaks a connection to PAC learning, which we describe in Section 3.4.

It follows directly from these definitions that every query class 𝒬 that is polyno­
mial time learnable under ℒ ontologies is also polynomial query learnable. Ad­
ditionally, polynomial time learnability and polynomial query learnability are 
anti-monotone in ℒ: If every ℒ′ ontology is also a ℒ ontology and 𝒬 is polynomial 
time learnable under ℒ ontologies, then 𝒬 is also polynomial time learnable under 
ℒ′ ontologies using the same learning algorithm. This makes the case of learning 
without ontologies a special case of learning under ontologies. The same is not 
true for the query class 𝒬: If 𝒬′ ⊆ 𝒬 and 𝒬 is polynomial time learnable under ℒ
ontologies, then 𝒬′ is not necessarily polynomial time learnable under ℒ ontologies. 
This is because the hypotheses used in equivalence queries must then be from 𝒬′, 
but the original learning algorithm produces hypotheses from 𝒬.

In Definition 3.11 we assume that sig(𝒪) ⊆ Σ. This assumption gives more 
freedom to learning algorithms, as they can freely use all symbols in the ontology 
as part of equivalence queries.

In some formulations of the exact learning model, the learner has access to more 
kinds of questions than membership queries and equivalence queries [Ang88b]. 
One kind that is interesting in our setting are subset queries.

Subset query Given query 𝑞𝐻 ∈ 𝒬Σ, the teacher answers with yes if 𝑞𝐻 ⊆𝒪 𝑞𝑇 and 
with no otherwise.
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For all query classes that are subclasses of CQs, subset queries do not make learning 
algorithms more powerful. The reason for this is Lemma 3.7. Consider a CQ 𝑞(𝑥)
and the corresponding example (𝒜𝑞, 𝑥). Then, the response to a subset query with 
𝑞 is positive if and only if 𝑞 ⊆𝒪 𝑞𝑇. This in turn is true if and only if 𝒜𝑞, 𝒪 ⊧ 𝑞𝑇(𝑥), 
which is precisely what is answered by a membership query. Hence, one can replace 
uses of subset queries with uses of membership queries.

However, the other direction, replacing membership queries with subset queries, 
is not always possible. One can replace a membership query with example (𝒜, 𝑎)
with a subset query, only if 𝑞𝒜 ∈ 𝒬. That is, if 𝒬 = ELQ, then a membership query 
with the example ({𝑟(𝑎, 𝑎)}, 𝑎) cannot be replaced with a subset query, as 𝑞𝒜 is not 
an ELQ.

It is, of course, also of interest to show that some combinations of query class 
and ontology language are not efficiently learnable. Angluin introduced several 
techniques to show lower bounds for the number of membership queries and 
equivalence queries that every (correct) learning algorithm has to use in the worst 
case. A basic technique for showing lower bounds for membership queries is the 
following.

Lemma 3.12 ([Ang88b]). Let ℒ be an ontology language and 𝒬 a query class. If there is 
a set 𝑆 of 𝒬 queries and an ℒ ontology such that for all examples (𝒜, 𝑎) and for all 𝑝, 𝑞 ∈ 𝑆
with 𝑝 ≠ 𝑞,

𝒜, 𝒪 ⊧ 𝑞(𝑎) and 𝒜, 𝒪 ⊧ 𝑝(𝑎) implies 𝒜, 𝒪 ⊧ 𝑞′(𝑎) for all 𝑞′ ∈ 𝑆,

then every learning algorithm that uses only membership queries to learn 𝒬 queries under 
ℒ ontologies must make at least |𝑆| − 1 membership queries in the worst case.

 Proof. To show this, we view the teacher as an adversary, who tries to avoid iden­
tification of a target query 𝑞𝑇 ∈ 𝑆 as long as possible. For this, we will describe a 
strategy for the teacher to maintain the set 𝑆 as a set of possible target queries that 
is consistent with all answers given to membership queries so far. The properties 
of 𝑆 make sure that the teacher needs to only remove at most one query from 𝑆
for each membership query that the learner asks, meaning that for every learning 
algorithm that asks fewer than |𝑆| − 1 membership queries, two candidates remain 
in 𝑆 that the learner cannot distinguish.

Assume to the contrary, that there is a learning algorithm that can identify every 
single choice of target query from 𝑆 with fewer than |𝑆| − 1 membership queries. If 
the learner asks a membership query with example (𝒜, 𝑎), the adversarial teacher 
responds as follows:

1. if there is no 𝑞 ∈ 𝑆 such that 𝒜, 𝒪 ⊧ 𝑞(𝑎), answer no;

2. if 𝒜, 𝒪 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆, answer no and remove 𝑞 from 𝑆;
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3. if 𝒜, 𝒪 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆, answer yes.

Note that in every case, the queries that remain in 𝑆 are consistent with the answers 
given so far. In the third case, this is due to the property of 𝑆 that if 𝒜, 𝒪 ⊧ 𝑞(𝑎) and 
𝒜, 𝒪 ⊧ 𝑝(𝑎) for 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ≠ 𝑞, then 𝒜, 𝒪 ⊧ 𝑞′(𝑎) for all 𝑞′ ∈ 𝑆. Thus, the learner 
cannot distinguish the remaining candidate queries in 𝑆 based on the answers so 
far, and we have arrived at a contradiction.

We will use several extensions of this technique to show that certain query classes 
cannot be learned using only a polynomial number of membership queries.

Beyond Lemma 3.12, many more sophisticated combinatorial approaches have 
been developed to show lower bounds on the required number of membership 
queries and equivalence queries, like certificates [Hel+96], the generalized teaching 
dimension [Heg95], or the Littlestone dimension [CF20] See [Ang04] for a summary 
of these techniques. Unfortunately, no lower bounds in the area of learning queries 
under ontologies have been established using these techniques so far.

3.4 Probably Approximately Correct Learning

The model of probably approximately correct (PAC) learning was introduced by Valiant 
in the context of learning Boolean functions [Val84], although not under this name. 
The name was later coined by Angluin [Ang88a]. In this section, we define the PAC 
model for learning queries under ontologies.

At the core of the PAC model lies the assumption that data examples are inde­
pendently drawn from an unknown probability distribution and labeled according 
to an unknown target query 𝑞𝑇 that we aim to learn. In the functional version of this 
model, a learning algorithm is provided with a sample of examples drawn from 
the distribution and labeled according to 𝑞𝑇, and must produce a query that agrees 
with high likelihood with 𝑞𝑇 on a random example drawn from the distribution.

More precisely, let 𝑃 be a probability distribution over data examples and let 𝑞𝑇
and 𝑞𝐻 be CQs, the target and the hypothesis. The error of 𝑞𝐻 relative to 𝑞𝑇 and 𝑃 is

error𝑃,𝑞𝑇,𝒪(𝑞𝐻) = Pr
(𝒜,𝑎)∈𝑃

�𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎),  or 

𝒜, 𝒪 ⊧̸ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧ 𝑞𝐻(𝑎)�

where Pr(𝒜,𝑎)∈𝑃 𝑋 is the probability of 𝑋 when drawing (𝒜, 𝑎) randomly according 
to 𝑃. In other words, error𝑃,𝑞𝑇,𝒪(𝑞𝐻) is the probability that 𝑞𝐻 disagrees with 𝑞𝑇 on 
an example drawn at random from 𝑃.
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Definition 3.13 (PAC learning algorithm). Let 𝒬 be a query class, ℒ an ontol­
ogy language. A PAC learning algorithm for 𝒬 under ℒ ontologies is a potentially 
randomized algorithm 𝐀 associated with a function 𝑚∶ ℝ2 × ℕ4 → ℕ such that

• 𝐀 takes as input a signature Σ, an ℒ ontology 𝒪 with sig(𝒪) ⊆ Σ, and a 
collection of labeled data examples 𝐸;

• for all 𝜖, 𝛿 with 0 < 𝜖, 𝛿 < 1, all signatures Σ, all ℒ ontologies 𝒪 with sig(𝒪) ⊆
Σ, all 𝑛𝑞𝑇, 𝑛𝒜 ≥ 0, all probability distributions 𝑃 over examples (𝒜, 𝑎) with 
sig(𝒜) ⊆ Σ and ‖𝒜‖ ≤ 𝑛𝒜, and all 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇, the following 
holds:

When running 𝐀 on Σ, 𝒪, and a collection 𝐸 of at least 𝑚( 1𝛿 , 1𝜖 , |Σ|, ‖𝒪‖, 𝑛𝑞𝑇, 𝑛𝒜)
labeled data examples drawn from 𝑃 that are labeled according to 𝑞𝑇 under 𝒪, 
𝐀 returns a hypothesis 𝑞𝐻 such that with probability at least 1 − 𝛿 (over the 
choice of 𝐸), we have error𝑃,𝑞𝑇,𝒪(𝑞𝐻) ≤ 𝜖.

We say that 𝐀 has sample size 𝑚 and call 𝐀 sample-efficient if 𝑚 is a polynomial.

Note that matching Definition 3.10, a PAC learning algorithm is not required to 
terminate if no fitting query exists.

If there is a (sample-efficient) PAC learning algorithm for 𝒬 under ℒ ontologies, 
then we say that 𝒬 is (sample-efficiently) PAC learnable under ℒ ontologies. Further­
more, we say that 𝒬 is polynomial time PAC learnable under ℒ ontologies if there is 
a sample-efficient PAC learning algorithm for 𝒬 under ℒ ontologies that runs in 
polynomial time in the size of its inputs.

The PAC model according to Definition 3.13 is called non-uniform PAC model, in 
contrast to the uniform PAC model, where the sample size may not depend on ‖𝑞𝑇‖. 
It is also known as the functional model, in contrast to the oracle model. In the oracle 
model, the algorithm does not receive a collection of labeled examples as input, but 
has access to an oracle that provides labeled examples upon request. In order for 
the algorithm to know how many examples it needs to request, it instead receives 𝛿
and 𝜖 as input. Haussler et al. showed that the functional and the oracle model are 
equivalent, meaning that polynomial time (or sample-efficient) PAC learnability in 
one model implies polynomial time (or sample-efficient) PAC learnability in the 
other [Hau+91]. Furthermore, many other small variations of PAC learning also 
turn out to be equivalent [Hau+91].

For many kinds of logical expressions, polynomial time PAC learnability was 
found to be impossible, unless some NP-hard problem can be decided in polyno­
mial time. For example, learning 2-term-DNF in polynomial time, would allow 
solving certain NP-hard graph coloring problems in polynomial time [PV88]. To 
enable polynomial running time in such cases where PAC learning is hard, PAC 
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learning is sometimes extended with membership queries [AK95], which are defined 
as in exact learning. Allowing PAC algorithms to make membership queries enables 
PAC learning 2-term-DNF in polynomial time [Ang88b]. Polynomial PAC learn­
ability also often implies that the corresponding fitting problem can be decided in 
polynomial time. We discuss this connection further in Chapter 6.

Moreover, there is also a direct connection between exact learning and PAC learn­
ing. Angluin showed that polynomial time exact learnability with only equivalence 
queries implies polynomial time PAC learnability [Ang87; Ang88b]. We show this 
using our Definitions 3.11 and 3.13 and make the tacit assumption of polynomial 
time evaluation explicit.

Theorem 3.14 ([Ang88b]). Let 𝒬 be a query class and ℒ an ontology language, such that 
𝒬 is polynomial time learnable under ℒ ontologies using only equivalence queries. Then 𝒬
is also polynomial time PAC learnable under ℒ ontologies, given a way to answer 𝒬 queries 
in polynomial time under ℒ ontologies.

 Proof. Let 𝐀 be an exact learning algorithm for 𝒬 queries under ℒ ontologies that 
uses only equivalence queries with running time bound 𝑝. Note that 𝑝 also bounds 
the number of equivalence queries asked by 𝐀. Assume without loss of generality 
that as soon as the response to an equivalence query is yes, 𝐀 terminates and returns 
the hypothesis (and 𝐀 does not terminate without receiving a positive response to 
an equivalence query).

We will use 𝐀 to construct a polynomial time PAC learning algorithm 𝐀′ for 𝒬
queries under ℒ ontologies. On input 𝒪, Σ and 𝐸, 𝐀′ first splits 𝐸 into 𝑛 = ⌊√|𝐸|⌋
segments each of length at least 𝑛. It then starts running 𝐀 with inputs 𝒪 and Σ.

Whenever 𝐀 asks an equivalence query with hypothesis 𝑞, 𝐀′ evaluates 𝑞 on 
the labeled examples of the first remaining segment of 𝐸, and then discards this 
segment. If 𝑞 agrees with all labels in this segment, 𝐀′ responds with yes to this 
equivalence query. Otherwise, if there is an example (𝒜, 𝑎) where 𝑞 disagrees with 
the label, 𝐀′ returns (𝒜, 𝑎) to 𝐀 as a counterexample and continues running 𝐀. If 𝐀
terminates with hypothesis 𝑞𝐻, 𝐀′ also terminates and returns 𝑞𝐻. If at some point 
there are no remaining segments, 𝐀′ terminates and returns an arbitrary element 
of 𝒬.

It remains to show that 𝐀′ is a polynomial time PAC learning algorithm. Let 𝒪
be an ℒ ontology, Σ a signature, 𝑞𝑇 a 𝒬 query and 𝑃 a probability distribution over 
examples (𝒜, 𝑎) with ‖𝒜‖ ≤ 𝑛𝒜. Furthermore, let 𝑝𝐀 = 𝑝(|Σ|, ‖𝒪‖, ‖𝑞𝑇‖, 𝑛𝒜) be the 
running time bound of 𝐀 for these inputs, let

𝑛 =
1
𝜖 �ln

1
𝛿

+ 𝑝𝐀�
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and let 𝐸 be a collection of at least 𝑛2 data examples that are labeled according to 𝑞𝑇
under 𝒪. We have to show that when running 𝐀′ on inputs 𝒪, Σ and 𝐸, it returns a 
hypothesis 𝑞𝐻 such that with at most probability 𝛿, we have error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖.

Since 𝐀 is guaranteed to identify 𝑞𝑇 after at most 𝑝𝐀 equivalence queries, 𝐀′ must 
always terminate and return a hypothesis 𝑞𝐻 after polynomial time. The probability 
that error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖 is then the probability that 𝐀′ responds yes to an equivalence 
query with hypothesis 𝑞, although error𝑃,𝑞𝑇,𝒪(𝑞) > 𝜖.

The algorithm 𝐀′ splits 𝐸 into at least 𝑛 segments, each of length at least 𝑛. Since 
𝑛 ≥ 𝑝𝐀, 𝐀′ checks each equivalence query of 𝐀 against 𝑛 examples randomly 
drawn from 𝑃. The probability that 𝐀′ responds yes to an equivalence query with 
hypothesis 𝑞, although error𝑃,𝑞𝑇,𝒪(𝑞) > 𝜖, is therefore at most

(1 − 𝜖)𝑛 ≤ 𝑒−𝜖𝑛 = 𝛿 ⋅ 𝑒−𝑝𝐀 ≤
𝛿

𝑝𝐀

by choice of 𝑛. Therefore, the probability that error𝑃,𝑞𝑇,𝒪(𝑞𝐻) > 𝜖 is at most 𝑝𝐀 ⋅ 𝛿
𝑝𝐀

= 𝛿, 
as required.

Note that the PAC algorithm constructed in this proof makes no use of random­
ization. Additionally, we can extend this proof to show more expected connections 
between the two learning models. First, if we extend the PAC learning with member­
ship queries, we can show that polynomial time exact learnability with equivalence 
and membership queries implies polynomial time PAC learnability with member­
ship queries. Second, if we drop the running time requirement, we can also show 
that polynomial query learnability with equivalence queries implies sample-effi­
cient PAC learnability (which again can be extended to learning algorithms that 
additionally have access to membership queries).

Unfortunately, the converse of Theorem 3.14 does not hold. There are concept 
classes that are polynomial time PAC learnable, but not polynomial time exact 
learnable with equivalence queries assuming that certain cryptographic problems 
are hard [Blu94]. Ozaki, Persia, and Mazzullo provide an example of such a concept 
class in the area of learning description logic ontologies [OPM20].

43





Chapter 4

Learning with Membership Queries

We begin our investigation into the learnability of queries under ontologies with 
exact learning algorithms that use only membership queries. Leaving out equiva­
lence queries makes exact learning less powerful, as many query classes that can 
be learned in polynomial time require both membership and equivalence queries. 
However, this relatively simpler setting allows us to use a first version of tech­
niques that we in Chapter 5 extend to learning algorithms that also have access to 
equivalence queries.

From a practical perspective, it is easier to obtain a teacher who answers only 
membership queries, than a teacher who answers both membership and equiva­
lence queries, as judging whether two queries are equivalent requires more logical 
expertise. For example, a black-box classifier in place of a query 𝑞𝑇, perhaps a 
sufficiently large neural network that classifies examples (𝒜, 𝑎) either positively or 
negatively, could be used to automatically answer membership queries. Then, a 
learning algorithm could query this classifier to construct a symbolic representa­
tion of 𝑞𝑇. It is, however, unclear how such a classifier could be used to answer 
equivalence queries.

In this chapter, a learning algorithm receives as input a signature Σ, and an 
ontology 𝒪, and aims to identify a target query 𝑞𝑇 by using membership queries.

Example 4.1. Consider the signature Σ = {𝐴, 𝑟}, the ontology 𝒪 = {𝐴 ⊑ ∃𝑟.⊤} and 
that we aim to learn ELQs. If the target ELQ is

𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1),

then a learner can identify 𝑞𝑇 (up to ≡𝒪-equivalence) using membership queries 
as follows. First, by asking whether {𝑟(𝑎1, 𝑎2), 𝐴(𝑎2)}, 𝒪 ⊧ 𝑞𝑇(𝑎1) and receiving yes
as a response, the learner can eliminate ELQs such as 𝑞1(𝑥0) ← 𝐴(𝑥0) and 𝑞2(𝑥0) ←
𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥1, 𝑥2) as well as anything of greater size as possibilities for 
𝑞𝑇. Then, by asking whether {𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏3)}, 𝒪 ⊧ 𝑞𝑇(𝑏1) and receiving no as a 
response, the learner can eliminate ELQs such as 𝑞3(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) and 
𝑞4(𝑥0) ← 𝑟(𝑥0, 𝑥1) as candidates. The only ELQ that agrees with these answers is 𝑞𝑇.
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The first observation we make about this setting of only membership queries is 
that the property of being (polynomial time) learnable using only membership 
queries is anti-monotone in both the query class 𝒬 and the ontology language ℒ. 
This is not automatically the case when equivalence queries are used. Assume that 
𝒬 is (polynomial time) learnable under ℒ ontologies. Further, let 𝒬′ be a query 
class and ℒ′ be an ontology language such that 𝒬′ ⊆ 𝒬 and ℒ′ ⊆ ℒ. Then 𝒬′ is also 
(polynomial time) learnable under ℒ′ ontologies1.

The second observation is that there is an interesting necessary precondition for 
a query class to be learnable with only membership queries, namely the existence 
of finite unique characterizations.

Definition 4.2 (Unique characterization). Let 𝒬 be a query class, 𝒪 an ontology 
and 𝑞 ∈ 𝒬. A set of labeled examples 𝐸 is a unique characterization of 𝑞 under 𝒪, if 𝑞
fits 𝐸 under 𝒪 and 𝑞 ≡𝒪 𝑝 for all 𝑝 ∈ 𝒬 that fit 𝐸 under 𝒪.

A query 𝑞 ∈ 𝒬 is uniquely characterizable (with regard to 𝒬) if there exists a unique 
characterization of 𝑞.

Example 4.3. Consider 𝒪 as in Example 4.1. The ELQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) is 
uniquely characterized (with regard to all ELQs over the signature {𝑟, 𝐴}) under 𝒪
by the positive data example ({𝑟(𝑎1, 𝑎2), 𝐴(𝑎2)}, 𝑎2) and the negative data example 
({𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏3)}, 𝑏1).

Unique characterizations are closely connected to learning with only membership 
queries. Let us assume that there is a learning algorithm 𝐀 for a query class 𝒬
under ℒ ontologies that uses only membership queries. When 𝐀 is started on a 
signature Σ as well as an ontology 𝒪 and then identifies a target query 𝑞𝑇, it must 
have done so based on the answers to its membership queries. Since 𝐀 must be 
able to identify all queries in 𝒬 under all ℒ ontologies, the data examples used in 
the membership queries combined with the answers provided by the teacher must 
form a finite unique characterization of 𝑞𝑇 under 𝒪. If 𝐀 is a polynomial query 
learning algorithm, then the resulting unique characterization must even be of 
polynomial size in ‖𝑞𝑇‖, ‖𝒪‖ and |Σ|.

Moreover, an algorithm that computes finite unique characterizations of 𝒬 queries 
allows us to construct a learning algorithm for 𝒬 queries that uses only membership 
queries. The learning algorithm enumerates all 𝑞 ∈ 𝒬 ordered by size, and for 
each query 𝑞 in the enumeration it computes a unique characterization 𝐸. It then 
uses membership queries to check whether the target query 𝑞𝑇 fits 𝐸. If this is the 
case, then 𝑞 ≡𝒪 𝑞𝑇 and the learning algorithm returns 𝑞. Otherwise, it continues 
with the next query. Unfortunately, this algorithm always requires at least an 

1With the additional requirement that every 𝑞 ∈ 𝒬 that is equivalent to a query in 𝒬′ can be 
transformed into a 𝒬′ query in polynomial time.
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Figure 4.1: CQs that are not uniquely characterizable.

exponential number of membership queries for our query classes even if all unique 
characterizations are of polynomial size, so polynomial time learnability cannot be 
obtained this way. Our learning algorithm will use a smarter strategy.

Ten Cate, Dalmau, and Kolaitis show that the class of all CQs is not polynomial 
query learnable using only membership queries, even under the empty ontol­
ogy [tCDK13]. They use an argument in the style of Lemma 3.12 to show that even 
if the size of a target CQ is known to the learning algorithm in advance, at least an 
exponential number of membership queries is necessary to identify it. To under­
stand why learning CQs is not possible with a polynomial number of membership 
queries, consider for every 𝑘 ≥ 1 the CQ

𝑞𝑘(𝑥0) ← �
1≤𝑖≤𝑘

𝑟(𝑥0, 𝑥𝑖) ∧ �
1≤𝑖,𝑗≤𝑘
𝑖≠𝑗

𝑟(𝑥𝑖, 𝑥𝑗).

The queries 𝑞1, 𝑞2, 𝑞3 and 𝑞4 are displayed in Figure 4.1, where the unlabeled edges 
are also 𝑟-atoms. We can see that every unique characterization of 𝑞1 must be infinite. 
If there were a finite unique characterization 𝐸 of 𝑞, then there must be a number 
𝑛 that is larger than the length of the longest cycle in every negative example in 
𝐸. Consider then the query 𝑞𝑛. Either, 𝑞𝑛 correctly labels all negative examples 
in 𝐸, or there is a negative example (ℬ, 𝑏) that is labeled positively by 𝑞𝑛. In the 
first case, since 𝑞1 ⊆∅ 𝑞𝑛, 𝑞𝑛 fits all examples in 𝐸, contradicting that 𝐸 is a unique 
characterization. In the second case, since 𝑛 > ind(ℬ), it must also be the case that 
𝑞1 labels (ℬ, 𝑏) positively, contradicting that 𝑞1 fits 𝐸.

The cycles in every 𝑞𝑘 are crucial for this argument. Indeed, the class of 𝑐-acyclic 
CQs, that heavily restricts the occurrence of cycles, is uniquely characterizable. 
Most importantly, it can also be shown that 𝑐-acyclic CQs are polynomial time 
learnable using only membership queries [tCD22]. This class of CQs contains all 
ELIQs, which implies the following.

Proposition 4.4 ([tCD22]). ELIQs are polynomial time learnable under the empty ontol­
ogy using only membership queries.

47



4 Learning with Membership Queries

𝑞1 𝑞2 𝑞3 … 𝑞𝑇
⊊∅ ⊊∅ ⊊∅ ⊊∅

Figure 4.2: The sequence 𝑞1, 𝑞2, … approximates 𝑞𝑇 from above. Initially, all queries 
are candidates for 𝑞𝑇, as 𝑞1 ⊆∅ 𝑝 holds for all 𝑝. Each move from 𝑞𝑖 to 
𝑞𝑖+1 eliminates some candidates for 𝑞𝑇.

In our investigation into the learnability of queries under ontologies using only 
membership queries, we therefore focus on ELIQs a large class of queries that is 
potentially learnable in polynomial time.

We also base our approach on the learning algorithm behind Proposition 4.4, 
whose strategy is visualized in Figure 4.2. This algorithm identifies 𝑞𝑇 in polynomial 
time by starting with a very specific query 𝑞1 such that it is guaranteed that 𝑞1 ⊆∅
𝑞𝑇, and then constructing with the help of membership queries a sequence of 
increasingly more general hypotheses 𝑞1, 𝑞2, …, where in each step the number of 
queries 𝑝 such that 𝑞𝑖 ⊆∅ 𝑝 is reduced, but the property that 𝑞𝑖 ⊆∅ 𝑞𝑇 is maintained. 
This sequence must then arrive at 𝑞𝑇 after polynomially many steps.

This approach heavily relies on the fact that for classes of CQs, membership 
queries can be used to imitate subset queries due to Lemma 3.7. A learning algo­
rithm can check whether 𝑞𝑖 ⊆∅ 𝑞𝑇 by asking the teacher whether 𝒜𝑞𝑖, ∅ ⊧ 𝑞𝑇(𝑥𝑖)
using a membership query.

In this chapter, we generalize the central notions of this algorithm to the case 
with ontologies in order to establish learnability results for the class of all ELIQs.

Structure of this Chapter

First, in Section 4.1, we look into the limits of learning ELIQs under ontologies 
and identify several ontology languages under which polynomial query learning is 
impossible. This motivates a restriction of functionality constraints in DL-Liteℋℱ

core
ontologies, resulting in the ontology language DL-Liteℋℱ−

core .
Then, we extend the techniques used to show Proposition 4.4 to DL-Liteℋℱ−

core . In 
Section 4.2, we show that we can restrict our attention to ontologies in normal form: 
if a class of queries is polynomial time learnable under ontologies in normal form, 
then it is also polynomial time learnable under unrestricted ontologies.

In Section 4.3, we look at the core operation of the learning algorithm: moving 
from 𝑞𝑖 to 𝑞𝑖+1 while maintaining 𝑞𝑖 ⊆𝒪 𝑞𝑇. For this, the algorithm needs to construct 
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4.1 Limits of Membership Queries

the set of all most specific generalizations of 𝑞𝑖, called a frontier of 𝑞𝑖. We show that 
ELIQs always possess frontiers of polynomial size under DL-Liteℋℱ−

core  ontologies, 
and we can search them in polynomial time to find a suitable candidate for 𝑞𝑖+1. 
Additionally, we show that many extensions of DL-Liteℋℱ−

core  do not permit frontiers 
of polynomial size.

Then, in Section 4.4, we show that even under ontologies, the sequence 𝑞1, 𝑞2, …
must reach 𝑞𝑇 after at most a polynomial number of steps.

What remains is to find a suitable 𝑞1 for the start of this sequence, which is 
no longer trivial under ontologies. In Section 4.5 we determine how a learning 
algorithm can obtain it. In the worst case, if the ontology contains unrestricted 
concept disjointness constraints, then we show that a single equivalence query 
cannot be avoided to obtain 𝑞1.

We put the results of the previous sections together in Section 4.6 to present the 
complete learning algorithm for ELIQs under DL-Liteℋℱ−

core  and show that it runs in 
polynomial time. This is the main result of this chapter.

Finally, we end this chapter with a discussion about these results in Section 4.7

Related Publications

Much of the material in this chapter is based on the publications [FJL21b; FJL22a; 
FJL22b]. However, many of the results have been generalized. The main results, 
Theorem 4.23 about the existence of frontiers and Theorem 4.42 about the polyno­
mial time learnability of ELIQs, were previously only shown to hold for DL-Liteℋcore
and DL-Liteℱ−core, but are shown here to hold for DL-Liteℋℱ−

core .

4.1 Limits of Membership Queries

We know that ELIQs are polynomial time learnable under the empty ontology using 
only membership queries, but CQs are not. Under which ontology sublanguages of 
ℰℒℐℋℱ⊥ can we hope to learn queries in polynomial time using only membership 
queries? Unfortunately, already for ℰℒ or DL-Litehorn ontologies, an exponential 
number of membership queries can be necessary to identify the target query. The 
perhaps surprising reason for this is that these ontology languages can express con­
junctions like 𝐴1 ⊓ 𝐴2 ⊑ 𝐵. We follow a strategy similar to the proof of Lemma 3.12 
in order to show that using simple inclusions of conjunctions of concept names 
suffices to make polynomial query learning impossible, even for queries that only 
consist of conjunctions of concept name atoms.

A conjunction of atomic queries is a unary CQ of the form 𝑞(𝑥0) ← 𝐴1(𝑥0)∧⋯∧𝐴𝑛(𝑥0)
where 𝐴1, … , 𝐴𝑛 are concept names. Every query that is a conjunction of atomic 
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queries is also an ELIQ and an ELQ.

Theorem 4.5. Conjunctions of atomic queries are not polynomially query learnable under 
conjunctive ontologies using only membership queries

 Proof. For each 𝑛 ≥ 1, we use the set

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛},

of 2𝑛 conjunctions of atomic queries that use the signature Σ = {𝐴𝑖, 𝐵𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛}, 
and we use the conjunctive ontology

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵′
𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.

Assume to the contrary of what is to be shown that conjunctions of atomic queries 
are polynomial query learnable under conjunctive ontologies. Then there exists a 
learning algorithm and polynomial 𝑝 such that the number of membership queries 
is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇), where 𝑛Σ is the size of the signature Σ, 𝑛𝒪 the size of 
the ontology and 𝑛𝑞𝑇 the size of the target query2. We choose 𝑛 such that

2𝑛 > 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)),

where 𝑟 is a polynomial such that every query 𝑞 ∈ 𝑆𝑚 satisfies ‖𝑞‖ = 𝑟(𝑚) for every 
𝑚 ≥ 1.

Now, consider a membership query posed by the learning algorithm with the 
data example (𝒜, 𝑎). The teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for no 𝑞 ∈ 𝑆𝑛, then answer no

2. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆𝑛, then answer no and remove 𝑞 from 𝑆𝑛

3. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆𝑛, then answer yes.

Note that the third response is consistent since 𝒜 must then contain 𝐴𝑖(𝑎) and 𝐵𝑖(𝑎)
for some 𝑖 and thus 𝒪𝑛 implies that 𝑎 is an answer to every query in 𝑆𝑛. Moreover, 
the answers are always correct with respect to the updated set 𝑆𝑛. Thus, the learner 
cannot distinguish the remaining candidate queries by answers to queries posed so 
far.

It follows that the learning algorithm removes at most 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)) queries 
from 𝑆𝑛. By the choice of 𝑛, at least two candidates remain in 𝑆𝑛 after the algorithm 
asks the last membership query. Thus, the learner cannot distinguish between 
them, and we have derived a contradiction.

2As no equivalence queries are allowed, the size 𝑛𝒜 of the largest counterexample is fixed.
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Recall that the long concept inclusions of the form 𝐴𝑖⊓𝐵𝑖 ⊑ 𝐴1⊓𝐵1⊓⋯⊓𝐴𝑛⊓𝐵′
𝑛 can 

be expressed through several simpler concept inclusions 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1, 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐵1, 
…, 𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐵′

𝑛. Hence, only conjunctions on the left side of concept inclusions are 
necessary for the ontology used in the proof of Theorem 4.5.

Therefore, only DLs of the DL-Litecore family are candidates for polynomial time 
learning of queries, since they restrict the use of conjunctions on the left side of 
concept inclusions. Next, we show that ELIQs are not learnable at all using only 
membership queries, if functionality constraints and existential restrictions interact 
in an ontology.

Theorem 4.6. ELIQs are not learnable under DL-Liteℱcore ontologies using only membership 
queries

 Proof. The proof follows a structure similar to the proof of Theorem 4.5, but as we 
aim to show non-learnability instead of non-polynomial query learnability, we will 
use an infinite set 𝑆 of candidate target queries.

We use the fixed DL-Liteℱcore ontology

𝒪 = { 𝐴 ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟.⊤ ⊑ ∃𝑠.⊤, func(𝑟−) }.

and the set
𝑆 = {𝑞∗} ∪ {𝑞𝑛 ∣ 𝑛 is prime},

where 𝑞∗(𝑥1) ← 𝐴(𝑥0) ∧ 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) and each 𝑞𝑛 is defined as follows:

𝑞𝑛(𝑥1) ←𝐴(𝑥0) ∧ 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧
𝑠(𝑥𝑛, 𝑦) ∧ 𝑠(𝑥′𝑛, 𝑦) ∧
𝑟(𝑥′1, 𝑥′2) ∧ ⋯ ∧ 𝑟(𝑥′𝑛−1, 𝑥′𝑛) ∧ 𝐴(𝑥′1).

The queries 𝑞∗ and 𝑞𝑛 are displayed in Figure 4.3. It is important to note that 𝑞∗ ⊆𝒪 𝑞𝑛
for all 𝑛 ≥ 1 and 𝑞𝑖 ⊈𝒪 𝑞𝑗 for all 𝑖 ≠ 𝑗. Intuitively, this makes it impossible for the 
learner to distinguish between 𝑞∗ being the target query and one of the 𝑞𝑛 being the 
target query. If, for example, the learner asks a membership query with the data 
example (𝒜𝑞∗, 𝑥1) then the teacher will answer yes, and the learner has not gained 
any additional information. The following claim describes the main property of 
the chosen queries.

Claim. Let 𝒜 be an ABox and 𝑎 ∈ ind(𝒜). If 𝒜, 𝒪 ⊧̸ 𝑞∗(𝑎), then 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎) for only 
finitely many primes 𝑛.

 Proof of the claim. Let 𝒜 be an ABox and 𝑎 ∈ ind(𝒜) such that 𝒜, 𝒪 ⊧̸ 𝑞∗(𝑎). Then 𝒜
must satisfy func(𝑟−). Suppose to the contrary of what we have to show that there 
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Figure 4.3: The queries 𝑞∗ and 𝑞𝑛.

are infinitely many primes 𝑛 such that 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎) and let ℎ𝑛 be the witnessing 
homomorphisms from 𝑞𝑛 to 𝒰𝒜,𝒪 with ℎ𝑛(𝑥1) = 𝑎. We distinguish cases.

If ℎ𝑛(𝑥𝑛) ∉ ind(𝒜) for some prime 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎), then ℎ𝑛(𝑥′𝑛) = ℎ𝑛(𝑥𝑛) due 
to the tree structure of the traces in 𝒰𝒜,𝒪. Since 𝑟− is functional in 𝒰𝒜,𝒪, it follows 
that ℎ𝑛(𝑥𝑗) = ℎ𝑛(𝑥′𝑗 ) for all 𝑗 with 1 ≤ 𝑗 ≤ 𝑛. Since 𝐴(𝑥′1) ∈ 𝑞𝑛, also 𝐴(ℎ𝑛(𝑥′1)) =
𝐴(ℎ𝑛(𝑥1)) = 𝐴(𝑎) ∈ 𝒜. Since also 𝐴(𝑥0), 𝑟(𝑥0, 𝑥1) ∈ 𝑞𝑛, we have ℎ𝑛(𝑥0) ∈ 𝐴𝒰𝒜,𝒪, 
(ℎ𝑛(𝑥0), ℎ𝑛(𝑥1)) ∈ 𝑟𝒰𝒜,𝒪, and thus ℎ𝑛 is a homomorphism from 𝑞∗ to 𝒰𝒜,𝒪 with 
ℎ𝑛(𝑥1) = 𝑎. Hence, 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), a contradiction.

Otherwise, ℎ𝑛(𝑥𝑛) ∈ ind(𝒜) for all primes 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎). Since 𝒜 is finite, 
there is an element 𝑏 ∈ ind(𝒜) such that ℎ𝑚(𝑥𝑚) = 𝑏 for infinitely many primes 𝑚. 
Thus, there is an 𝑟-path of length 𝑚 from 𝑎 to 𝑏 in 𝒜 for infinitely many primes 𝑚. 
Since 𝒜 is finite and satisfies func(𝑟−), this is only possible if 𝑎 = 𝑏, 𝑟(𝑎, 𝑎) ∈ 𝒜, and 
ℎ𝑚(𝑥𝑗) = 𝑎 for all considered 𝑚 and all 𝑗 with 1 ≤ 𝑗 ≤ 𝑚. Since also 𝐴(𝑥0), 𝑟(𝑥0, 𝑥1) ∈ 𝑞𝑛
and 𝒜 satisfies func(𝑟−), we further have ℎ𝑛(𝑥0) = 𝑎 for all primes 𝑛 with 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎)
and 𝐴(𝑎) ∈ 𝒜. But then 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), a contradiction.

Now, assume there is a learning algorithm for ELIQs under DL-Liteℱcore ontologies 
that uses only membership queries, and consider a membership query posed by 
this algorithm with the data example (𝒜, 𝑎). An adversarial teacher can respond as 
follows:

1. if 𝒜, 𝒪 ⊧ 𝑞∗(𝑎), then reply yes;

2. otherwise, reply no and remove from 𝑆 every 𝑞𝑛 that satisfies 𝒜, 𝒪 ⊧ 𝑞𝑛(𝑎).

An important aspect of this strategy is that, as proved in the claim, only finitely 
many hypotheses 𝑞 are removed whenever Case 2 above applies. Consequently, 
after any number of membership queries, the set of remaining hypotheses 𝑆 is 
infinite and contains 𝑞∗. The learning algorithm then can, however, not distinguish 
between 𝑞∗ and the remaining hypotheses and thus not identify the target query. In 
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particular, the presence of 𝑞∗ ∈ 𝑆 prevents the learning from simply going through 
all 𝑞𝑖 ∈ 𝑆, asking membership queries with ABoxes that take the form of these 
queries, and identifying 𝑞𝑖 as the target query when the membership query for 𝑞𝑖
succeeds.

Note that this is a strong result: no amount of membership queries suffices to 
identify 𝑞∗, which also means that no finite unique characterization of 𝑞∗ under 𝒪
exists. Hence, in order to learn ELIQs under ontologies that feature functionality 
constraints, we have to restrict the interaction between existential restrictions and 
functionality constraints.

A DL-Liteℋℱ−
core  ontology 𝒪 is a DL-Liteℋℱ

core ontology where for all func(𝑟) ∈ 𝒪, the 
existential restriction ∃𝑟−.⊤ does not occur on the right side of a concept inclusion 
in 𝒪. This excluded the ontology used in the proof of Figure 4.3. We focus on 
learning ELIQs under DL-Liteℋℱ−

core  ontologies in the following sections of this chapter. 
DL-Liteℋℱ−

core  is, according to the results in this section, in some sense a maximal 
ontology language, for which polynomial time learning with only membership 
queries is possible.

4.2 Reducing to Ontologies in Normal Form

When working with DL ontologies, it is often useful to assume that they are in 
normal form. This allows a simpler presentation of algorithms and proofs. In 
particular, we assume in the following sections and chapters that the ontology that 
a learning algorithm receives as input is in normal form. In this section, we show 
that this assumption is not essential. Any learning algorithm that learns queries 
under ontologies in normal form can be converted into a learning algorithm for 
queries under unrestricted ontologies, without changing the number of membership 
or equivalence queries the algorithm performs and only requiring a polynomial 
amount of additional time. The idea behind this is that we can rewrite ontologies 
into normal form in a way that enables us to translate membership queries and 
equivalence queries for the teacher, who still answers questions under the original 
ontology. Although we only need to consider DL-Liteℋℱ−

core  ontologies in this chapter, 
we show this result for all ℰℒℐℋℱ⊥ ontologies, which we will need in the next 
chapter.

An ℰℒℐℋℱ⊥ ontology 𝒪′ is a conservative extension of an ℰℒℐℋℱ⊥ ontology 𝒪 if

• sig(𝒪) ⊆ sig(𝒪′),

• every model of 𝒪′ is a model of 𝒪, and
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• for every model ℐ of 𝒪 there exists a model ℐ′ of 𝒪′ such that 𝑆ℐ = 𝑆ℐ′ for all 
concept or role names 𝑆 ∉ sig(𝒪′) ⧵ sig(𝒪).

It is well known that every ℰℒℐℋℱ⊥ ontology 𝒪 can be transformed in polynomial 
time into an ℰℒℐℋℱ⊥ ontology 𝒪′ in normal form by introducing new concept 
names such that 𝒪′ is a conservative extension of 𝒪 [Baa+17].

For the purpose of learning algorithms, the properties of conservative extensions 
are not sufficient. We require a specific method to translate queries and examples 
from a signature that contains newly introduced concept names to a signature that 
uses only symbols from Σ. Hence, we require a specific rewriting of ontologies into 
normal form.

Let 𝒪 be an ℰℒℐℋℱ⊥ ontology and Σ a signature with sig(𝒪) ⊆ Σ. We construct 
an ℰℒℐℋℱ⊥ ontology 𝒪′ in normal form as follows. Let sub(𝒪) denote the set of all 
concepts that occur in concept inclusions in 𝒪, that is,

sub(𝒪) = �
𝐶⊑𝐷∈𝒪

sub(𝐶) ∪ sub(𝐷)

where

sub(⊤) = {⊤}
sub(𝐴) = {𝐴}

sub(𝐶 ⊓ 𝐷) = {𝐶 ⊓ 𝐷} ∪ sub(𝐶) ∪ sub(𝐷)
sub(∃𝑅.𝐶) = {∃𝑅.𝐶} ∪ sub(𝐶).

With each concept 𝐶 ∈ sub(𝒪), we associate a concept name 𝑋𝐶. If 𝐶 = ⊤, set 𝑋𝐶 = ⊤, 
if 𝐶 is a concept name 𝐴, set 𝑋𝐴 = 𝐴. Otherwise, let 𝑋𝐶 be a fresh concept name 
not contained in Σ. We use 𝐗 to refer to the set of all of these fresh concept names.

The new ontology 𝒪′ consists of all role inclusions, functionality constraints, role 
disjointness constraints, and concept disjointness constraints in 𝒪 as well as the 
following concept inclusions:

• 𝑋𝐶 ⊑ 𝑋𝐷 for every 𝐶 ⊑ 𝐷 ∈ 𝒪,

• 𝑋𝐷1⊓𝐷2 ⊑ 𝑋𝐷𝑖 and 𝑋𝐷1⊓𝑋𝐷2 ⊑ 𝑋𝐷1⊓𝐷2, for every 𝐷1⊓𝐷2 ∈ sub(𝒪) and 𝑖 ∈ {1, 2},

• 𝑋∃𝑅.𝐶 ⊑ ∃𝑅.𝑋𝐶 and ∃𝑅.𝑋𝐶 ⊑ 𝑋∃𝑅.𝐶, for every ∃𝑅.𝐶 ∈ sub(𝒪).

Since |sub(𝒪)| is polynomial in ‖𝒪‖, 𝒪′ can be computed in polynomial time.
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Example 4.7. For 𝒪 = {∃𝑟.(𝐴 ⊓ 𝐵) ⊑ 𝐴 ⊓ 𝐵}, the set sub(𝒪) is {𝐴, 𝐵, 𝐴 ⊓ 𝐵, ∃𝑟.(𝐴 ⊓ 𝐵)}. 
Hence, the above construction produces

𝒪′ = {𝑋∃𝑟.(𝐴⊓𝐵) ⊑ 𝑋𝐴⊓𝐵,
𝑋𝐴⊓𝐵 ⊑ 𝐴, 𝑋𝐴⊓𝐵 ⊑ 𝐵, 𝐴 ⊓ 𝐵 ⊑ 𝑋𝐴⊓𝐵,
𝑋∃𝑟.(𝐴⊓𝐵) ⊑ ∃𝑟.𝑋𝐴⊓𝐵, ∃𝑟.𝑋𝐴⊓𝐵 ⊑ 𝑋∃𝑟.(𝐴⊓𝐵)},

which is in normal form.

We observe the following consequences of the construction of 𝒪′ regarding the 
relationship between 𝒪 and 𝒪′.

Lemma 4.8. Let ℒ be a ontology language contained in ℰℒℐℋℱ⊥ and 𝒪 an ℒ ontology. 
Then,

1. 𝒪′ is an ℒ ontology in normal form;

2. 𝒪′ is a conservative extension of 𝒪;

3. sig(𝒪′) = sig(𝒪) ∪ 𝐗;

4. 𝒪′ ⊧ 𝑋𝐶 ≡ 𝐶 for all 𝐶 ∈ sub(𝒪).

Lemma 4.8 tells us that 𝒪′ is not only a conservative extension of 𝒪, but 𝒪′ also 
specifies how precisely a model of 𝒪 can be extended to a model of 𝒪′. This specific 
rewriting into normal form allows us to translate data examples and queries from 
the signature Σ ∪ 𝐗 to the signature Σ. We describe this translation next.

Let 𝒜 be an ABox with sig(𝒜) ⊆ Σ ∪ 𝐗. Then, 𝒜Σ with sig(𝒜Σ) ⊆ Σ is obtained 
by starting with 𝒜 and exhaustively applying the following operation.

Replace concept name Choose an assertion 𝑋𝐶(𝑎) ∈ 𝒜Σ with 𝑋𝐶 ∈ 𝐗 and remove it.
• If 𝐶 = 𝐷1 ⊓ 𝐷2 for some concepts 𝐷1 and 𝐷2, add the assertions 𝑋𝐷1(𝑎)

and 𝑋𝐷2(𝑎).
• If 𝐶 = ∃𝑅.𝐷 for some concept 𝐷 and role 𝑅, then if func(𝑅) ∈ 𝒪 and there 

is an assertion 𝑅(𝑎, 𝑏) ∈ 𝒜Σ, add the assertion 𝑋𝐷(𝑏), otherwise introduce 
a fresh individual name 𝑎′ and add the assertion 𝑅(𝑎, 𝑎′) and 𝑋𝐷(𝑎′).

When Replace concept name is no longer applicable, then 𝒜Σ uses no symbols from 𝐗. 
This is the case after a polynomial number of applications of Replace concept name, 
as

�
𝑋𝐶(𝑎)∈𝒜Σ
𝑋𝐶∈𝐗

‖𝐶‖

decreases with each application.
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𝑋∃𝑟.∃𝑠.𝐴

𝐴
𝑟

𝐴, 𝑋∃𝑠.𝐴

𝑟
𝐴

𝐴

𝑟

𝑠

Replace concept name Replace concept name

Figure 4.4: An application of Replace concept name to create 𝒜Σ with func(𝑟) ∈ 𝒪.

Example 4.9. Consider the ontology 𝒪 = {𝐵 ⊑ ∃𝑟.∃𝑠.𝐴, func(𝑟)}. Figure 4.4 shows 
an example of two applications of Replace concept name to remove the introduced 
concept name 𝑋∃𝑟.∃𝑠.𝐴.

As CQs can be viewed as ABoxes, we extend this construction to CQs and write 
𝑞Σ for 𝒜𝑞Σ

 viewed as a query. Using the definition of Replace concept name, it then 
can be verified, that this construction preserves the query class of 𝑞 in the following 
sense.

Lemma 4.10. If 𝒬 ∈ {CQ,ELIQ} and 𝑞 ∈ 𝒬, then 𝑞Σ ∈ 𝒬. If 𝑞 is an ELQ and 𝒪 is an ℰℒ𝑟

ontology, then 𝑞Σ is also an ELQ.

Next, we show that this translation has the properties we need to preserve the 
answers to membership and equivalence queries. Let ℬ be an ABox. With ℬ|Σ we 
denote the restriction of ℬ to symbols in Σ, that is,

ℬ|Σ = {𝐴(𝑎) ∈ ℬ ∣ 𝐴 ∈ Σ} ∪ {𝑟(𝑎, 𝑏) ∈ ℬ ∣ 𝑟 ∈ Σ}.

The following lemma captures the properties of the construction of 𝒜Σ and 𝑞Σ.

Lemma 4.11. The following holds:

1. For all 𝑘-ary CQs 𝑞 that only use symbols from Σ, all ABoxes 𝒜 and all 𝑎 ∈ ind(𝒜)𝑘, 
𝒜, 𝒪′ ⊧ 𝑞(𝑎) if and only if 𝒜Σ, 𝒪 ⊧ 𝑞(𝑎).

2. For all 𝑘-ary CQs 𝑞 that use only symbols from Σ∪𝐗, all ABoxes ℬ and all 𝑎 ∈ ind(ℬ)𝑘, 
ℬ|Σ, 𝒪′ ⊧ 𝑞(𝑎) if and only if ℬ, 𝒪 ⊧ 𝑞Σ(𝑎).

 Proof. We begin by showing Point 1. For the if  direction, suppose that 𝒜Σ, 𝒪 ⊧ 𝑞(𝑎)
and let ℐ be a model of 𝒜 and 𝒪′. We can assume that ℐ does not mention any 
of the individuals that were introduced in the construction of 𝒜Σ by the Replace 
concept name operation. We will extend ℐ to a model ℐΣ of 𝒜Σ and 𝒪, such that 
ℐΣ, 𝑎 → ℐ, 𝑎. This suffices since ℐΣ ⊧ 𝑞(𝑎). We cannot use ℐ directly as a model of 
𝒜Σ as it may not interpret the fresh individual names in 𝒜Σ.
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We construct ℐΣ by processing every assertion introduced by the Replace concept 
name operation. Let 𝑅(𝑏, 𝑏′) be such an assertion. Then, 𝑋∃𝑅.𝐶(𝑏) ∈ 𝒜 and, by 
Lemma 4.8, 𝒪′ ⊧ 𝑋∃𝑅.𝐶 ⊑ ∃𝑅.𝑋𝐶. Since ℐ is a model of 𝒜 and 𝒪′, there is an 
element 𝑐 with 𝑅(𝑏, 𝑐) ∈ ℐ. Informally, let 𝒥𝑐 be the unraveling of ℐ at 𝑐 which takes 
into account the functionality constraints in 𝒪, and in which the 𝑅−-successor of 𝑐
is omitted in case func(𝑅−) ∈ 𝒪. Then, add a copy of 𝒥𝑐 to ℐ, rename the root of 𝒥𝑐
to 𝑏′, and add (𝑏, 𝑏′) to 𝑅ℐ.

We now give a formal definition of 𝒥𝑐. Its domain Δ𝒥𝑐 consists of all sequences 
𝑎0𝑅1𝑎1 ⋯ 𝑅𝑛𝑎𝑛 such that

• 𝑎0 = 𝑐;

• 𝑎𝑖 ∈ Δℐ, for all 𝑖 with 0 ≤ 𝑖 ≤ 𝑛;

• (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅ℐ
𝑖+1, for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if func(𝑅−
𝑖 ) ∈ 𝒪, then 𝑅𝑖+1 ≠ 𝑅−

𝑖 , for all 𝑖 with 0 ≤ 𝑖 < 𝑛;

• if 𝑅1 = 𝑅− then func(𝑅−) ∉ 𝒪.

The interpretation of concept and role names is then as expected:

𝐴𝒥𝑐 = {𝑎0𝑅1𝑎1 ⋯ 𝑅𝑛𝑎𝑛 ∈ Δ𝒥𝑐 ∣ 𝑎𝑛 ∈ 𝐴ℐ} for all 𝐴 ∈ NC;
𝑟𝒥𝑐 = {(𝑝, 𝑝𝑟𝑎) ∣ 𝑝𝑟𝑎 ∈ Δ𝒥𝑐} ∪

{(𝑝𝑟−𝑎, 𝑝) ∣ 𝑝𝑟−𝑎 ∈ Δ𝒥𝑐} for all 𝑟 ∈ NR.

Note that the function that maps every sequence 𝑎0𝑅1 … 𝑎𝑛 to 𝑎𝑛 is a homomorphism 
from 𝒥𝑐 to ℐ.

Let ℐΣ be the result of doing the above for every atom in 𝒜Σ ⧵ 𝒜. By construction 
of ℐΣ, we know that ℐΣ is a model of 𝒜Σ. It is routine to verify that ℐΣ is also a 
model of 𝒪 and that there is a homomorphism ℎ from ℐΣ to ℐ with ℎ(𝑎) = 𝑎.

For the only if  direction of Point 1, suppose that 𝒜, 𝒪′ ⊧ 𝑞(𝑎) and let ℐ be a model 
of 𝒜Σ and 𝒪. Since 𝒪′ is a conservative extension of 𝒪, there is a model ℐ′ of 𝒪′ that 
coincides with ℐ on sig(𝒪). Moreover, by Point 4 of Lemma 4.8, it is also a model of 
𝒜. It follows that ℐ ⊧ 𝑞(𝑎) as required.

For the if  direction of Point 2, suppose that ℬ, 𝒪 ⊧ 𝑞Σ(𝑎) and let ℐ be a model of 
ℬ|Σ and 𝒪′. Since 𝑞Σ contains only symbols from Σ, ℬ|Σ, 𝒪 ⊧ 𝑞Σ(𝑎). Since 𝒪′ is a 
conservative extension of 𝒪, ℐ is also a model of 𝒪. Thus, ℐ ⊧ 𝑞Σ(𝑎) and by Point 4 
of Lemma 4.8, ℐ ⊧ 𝑞(𝑎) follows as required.

For the only if  direction of Point 2, suppose ℬ|Σ, 𝒪′ ⊧ 𝑞(𝑎) and let ℐ be a model of 
𝒜 and 𝒪. Then the restriction ℐ|Σ of ℐ to symbols in Σ is a model of ℬ|Σ and by 𝒪′

being a conservative extension of 𝒪, there is a model ℐ′ of 𝒪′ that coincides with 
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ℐ|Σ on all symbols from Σ. Thus, ℐ′ ⊧ 𝑞(𝑎) and since ℐ′ is a model of 𝒪′, ℐ′ ⊧ 𝑞Σ(𝑎). 
It follows that ℐ|Σ ⊧ 𝑞Σ(𝑎). As 𝑞Σ uses only symbols from Σ, ℐ ⊧ 𝑞Σ(𝑎) follows, as 
required.

With these properties of 𝒜Σ and 𝑞Σ in hand, we show the main result of this 
section: polynomial time learnability under ontologies in normal form implies 
polynomial time learnability under unrestricted ontologies. As we will use this 
not only in Chapter 4 but also in Chapter 5, we state the implication not only for 
membership queries, but also for equivalence queries, and for all query classes and 
ontology languages we will encounter.

Lemma 4.12. The following holds:

1. Let 𝒬 ∈ {CQ,ELIQ} and ℒ be an ontology language contained in ℰℒℐℋℱ⊥. If 
𝒬 queries are polynomial time learnable under ℒ ontologies in normal form using 
membership queries and equivalence queries, the same is true for unrestricted ℒ
ontologies.

2. If ELQs are polynomial time learnable under ℰℒ𝑟 ontologies in normal form using 
membership queries and equivalence queries, then the same is true for unrestricted 
ℰℒ𝑟 ontologies.

 Proof. Assume that 𝒬 queries are polynomial time learnable under ℒ ontologies 
in normal form. Then, there is a learning algorithm 𝐀 that takes as input an ℒ
ontology on normal form and a signature Σ. We will use 𝐀 to formulate a learning 
algorithm 𝐀′ for 𝒬 queries under unrestricted ℒ ontologies.

The algorithm 𝐀′ takes as input an ℒ ontology 𝒪 and a signature Σ. It first 
computes the ontology 𝒪′ in normal form as per Lemma 4.8 introducing the fresh 
concept names 𝐗 such that Σ ∩ 𝐗 = ∅. It then starts running 𝐀 on input 𝒪′ and 
Σ ∪ 𝐗. The membership queries and equivalence queries that 𝐀 makes, cannot be 
directly passed on to the teacher of 𝐀′, as 𝐀 expects the teacher to work with the 
ontology 𝒪′, but the teacher answers questions under 𝒪. Therefore, 𝐀′ modifies 
the membership queries and equivalence queries done by 𝐀 as follows.

Whenever 𝐀 asks a membership query with the example (𝒜, 𝑎), 𝐀′ constructs the 
example (𝒜Σ, 𝑎) and returns the result of a membership query with the example 
(𝒜Σ, 𝑎) to 𝐀. Since 𝑞𝑇 is guaranteed to only use symbols from Σ, it follows from 
Point 1 of Lemma 4.11 that 𝒜, 𝒪′ ⊧ 𝑞𝑇(𝑎) if and only if 𝒜Σ, 𝒪 ⊧ 𝑞𝑇(𝑎). Hence, 𝐀
receives the correct response to its membership query.

Whenever 𝐀 asks an equivalence query with hypothesis 𝑞𝐻, the algorithm 𝐀′

constructs the query 𝑞𝐻Σ and instead asks an equivalence query with 𝑞𝐻Σ to its 
teacher. Lemma 4.10 ensures that 𝑞𝐻Σ belongs to the query class that can be used in 
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equivalence queries. If the response is a counterexample (𝒜, 𝑎), 𝐀 instead forwards 
(𝒜|Σ, 𝑎) to 𝐀′.

Since 𝑞𝑇 uses only symbols from Σ, 𝑞𝑇Σ = 𝑞𝑇 and therefore 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) if and 
only if 𝒜|Σ, 𝒪′ ⊧ 𝑞𝑇(𝑎) by Lemma 4.11 Point 2. Likewise, 𝒜, 𝒪 ⊧ 𝑞𝐻Σ(𝑎) if and only if 
𝒜|Σ, 𝒪′ ⊧ 𝑞𝐻(𝑎) by Lemma 4.11 Point 2. Hence, (𝒜|Σ, 𝑎) is a correct counterexample 
to the equivalence query asked by 𝐀.

If the response to the equivalence query is yes, then 𝐀′ forwards this to 𝐀. This is 
a correct response to the equivalence query asked by 𝐀 for the same reasons.

Inspection of the proof of Lemma 4.12 reveals that this reduction preserves the 
number of membership and equivalence queries done by the learning algorithm. 
Hence, a version of Lemma 4.12 with polynomial time learnability replaced with 
polynomial query learnability also holds.

Lemma 4.12 is an example of a reduction from one learning problem to an­
other. For the PAC learning model, these reductions are called prediction preserving 
reductions and were formalized by Pitt and Warmuth [PW90]. Since we will not 
encounter them often, we avoid defining these reductions in general for our learning 
settings.

4.3 Frontiers of Queries

In order to approach a target ELIQ 𝑞𝑇 from an ELIQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇, we need a way 
to efficiently search all generalizations of 𝑞 for a query 𝑞′ such that 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇. 
In general, a query can have an infinite number of generalizations, but to find a 
suitable 𝑞′, we only need to consider the most-specific generalizations of 𝑞′. This 
notion is formalized by frontiers of queries.

Definition 4.13 (Frontier). Let 𝒪 be an ontology and 𝑞 an ELIQ. A frontier of 𝑞 under 
𝒪 is a set 𝐹 of ELIQs, such that

1. for all 𝑝 ∈ 𝐹, 𝑞 ⊆𝒪 𝑝 and 𝑝 ⊈𝒪 𝑞;

2. for all ELIQs 𝑞′ with 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊈𝒪 𝑞 there is a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞′.

Frontiers are very close to downward refinement operators. Definition 4.13 
implies that if we have a query 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇 and 𝑞𝑇 ⊈𝒪 𝑞 and 𝐹 is a frontier of 𝑞
under 𝒪, then there must be a query 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑇.

Example 4.14. Consider the ELIQs 𝑞 and 𝑝1, 𝑝2, 𝑝3 in Figure 4.5 and 𝒪 = ∅. It holds 
that 𝑞 ⊆∅ 𝑝𝑖 and 𝑝𝑖 ⊈∅ 𝑞 for 1 ≤ 𝑖 ≤ 3. The set {𝑝1, 𝑝2} is a frontier of 𝑞 under 𝒪. The 
set {𝑝1, 𝑝2, 𝑝3} is also a frontier of 𝑞 under 𝒪, but this frontier is not ⊆-minimal, as 
𝑝3 can be removed. The set {𝑝1, 𝑝3} is not a frontier of 𝑞, as there is no ELIQ 𝑝′ in 
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Figure 4.5: The queries {𝑝1, 𝑝2} and {𝑝1, 𝑝2, 𝑝3} are frontiers of the ELIQ 𝑞 under the 
empty ontology.

{𝑝1, 𝑝3} such that 𝑝′ ⊆∅ 𝑝2. It is interesting to observe that the two ELIQs in {𝑝1, 𝑝2}
intuitively correspond to the two ways we can generalize 𝑞 at the root. First, 𝑝1
captures all queries 𝑝′ with 𝑞 ⊆∅ 𝑝′ that do not have the 𝐴 atom. Second, 𝑝2 captures 
all queries 𝑝′ with 𝑞 ⊆∅ 𝑝′ that generalize the 𝑟-successor in 𝑞, and thereby remove 
the 𝐵-atom.

Definition 4.13 only applies to ELIQs, but it is of course also possible to define 
the notion of frontier for other query classes. In fact, there are many choices as the 
query class of 𝑞, of the queries in 𝐹, and of the queries considered in Point 2 need 
not be the same. In some contexts, it makes sense to consider stronger notions of 
frontiers, where Point 2 should hold for all CQs. Occasionally, we will mention 
frontiers of ELIQs that consist of CQs, or frontiers of CQs.

We can use frontiers to construct unique characterizations of queries.

Proposition 4.15. Let 𝒪 be an ontology, 𝑞 an ELIQ and 𝐹 a frontier of 𝑞 under 𝒪. Then, 
the positively labeled example (𝒜𝑞, 𝑎𝑞) together with the set of all negatively labeled examples 
(𝒜𝑝, 𝑎𝑝) for 𝑝 ∈ 𝐹 form a unique characterization of 𝑞 under 𝒪.

 Proof. Let 𝑞′ be an ELIQ that fits the examples under 𝒪. Since 𝒜𝑞, 𝒪 ⊧ 𝑞′(𝑎𝑞), it 
follows that 𝑞 ⊆𝒪 𝑞′. From 𝐹 being a frontier of 𝑞 under 𝒪, 𝑞 ⊆𝒪 𝑞′ and 𝒜𝑝, 𝒪 ⊧̸ 𝑞′(𝑎𝑝)
for all 𝑝 ∈ 𝐹, it then follows that 𝑞′ ⊆𝒪 𝑞. Therefore, 𝑞′ ≡𝒪 𝑞.

Proposition 4.15 is why it is unsurprising that CQs also do not possess finite 
frontiers with regard to all CQs, even under the empty ontology [tCD22]. Fortu­
nately, the situation for ELIQs is better. Finite frontiers of ELIQs in the sense of 
Definition 4.13 are known to always exist.

Proposition 4.16 ([tCD22]). Let 𝑞 be an ELIQ. Then, a frontier of 𝑞 under the empty 
ontology can be computed in polynomial time.
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Figure 4.6: The set {𝑝′1, 𝑝′2} is a frontier of 𝑞 under 𝒪 = {𝑟 ⊑ 𝑠, 𝐴 ⊑ ∃𝑡.⊤}. The marked 
atoms of 𝑝′1 and 𝑝′2 are not in 𝑝1 or 𝑝2 from Figure 4.5 respectively.

The construction of a frontier of an ELIQ 𝑞 under the empty ontology consists of 
two steps. First, a set of ELIQs is inductively computed that represents all possible 
ways to generalize 𝑞. Then, the ELIQs in this set are made most-specific by attaching 
copies of 𝑞. We will use the same strategy to generalize Proposition 4.16 to the case 
with DL-Liteℋℱ−

core  ontologies.

Example 4.17. To see the impact ontologies can have on frontiers, consider the 
ELIQs displayed in Figure 4.5 under the DL-Liteℋℱ−

core  ontology

𝒪 = {𝑟 ⊑ 𝑠, 𝐴 ⊑ ∃𝑡.⊤}.

Under 𝒪, the set {𝑝1, 𝑝2, 𝑝3} is no longer a frontier of 𝑞: For the ELIQ 𝑝4(𝑥0) ←
𝐴(𝑥0)∧𝑠(𝑥0, 𝑥1)∧𝐵(𝑥1), it holds that 𝑞 ⊆𝒪 𝑝4 and 𝑝4 ⊈𝒪 𝑞, but there is no 𝑝𝑖 ∈ {𝑝1, 𝑝2, 𝑝3}
with 𝑝𝑖 ⊆𝒪 𝑝4. Even the set {𝑝1, 𝑝2, 𝑝3, 𝑝4} does not suffice as a frontier of 𝑞 under 𝒪, 
as ELIQs that use the role name 𝑡 have also to be taken into consideration.

However, it is possible to construct a frontier under 𝒪 by taking concept inclusions 
and role inclusions in 𝒪 into account during the construction of a frontier. Figure 4.6 
shows the same query 𝑞 as Figure 4.5 and extended versions of 𝑝1 and 𝑝2, where 
red color denotes atoms that were added. Intuitively, the set of all ELIQs 𝑝 such 
that 𝑞 ⊆𝒪 𝑝 is a superset of the set of all ELIQs 𝑝′ such that 𝑞 ⊆∅ 𝑝′, and 𝑝1, 𝑝2 have 
to contain additional atoms to capture these additional ELIQs. The intuition from 
Example 4.14 still applies though: 𝑝′1 captures all generalizations of 𝑞 that remove 
the 𝐴-atom at the root, and 𝑝′2 captures all generalizations of 𝑞 that generalize the 
𝑟-successor. These extensions make {𝑝′1, 𝑝′2} a frontier of 𝑞 under 𝒪.

Unfortunately, it does not always suffice to extend the queries in a frontier under 
the empty ontology, as DL-Liteℋℱ−

core  ontologies can also reduce the number of ways 
an ELIQ can be generalized. Consider 𝒪′ = {∃𝑟.⊤ ⊑ 𝐴}. The set {𝑝1, 𝑝2} is not a 
frontier of 𝑞 under 𝒪′, as 𝑝1 ≡𝒪′ 𝑞. Indeed, under 𝒪′ the set {𝑝2} is already a frontier 
of 𝑞.

61



4 Learning with Membership Queries

Minimality

In order to simplify the construction of a frontier of an ELIQ 𝑞, we will assume that 𝑞
does not use superfluous existential variables. The ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥0, 𝑥2)
is equivalent to the ELIQ 𝑝(𝑥0) ← 𝑟(𝑥0, 𝑥1), but uses the additional variable 𝑥2. The 
additional variable (and the atoms it occurs in) can be removed without affecting 
the answers to 𝑞.

In the case without ontologies, this is formalized by 𝑞 being a core, meaning 
that every homomorphism from 𝑞 to itself is surjective. This does not suffice here, 
as ontologies may introduce additional redundancies through concept inclusions. 
Instead, we will formalize this as follows.

For an ABox 𝒜 and a set 𝑆 ⊆ ind(𝒜) we use 𝒜|𝑆 to denote the restriction of 𝒜
to only individual names in 𝑆. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology, 𝑞 a CQ and 𝑥 an 
existential variable of 𝑞. The CQ 𝑞−𝒪𝑥 is then obtained by removing all atoms that 
mention 𝑥 from 𝑞, and then adding, for all variables 𝑦 ∈ var(𝑞) ⧵ {𝑥} and concept 
names 𝐴 with 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦) but 𝒜𝑞|var(𝑞)⧵{𝑥}, 𝒪 ⊧̸ 𝐴(𝑦), the atom 𝐴(𝑦).

Definition 4.18 (Minimal CQ). Let 𝒪 be an ℰℒℐℋℱ⊥ ontology and 𝑝, 𝑞 CQs. The 
CQ 𝑞 is (𝑝, 𝒪)-minimal if there is no existential variable 𝑥 ∈ var(𝑞) such that 𝑞−𝒪𝑥 ⊆𝒪 𝑝.

Definition 4.18 allows us to formulate a suitable notion of 𝑞 being minimal under 
an ontology, namely that 𝑞 is (𝑞, 𝒪)-minimal. Note that if a CQ 𝑞 is (𝑝, 𝒪)-minimal 
for some 𝑝 with 𝑞 ⊆𝒪 𝑝, then 𝑞 is also (𝑞, 𝒪)-minimal. In this section, we only need 
this notion of minimality for ELIQs and DL-Liteℋℱ−

core  ontologies, but we will also 
use it in later sections, which is why Definition 4.18 is formulated for all CQs and 
ℰℒℐℋℱ⊥ ontologies. Note that the negative condition 𝒜𝑞|var(𝑞)⧵{𝑥}, 𝒪 ⊧̸ 𝐴(𝑦) in the 
construction of 𝑞−𝒪𝑥 is not required for the following results, is and only included 
as a practical concern to avoid unnecessary work by adding concept name atoms 
that are later removed.

The central technical properties of (𝑝, 𝒪)-minimal queries, that we heavily rely 
on in our frontier construction, are the following:

Lemma 4.19. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑝(𝑦0) and 𝑞(𝑥0) CQs 
such that 𝑞 is satisfiable under 𝒪 and 𝑝 is rooted. If ℎ is a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with 
ℎ(𝑦0) = 𝑥0 and there is a variable 𝑥 ∈ var(𝑞) with 𝑥 ∉ img(ℎ), then ℎ is also a homomorphism 
from 𝑝 to 𝒰𝑞−𝒪𝑥,𝒪.

 Proof. Let ℎ be a homomorphism as required with 𝑥 ∉ img(ℎ). Set 𝑞′ = 𝑞−𝒪𝑥. Note 
that since 𝑝 is rooted, there is no variable 𝑦 ∈ var(𝑝) that is mapped to a trace starting 
with 𝑥 in 𝒰𝑞,𝒪. Now, let 𝑥′ be a variable in 𝑞 with 𝑥′ ≠ 𝑥 and 𝑥′𝑅𝑀 be a trace of 
length one in 𝒰𝑞,𝒪. By construction of 𝒰𝑞,𝒪 and the normal form of 𝒪, 𝑥′𝑅𝑀 ∈ Δ𝒰𝑞,𝒪

implies that there is a set of concept names 𝑀′ such that 𝒜𝑞, 𝒪 ⊧ ⨅ 𝑀(𝑥′) and 
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𝒪 ⊧ ⨅ 𝑀′ ⊑ ∃𝑅. ⨅ 𝑀. By construction of 𝑞′ = 𝑞−𝒪𝑥 it follows that 𝒜𝑞′, 𝒪 ⊧ ⨅ 𝑀′(𝑥′)
and therefore, 𝑥′𝑅𝑀 is also a trace in 𝒰𝑞′,𝒪. Hence, all traces in 𝒰𝑞,𝒪 that do not 
start with 𝑥 also occur in 𝒰𝑞′,𝒪 and ℎ is a well-defined function from var(𝑝) to Δ𝒰𝑞′,𝒪.

We verify that ℎ is a homomorphism. Let 𝐴(𝑦) be a concept atom in 𝑝. Since 
ℎ(𝑦) ∈ 𝐴𝒰𝑞,𝒪 and ℎ(𝑦) cannot be a trace starting with 𝑥, the construction of 𝑞′ implies 
that ℎ(𝑦) ∈ 𝐴𝒰𝑞′,𝒪. This is immediate if ℎ(𝑦) ∈ var(𝑞′) and follows inductively for 
all traces. Let 𝑟(𝑦, 𝑦′) be a role atom in 𝑝. Since neither ℎ(𝑦) nor ℎ(𝑦′) can be a trace 
starting with 𝑥, (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞,𝒪 implies that (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞′,𝒪.

Lemma 4.20. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form, 𝑝(𝑦0) and 𝑞(𝑥0) CQs such 
that 𝑞 is (𝑝, 𝒪)-minimal, 𝑞 satisfiable under 𝒪 and 𝑝 is rooted.

For all homomorphisms ℎ from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦0) = 𝑥0, var(𝑞) ⊆ img(ℎ).

 Proof. Let ℎ be a homomorphism as required and assume for showing a contradic­
tion that there is an existential variable 𝑥 ∈ var(𝑞) such that there is no 𝑦 ∈ var(𝑝)
with ℎ(𝑦) = 𝑥. Lemma 4.19 implies that ℎ is also a homomorphism from 𝑝 to 𝒰𝑞−𝒪𝑥,𝒪
with ℎ(𝑦0) = 𝑥0. Therefore, 𝑞−𝒪𝑥 ⊆𝒪 𝑝, contradicting (𝑝, 𝒪)-minimality of 𝑞.

From Lemma 4.20, we can derive the following property of (𝑞, 𝒪)-minimal queries, 
which is a suitable analogue of 𝑞 being a core.

Lemma 4.21. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑞(𝑥0) a rooted CQ that 
is (𝑞, 𝒪)-minimal and satisfiable under 𝒪. For all homomorphisms ℎ from 𝑞 to 𝒰𝑞,𝒪 with 
ℎ(𝑥0) = 𝑥0, var(𝑞) = img(ℎ).

Definition 4.18 directly suggests a procedure to compute a (𝑞, 𝒪)-minimal query 
from an ELIQ 𝑞: repeatedly check if there is a 𝑥 ∈ var(𝑞) such that 𝑞−𝒪𝑥 ⊆𝒪 𝑞. The 
complexity of this procedure depends on the ontology language. If 𝒜, 𝒪 ⊧ 𝑞(𝑎)
can be decided in polynomial time given 𝑞, 𝒪, 𝒜 and 𝑎, then this direct procedure 
to compute a (𝑞, 𝒪)-minimal query runs in polynomial time. The ELIQ answering 
techniques in [Bie+13] for DL-Litecore ontologies can be extended to DL-Liteℱ−core
ontologies, which then implies the following proposition.

Proposition 4.22. Let 𝒪 be a DL-Liteℱ−core ontology and 𝑞 an ELIQ that is satisfiable under 
𝒪. Then, a (𝑞′, 𝒪)-minimal query 𝑞′ with 𝑞 ≡𝒪 𝑞′ can be computed in polynomial time.

Unfortunately, query answering with ELIQs is known to be NP-hard under 
DL-Liteℋcore ontologies [KKZ11]. We conjecture that this results transfers to obtaining 
(𝑞, 𝒪)-minimality, meaning that it is not possible to construct equivalent (𝑞, 𝒪)-
minimal ELIQs in polynomial time under DL-Liteℋcore ontologies, unless P = NP. 
We will still be able to use the frontier construction as part of a polynomial time 
learning algorithm under DL-Liteℋℱ−

core  ontologies by obtaining (𝑞, 𝒪)-minimal queries 
in polynomial time using membership queries.

63



4 Learning with Membership Queries

The Construction of Frontiers

In the remainder of this section, we show the following theorem.

Theorem 4.23. Let 𝒪 be an DL-Liteℋℱ−
core  ontology in normal form and 𝑞 an ELIQ that is 

(𝑞, 𝒪)-minimal and satisfiable under 𝒪. Then, a frontier of 𝑞 under 𝒪 can be computed in 
time polynomial in ‖𝑞‖ and ‖𝒪‖.

We first describe an explicit construction of frontiers of ELIQs under DL-Liteℋℱ−
core

ontologies, then show its correctness, and finally establish that the construction can 
be done in polynomial time.

Let 𝒪 be an DL-Liteℋℱ−
core  ontology in normal form and 𝑞(𝑥0) an ELIQ that is (𝑞, 𝒪)-

minimal and satisfiable under 𝒪. To construct a frontier of 𝑞 under 𝒪, we consider 
all possible ways to construct most specific generalizations of 𝑞. That is, queries 𝑞′
such that 𝑞 ⊆𝒪 𝑞′ as well as 𝑞′ ⊈𝒪 𝑞 and for every ELIQ �𝑞 with 𝑞 ⊆𝒪 �𝑞 and �𝑞 ⊆𝒪 𝑞′
either �𝑞 ≡𝒪 𝑞 or �𝑞 ≡𝒪 𝑞′. We do this in two steps: the actual generalization step, that 
produces generalizations of 𝑞 and a compensation step, that carefully adds atoms 
to make sure that the generalizations are most specific under 𝒪.

The construction that follows involves the introduction of fresh variables 𝑥, some 
of which are copies of variables from var(𝑞). We then use 𝑥↓ to denote that original 
variable. We will view ⋅↓ as a partial function from the copies to their originals. 
Recall that 𝑞𝑥 denotes the subquery of 𝑞 that is the subtree below a variable 𝑥 ∈ var(𝑞).

Step 1 Generalize. For each variable 𝑥 ∈ var(𝑞), define a set 𝐹0(𝑥) that contains 
all ELIQs which can be obtained by starting with 𝑞𝑥(𝑥) and then doing one of the 
following:

Drop a concept atom
1. choose an atom 𝐴(𝑥) ∈ 𝑞 such that:

a) there is no 𝑅(𝑥′, 𝑥) ∈ 𝑞 such that 𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴,
b) there is no 𝐵(𝑥) ∈ 𝑞 such that 𝒪 ⊧ 𝐵 ⊑ 𝐴 and 𝒪 ⊧̸ 𝐴 ⊑ 𝐵.

2. remove all concept atoms 𝐵(𝑥) with 𝒪 ⊧ 𝐴 ≡ 𝐵, including 𝐴(𝑥).
3. for every concept name 𝐵 with 𝒪 ⊧ 𝐴 ⊑ 𝐵 and 𝒪 ⊧̸ 𝐵 ⊑ 𝐴, add 𝐵(𝑥).

Generalize a subquery
1. choose an atom 𝑅(𝑥, 𝑦) ∈ 𝑞 directed away from 𝑥0 and remove 𝑅(𝑥, 𝑦) as 

well as all atoms of 𝑞𝑦.
2. for every concept name 𝐵 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐵, add the atom 𝐵(𝑥).
3. if func(𝑅) ∉ 𝒪, then for each 𝑞′(𝑦) ∈ 𝐹0(𝑦), add a disjoint copy �𝑞′ of 𝑞′ and 

the role atom 𝑅(𝑥, 𝑦′) with 𝑦′ the copy of 𝑦 in �𝑞′.
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4. if func(𝑅) ∈ 𝒪 and 𝐹0(𝑦) ≠ ∅, then choose and add a 𝑞′ ∈ 𝐹0(𝑦) and the 
role atom 𝑅(𝑥, 𝑦).

5. for every role 𝑆 with 𝒪 ⊧ 𝑅 ⊑ 𝑆 and 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, add a disjoint copy �𝑞𝑦 of 
𝑞𝑦 and the atoms 𝑆(𝑥, 𝑦′), 𝐴(𝑦′) for all 𝐴 with 𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴 with 𝑦′ the 
copy of 𝑦 in �𝑞𝑦.

Note that this is an inductive construction, as Point 3 and 4 of Generalize a subquery
use the set 𝐹0(𝑦). This is well-defined, as the codepth of 𝑦 is always lower than the 
codepth of 𝑥. The definition of the partial function ⋅↓ should be clear in all cases. 
In Point 3 of Generalize a subquery, for example, for every variable 𝑧 in 𝑞′ that was 
renamed to 𝑧′ in �𝑞′ set 𝑧′↓ = 𝑧↓.

Step 2 Compensate. We construct a frontier 𝐹𝑞 of 𝑞(𝑥0) by including, for each 
𝑝 ∈ 𝐹0(𝑥0), the ELIQ obtained from 𝑝 by applying the following two steps.

Step 2 A Consider all variables 𝑥 ∈ var(𝑝), roles 𝑅, 𝑆 and sets of concept names 
𝑀 = {𝐴1, … , 𝐴𝑘} such that 𝑥↓ ⇝𝑅

𝑞,𝒪 𝑀, 𝒪 ⊧ 𝑅 ⊑ 𝑆, and3 for all 𝐵(𝑥) ∈ 𝑞 such 
that 𝒪 ⊧ ∃𝑆.⊤ ⊑ 𝐵, 𝐵(𝑥) ∈ 𝑝. Add the atoms 𝑆(𝑥, 𝑧), 𝐴1(𝑧), … , 𝐴𝑘(𝑧), 𝑅(𝑥′, 𝑧)
where 𝑧 and 𝑥′ are fresh variables. Set 𝑥′↓ = 𝑥↓ and leave 𝑧↓ undefined. Add a 
disjoint copy �𝑞 of 𝑞 and glue the copy of 𝑥↓ to 𝑥′.

Step 2 B This step is iterative. For bookkeeping, we mark atoms 𝑅(𝑥, 𝑦) ∈ 𝑝 to be 
processed in the next round of iteration.
To start, consider every 𝑅(𝑥, 𝑦) ∈ 𝑝 directed towards 𝑥0 such that 𝑥↓ and 𝑦↓ are 
defined and such that 𝑅(𝑥, 𝑦) was not added in Step 2 A. For every role 𝑆 such 
that 𝒜𝑞, 𝒪 ⊧ 𝑆(𝑥↓, 𝑦↓) and if 𝑆 = 𝑅, func(𝑅) ∉ 𝒪, add the atom 𝑆(𝑥, 𝑦′) where 𝑦′
is a fresh variable with 𝑦′↓ = 𝑦↓ and mark it. Note that all added atoms 𝑆(𝑥, 𝑦′)
are directed away from 𝑥0.
Then repeatedly choose a marked atom 𝑅(𝑥, 𝑦) ∈ 𝑝 and remove its mark. If 
func(𝑅−) ∉ 𝒪 or 𝑞 contains no atom of the form 𝑅(𝑦↓, 𝑧), then add a disjoint 
copy �𝑞 of 𝑞 and glue a copy of 𝑦↓ in �𝑞 to 𝑦. Otherwise, do the following:

1. add 𝐴(𝑦) whenever 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦↓).
2. for all atoms 𝑆(𝑦↓, 𝑧) ∈ 𝑞 and roles 𝑆′ with 𝒪 ⊧ 𝑆 ⊑ 𝑆′ such that 𝑆′ ≠ 𝑅−, 

add an atom 𝑆′(𝑦, 𝑧′) where 𝑧′ is a fresh variable. Set 𝑧′↓ = 𝑧 and mark 
the atom 𝑆′(𝑦, 𝑧′).

3. for all roles 𝑆 and sets 𝑀 = {𝐴1, … , 𝐴𝑘} such that 𝑦↓ ⇝𝑆
𝑞,𝒪 𝑀, add the 

atoms 𝑆(𝑦, 𝑢), 𝐴1(𝑢), … , 𝐴𝑘(𝑢), 𝑆−(𝑢, 𝑦′) where 𝑢 and 𝑦′ are fresh variables. 
Set 𝑦′↓ = 𝑦↓ and mark the atom 𝑆−(𝑢, 𝑦′).

3This last condition avoids re-adding a concept name that may have been dropped in Step 1.

65



4 Learning with Membership Queries

This finishes the construction of 𝐹𝑞.

Example 4.24. Consider the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0)∧𝑟(𝑥0, 𝑥1)∧𝐵(𝑥1) and the DL-Liteℋℱ−
core

ontology
𝒪 = {𝑟 ⊑ 𝑠, 𝑡 ⊑ 𝑢, 𝐴 ⊑ ∃𝑡.⊤, ∃𝑡.⊤ ⊑ 𝐴, func(𝑟)}.

Figure 4.7 shows the steps of the construction of a frontier of 𝑞 under 𝒪. The 
construction introduces many new variables. To understand the origin of the new 
variables, Figure 4.7 shows a name that refers to the original variable they are a 
copy of. The set 𝐹0(𝑥1) contains only the empty query. Hence, the result of Step 1 
𝐹0(𝑥0) is {𝑝1, 𝑝2}. Note that because 𝑟 ⊑ 𝑠 ∈ 𝒪 the variable 𝑥0 has an extra 𝑠-successor 
in 𝑝1.

The application of Step 2 A to 𝐹0(𝑥0) results in the set {𝑝′1, 𝑝′2}, the added atoms 
are marked in blue. We slightly simplify 𝑝′1 and 𝑝′2 by leaving out superfluous 
𝑢-successors that are attached by Step 2 A, but already homomorphically contained 
in the marked atoms. Note that in the construction of 𝑝′1, no 𝑡-successor is attached 
to 𝑥0 as 𝒪 ⊧ ∃𝑡.⊤ ⊑ 𝐴. Instead, a 𝑢-successor is added, since 𝑡 ⊑ 𝑢 ∈ 𝒪 and 
𝒪 ⊧̸ ∃𝑢.⊤ ⊑ 𝐴.

The set 𝐹𝑞 = {𝑝″1 , 𝑝″2 } is then the result of Step 2 B. Again, additions are marked with 
colors. The start of Step 2 B produces new 𝑠-predecessors and new 𝑟-predecessors 
(blue), that are then marked. As func(𝑠) ∉ 𝒪, copies of 𝑞 are then attached to 
the 𝑠-predecessors when they are processed (blue). The 𝑟-predecessors cannot be 
handled in this way, as func(𝑟) ∈ 𝒪. Instead, an 𝑠-successor is added and marked 
in Point 2 of Step 2 B (yellow) and a 𝑡-successor as well as a copy of 𝑞 is added in 
Point 3 of Step 2 B (purple). When the marked 𝑠-successor is processed, a copy of 𝑞
is attached (yellow). This completes this example, {𝑝″1 , 𝑝″2 } is a frontier of 𝑞 under 𝒪.

Note that 𝑝″1  is not (𝑝″1 , 𝒪)-minimal, as most of the atoms introduced in Step 2 B 
can be removed. The query 𝑝″2  is also not (𝑝″2 , 𝒪)-minimal, for similar reasons. The 
construction could be modified to avoid these superfluous additions in Step 2, but 
we would rather avoid the additional complexity, as Step 2 is complicated enough.

We continue with showing that 𝐹𝑞 is indeed a frontier of 𝑞 under 𝒪. We begin 
with showing that every query in 𝐹𝑞 is satisfiable under 𝒪.

Lemma 4.25. Every 𝑝 ∈ 𝐹𝑞 is satisfiable under 𝒪.

 Proof. Let 𝑝 be a query from 𝐹𝑞. It can easily be shown that if 𝑞 is satisfiable under 𝒪, 
then there is a model of 𝒜𝑝 that satisfies all concept inclusions and role disjointness 
constraints in 𝒪, for example, by noting that ⋅↓ can be extended to a homomorphism 
from 𝑝 to 𝒰𝑞,𝒪. It remains to show that 𝒜𝑝 also satisfies all functionality constraints 
in 𝒪. For this, we will consider all steps of the construction of 𝑝 that add role atoms.
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Figure 4.7: The steps of the construction of a frontier of the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0) ∧
𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1) under the ontology 𝒪 = {𝑟 ⊑ 𝑠, 𝑡 ⊑ 𝑢, 𝐴 ≡ ∃𝑡.⊤, func(𝑟)}.
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In Step 1, Points 3 and 4 of generalizing a subquery add role atoms and attach 
subqueries. Point 3 only applies if func(𝑅) ∉ 𝒪, Point 4 adds a single 𝑅 atom, so 
every functionality constraint is satisfied, as Point 1 removed an 𝑅 atom. Point 5 
adds only role atoms 𝑆(𝑥, 𝑦′) if 𝒪 ⊧ 𝑅 ⊑ 𝑆 and 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, it follows that func(𝑆) ∉ 𝒪.

In Step 2 A, note that since 𝑥↓ ⇝𝑅
𝑞,𝒪 𝑀, either func(𝑅) ∉ 𝒪 or there is no variable 

𝑦 ∈ var(𝑞) such that 𝒜𝑞, 𝒪 ⊧̸ 𝑅(𝑥↓, 𝑦). Furthermore, it follows that func(𝑆−) ∉ 𝒪. 
Thus, if 𝒪 ⊧ 𝑅 ≡ 𝑆, then the new atoms 𝑆(𝑥, 𝑧), 𝑅(𝑥′, 𝑧), as well as the attached 
copy of 𝑞 satisfy all functionality constraints. If 𝒪 ⊧̸ 𝑆 ⊑ 𝑅, it then follows that 
func(𝑆) ∉ 𝒪, and therefore all functionality constraints are satisfied.

At the start of Step 2 B, the atom 𝑆(𝑥, 𝑦′) is only added if it satisfies all functionality 
constraints. The same applies to the iterative step of Step 2 B. The copy of 𝑞 is only 
attached if it does not violate a functionality constraint. Point 2 only attaches atoms 
from 𝑞 that do not violate the functionality constraint func(𝑅−), and the condition 
𝑦↓ ⇝𝑆

𝑞,𝒪 𝑀 of Point 3 ensures that no functionality constraint is violated.

We now move on to show that 𝐹𝑞 is indeed a frontier of 𝑞 under 𝒪.

Lemma 4.26. 𝐹𝑞 is a frontier of 𝑞(𝑥0) under 𝒪.

 Proof. We show that 𝐹𝑞 fulfills the two conditions of frontiers. For the first condition, 
let 𝑝(𝑥0) be a query from 𝐹𝑞. We begin by showing 𝑞 ⊆𝒪 𝑝. From Lemma 4.25 and 
satisfiability of 𝑞, it follows that 𝑝 is also satisfiable under 𝒪. Hence, by Lemma 3.7 
it suffices to show 𝑝(𝑥0) → 𝒰𝑞,𝒪, 𝑥0.

The mapping ⋅↓ is already almost the required homomorphism. We extend the 
mapping ⋅↓ to be defined on all variables of 𝑝 by considering the yet unmapped 
variables added in Step 2 A and Step 2 B of the construction. Let 𝑧 be such a fresh 
variable added in Step 2 A for 𝑥 ∈ var(𝑝), roles 𝑅, 𝑆 and sets concept names 𝑀. 
Then 𝑥↓ ⇝𝑅

𝑞,𝒪 𝑀 and by construction of 𝒰𝑞,𝒪, there is a trace 𝑥↓𝑅𝑀 ∈ Δ𝒰𝑞,𝒪. Set 
𝑧↓ = 𝑥↓𝑅𝑀. Similarly for variables added in Step 2 B. Let 𝑢 be a fresh variable 
added in Point 3 of Step 2 B for the variable 𝑦, role 𝑆 and set of concept names 𝑀. 
Set 𝑢↓ = 𝑦↓𝑆𝑀. Now ⋅↓ is defined on all variables of 𝑝 and, by construction of 𝑝, it is 
a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with 𝑥↓0 = 𝑥0 as required.

For 𝑝 ⊈𝒪 𝑞, we first show the following claim.

Claim 1. For all 𝑥 ∈ var(𝑞) and 𝑝(𝑥) ∈ 𝐹0(𝑥), 𝑝 ⊈𝒪 𝑞𝑥.

 Proof of Claim 1. We show the claim by induction on the codepth of 𝑥 in 𝑞, matching 
the inductive construction of 𝐹0.

In the induction start, 𝑥 has codepth 0. Then, by definition of codepth, there is 
no role atom 𝑅(𝑥, 𝑦) ∈ 𝑞 that is directed away from 𝑥0 and all 𝑝 ∈ 𝐹0(𝑥) must be 
obtained by dropping a concept atom. Let 𝑝(𝑥) be a query in 𝐹0(𝑥) that is obtained 
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by dropping the concept atom 𝐴(𝑥) ∈ 𝑞𝑥. Then, by choice of 𝐴(𝑥), there is no 𝐵(𝑥) ∈ 𝑝
with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and no 𝑅(𝑥, 𝑥′) ∈ 𝑝 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. Hence, 𝐴(𝑥) ∈ 𝑞𝑥 and 
𝐴(𝑥) ∉ 𝒰𝑝,𝒪, therefore 𝑞𝑥(𝑥) ↛ 𝒰𝑝,𝒪, 𝑥 and thus 𝑝 ⊈𝒪 𝑞𝑥.

In the induction step, let 𝑥 have codepth > 0, let 𝑝(𝑥) be a query in 𝐹0(𝑥) and 
assume that the claim holds for all variables of 𝑞 with smaller codepth. Let ⋅↓ be 
the extension of the original ⋅↓ for 𝑝 to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞𝑥,𝒪 that 
exists by Lemma 3.8. If 𝑝 is obtained by dropping a concept atom, then the same 
argument as in the induction start yields 𝑝 ⊈𝒪 𝑞𝑥. If 𝑝 is obtained by generalizing 
a subquery attached to a role atom 𝑅(𝑥, 𝑦) ∈ 𝑞𝑥, assume for contradiction that 
there is a homomorphism ℎ from 𝑞𝑥 to 𝒰𝑝,𝒪 with ℎ(𝑥) = 𝑥. From ℎ we construct 
a homomorphism ℎ′ from 𝑞 to 𝒰𝑞,𝒪 with ℎ′(𝑥0) = 𝑥0 by setting ℎ′(𝑧) = ℎ(𝑧)↓ for all 
𝑧 ∈ var(𝑞𝑦) and ℎ′(𝑧) = 𝑧 for all 𝑧 ∉ var(𝑞𝑦). We will use ℎ′ to show that 𝑞 cannot be 
(𝑞, 𝒪)-minimal using Lemma 4.21, leading to a contradiction

The homomorphism ℎ must map 𝑦 to an 𝑅-successor of 𝑥 in 𝒰𝑝,𝒪, we distinguish 
the following cases.

• ℎ(𝑦) is a 𝑧 ∈ var(𝑝) with 𝑧↓ ≠ 𝑦.

Since 𝑧↓ = 𝑧 by definition of ⋅↓, and since ℎ′(𝑧) = 𝑧 by definition of ℎ′, ℎ′(𝑦) =
ℎ′(𝑧) = 𝑧 and ℎ′ is a non-injective homomorphism. This contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

• ℎ(𝑦) is a trace ℎ(𝑥)𝑆𝑀 ∈ Δ𝒰𝑝,𝒪 for some role 𝑆 with 𝒪 ⊧ 𝑆 ⊑ 𝑅 and set of 
concept names 𝑀.

Then, if ℎ′(𝑦) is also a trace, there must be a 𝑦′ ∈ var(𝑞) with 𝑦′ ∉ img(ℎ′), and 
ℎ′ cannot be a surjective homomorphism. This contradicts (𝑞, 𝒪)-minimality 
of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) is not a trace, but a successor 𝑦′ of 𝑥 with 𝑦′ ≠ 𝑦, then by definition of 
ℎ′, ℎ′(𝑦′) = ℎ′(𝑦) = 𝑦′ and ℎ′ is not an injective homomorphism. Again, this 
contradicts (𝑞, 𝒪)-minimality of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) = 𝑦 and there is a 𝑦′ ∈ var(𝑞𝑦) with ℎ′(𝑦′) = 𝑥, then ℎ′(𝑦′) = ℎ′(𝑥) = 𝑥, 
and again ℎ′ is not an injective homomorphism. Again, this contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

If ℎ′(𝑦) = 𝑦 and there is no 𝑦′ ∈ var(𝑞𝑦) with ℎ′(𝑦′) = 𝑥, then we show a 
contradiction to (𝑞, 𝒪)-minimality of 𝑞 by constructing a homomorphism ℎ″
from 𝑞 to 𝒰𝑞−𝒪𝑦,𝒪 with ℎ″(𝑥0) = 𝑥0 Note that by construction of ℎ′, ℎ′(𝑧) = 𝑦
implies 𝑧 = 𝑦.

Since (ℎ(𝑥)𝑆𝑀)↓ = 𝑦, there is no trace 𝑥𝑆𝑀 ∈ Δ𝒰𝑞,𝒪 and 𝒪 ⊧ 𝑅 ≡ 𝑆. But, since 
ℎ(𝑥)𝑆𝑀 ∈ Δ𝒰𝑝,𝒪 it must be that ℎ(𝑥) ⇝𝑆

𝑝,𝒪 𝑀 and thus 𝒜𝑝, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(ℎ(𝑥))
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and 𝒜𝑞, 𝒪 ⊧ ∃𝑅. ⨅ 𝑀(𝑥). However, 𝑥⇝̸𝑆
𝑞,𝒪𝑀 because 𝒪 ⊧ 𝑅 ≡ 𝑆, 𝑅(𝑥, 𝑦) ∈ 𝑞

and 𝒜𝑞, 𝒪 ⊧ ⨅ 𝑀(𝑦). Since 𝑅(𝑥, 𝑦) ∉ 𝑞−𝒪𝑦 it follows by construction of 𝑞−𝒪𝑦

and the normal form of 𝒪 that 𝑥 ⇝𝑆
𝑞−𝒪𝑦 𝑀. Therefore, there is a trace 𝑥𝑆𝑀 ∈

Δ𝒰𝑞−𝒪𝑦,𝒪.
We construct the new homomorphism ℎ″ by setting ℎ″(𝑧) = ℎ′(𝑧) for all 𝑧 ∈
var(𝑞) ⧵ var(𝑞𝑦) and ℎ″(𝑧) = 𝑥𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 for all 𝑧 ∈ var(𝑞𝑦) with ℎ(𝑧) =
ℎ(𝑥)𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛.

• ℎ(𝑦) is the root 𝑦′ of a query 𝑝′ ∈ 𝐹0(𝑦) that was added in Point 3 or Point 4 of 
generalizing a subquery.
Then, by the induction hypothesis, 𝑞𝑦(𝑦) ↛ 𝒰𝑝′,𝒪, 𝑦′ for all 𝑝′ ∈ 𝐹0(𝑦). By the 
normal form of 𝒪 and definition of 𝒰𝑝,𝒪, the subtree below 𝑦′ in 𝒰𝑝,𝒪 contains 
𝒰𝑝′,𝒪, but may not be identical to 𝒰𝑝,𝒪 since (𝑥, 𝑦′) ∈ 𝑅𝒰𝑝,𝒪 but (𝑥, 𝑦′) ∉ 𝑅𝒰𝑝′,𝒪. 
In particular, there may be concept names 𝐴 with 𝑦′ ∈ 𝐴𝒰𝑝,𝒪, 𝑦′ ∉ 𝐴𝒰𝑝′,𝒪 and 
𝒪 ⊧ ∃𝑅−.⊤ ⊑ 𝐴, or traces of the form 𝑦′𝑆𝑀 ⋯ ∈ Δ𝒰𝑝,𝒪 with 𝑦′𝑆𝑀 ⋯ ∉ Δ𝒰𝑝′,𝒪

and 𝒪 ⊧ ∃𝑅−.⊤ ⊑ ∃𝑆.⊤.
Consequently, one of the following must be true:

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑥. Then, by definition of ℎ′, ℎ′(𝑦″) =
ℎ′(𝑥) = 𝑥 and ℎ′ is not an injective homomorphism. This contradicts 
(𝑞, 𝒪)-minimality of 𝑞 using Lemma 4.21.

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑦′ and 𝐴(𝑦″) ∈ 𝑞𝑦 for some concept 
name 𝐴 with 𝑦′ ∉ 𝐴𝒰𝑝′,𝒪. Then 𝑦″ ≠ 𝑦, by choice of the concept atom 
during the dropping of a concept atom. Hence, ℎ′(𝑦″) = ℎ′(𝑦) = 𝑦 implies 
that ℎ′ is not an injective homomorphism. Again, this contradicts (𝑞, 𝒪)-
minimality of 𝑞 using Lemma 4.21.

– there is a 𝑦″ ∈ var(𝑞𝑦) with ℎ(𝑦″) = 𝑦′𝑆𝑀 for a trace 𝑦′𝑆𝑀 ∉ Δ𝒰𝑝′,𝒪.
First, observe that 𝑦″ must be a successor of 𝑦, and the entire tree below 
𝑦″ must be mapped by ℎ into traces below 𝑦′𝑆𝑀. Otherwise, there is a 
𝑦″ ′ ∈ 𝑞𝑦 with 𝑦″ ′ ≠ 𝑦 and ℎ(𝑦″ ′) = ℎ(𝑦) = 𝑦′, which implies that ℎ′ is not 
injective, contradicting (𝑞, 𝒪)-minimality of 𝑞.
Then, if 𝑦′𝑆𝑀↓ is a trace, then so is ℎ′(𝑦″), contradicting (𝑞, 𝒪)-minimality 
of 𝑞 by Lemma 4.21. If 𝑦′𝑆𝑀↓ is not a trace, but a successor 𝑧 of 𝑦 in 𝑞, 
then there is no variable in 𝑞𝑦 that is mapped by ℎ to a variable 𝑧′ ∈ var(𝑝)
with 𝑧′↓ = 𝑧, since otherwise ℎ′ is not injective. Then, we can construct 
a homomorphism ℎ″ from 𝑞 to 𝒰𝑞−𝒪𝑧,𝒪 with ℎ″(𝑥0) = 𝑥0, contradicting 
(𝑞, 𝒪)-minimality of 𝑞. Set ℎ″(𝑥) = ℎ′(𝑥) for all 𝑥 ∉ var(𝑞𝑦″) and set ℎ″(𝑥) =
𝑦𝑆𝑀𝑡 for all 𝑥 ∈ var(𝑞𝑦″) with ℎ(𝑥) = 𝑦′𝑆𝑀𝑡.
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Note that ℎ(𝑦) cannot be a variable introduced in Point 5 of generalizing a subquery, 
as at that point only 𝑆-successors of 𝑥 that satisfy 𝒪 ⊧̸ 𝑆 ⊑ 𝑅 are introduced. This 
completes the proof of Claim 1.

Now, assume for contradiction that 𝑝 ⊆𝒪 𝑞. Then, there is a homomorphism ℎ
from 𝑞 to 𝒰𝑝,𝒪 with ℎ(𝑥0) = 𝑥0. Let ⋅↓ be the extension of the original ⋅↓ for 𝑝 to a 
homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪 which exists by Lemma 3.8. We compose ℎ and 
⋅↓ to construct a homomorphism ℎ′ from 𝑞 to 𝒰𝑞,𝒪 with ℎ′(𝑥0) = 𝑥0. By Claim 1, there 
is no homomorphism that maps 𝑞 entirely into 𝒰𝑝′,𝒪 for any 𝑝′ ∈ 𝐹0(𝑥0). Hence, 
there must be an 𝑥 ∈ var(𝑞) such that ℎ(𝑥) is a fresh variable added in Step 2. By 
definition of that step and since 𝑞 is connected, we may distinguish the following 
two cases:

• ℎ(𝑥) is a fresh variable 𝑧 added in Step 2 A. Then, since 𝑥↓ ⇝𝑅
𝑞,𝒪 𝑀, 𝑧↓ and 

this ℎ′(𝑥) is a trace in 𝒰𝑞,𝒪. Hence, ℎ′ contradicts (𝑞, 𝒪)-minimality of 𝑞 by 
Lemma 4.21.

• ℎ(𝑥) is a fresh variable 𝑦′ added at the start of Step 2 B for the role atom 𝑅(𝑥, 𝑦) ∈
𝑝 with 𝑦↓ = 𝑦′↓. Then, since 𝑞 is connected, there must be a predecessor 𝑥′ of 
𝑥 with ℎ(𝑥′) = 𝑦. Hence, ℎ′(𝑥) = ℎ′(𝑥′) = 𝑦↓, contradicting (𝑞, 𝒪)-minimality of 
𝑞 by Lemma 4.21.

This completes the proof that the first condition of frontiers holds.

For the second condition of frontiers, let 𝑞′(𝑥0) be an ELIQ that is satisfiable under 
𝒪 such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊈𝒪 𝑞. Then, there is a homomorphism 𝑔 from 𝑞′ to 
𝒰𝑞,𝒪 with 𝑔(𝑥0) = 𝑥0. We have to show that there is a 𝑝 ∈ 𝐹𝑞 such that 𝑝 ⊆𝒪 𝑞′. To 
accomplish this, we construct in five steps a homomorphism ℎ from 𝑞′ to 𝒰𝑝,𝒪 with 
ℎ(𝑥0) = 𝑥0 for some 𝑝 ∈ 𝐹𝑞. During the construction, we maintain the invariant

ℎ(𝑧)↓ = 𝑔(𝑧) (∗)

for all variables 𝑧 ∈ var(𝑞′) with ℎ(𝑧) defined and ⋅↓ the extension of the original ⋅↓
for 𝑝 to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪. In the first step of the construction, 
we define ℎ for an initial segment of 𝑞′.

Let 𝑈 ⊆ var(𝑞′) be the smallest set of variables (with regard to ⊆) of 𝑞′ such that

• 𝑥0 ∈ 𝑈, and

• if there is an atom 𝑅(𝑥, 𝑦) ∈ 𝑞′ with 𝑥 ∈ 𝑈 and 𝑆(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑞 with 𝒪 ⊧ 𝑅 ≡ 𝑆, 
then 𝑦 ∈ 𝑈.

Let 𝑞𝑈 be the restriction of 𝑞′ to the variables in 𝑈. Note that 𝑞𝑈 is connected.
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Claim 2. For all 𝑥 ∈ 𝑈 with 𝑞′𝑥 ⊈𝒪 𝑞𝑔(𝑥), there is a 𝑝 ∈ 𝐹0(𝑔(𝑥)) and a homomorphism 
ℎ𝑥 from 𝑞𝑈𝑥  to 𝒰𝑝,𝒪 that satisfies the invariant (∗).

 Proof of Claim 2. For readability, set 𝑦 = 𝑔(𝑥). We show Claim 2 by induction on 
the codepth of 𝑥 in 𝑞𝑈. In the induction start, 𝑥 has codepth 0. We distinguish the 
following cases:

• There is a role atom 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦.

Then, let 𝑝 be the element of 𝐹0(𝑦) that is constructed by generalizing the 
subquery attached to 𝑅(𝑦, 𝑦′) and define ℎ𝑥 by setting ℎ𝑥(𝑥) = 𝑦. Point 2 of 
generalizing a subquery assures that 𝑦 ∈ 𝐴𝒰𝑞,𝒪 implies 𝑦 ∈ 𝐴𝒰𝑝,𝒪 for all 
concept names 𝐴. Therefore, ℎ𝑥 is a homomorphism.

• There is no role atom 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦.

Then, 𝑞′𝑥 ⊈𝒪 𝑞𝑦 implies that there is a concept atom 𝐴(𝑦) ∈ 𝑞𝑦 with 𝑥 ∉ 𝐴𝒰𝑞′𝑥,𝒪, 
and there must even be a concept name 𝐴 with these properties and such 
that there is no 𝐵(𝑦) ∈ 𝑞𝑦 with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and 𝒪 ⊧̸ 𝐴 ⊑ 𝐵. This implies 
that Property (a) of dropping concept atoms is satisfied. If Property (b) is 
not satisfied, then there is a 𝑅(𝑦, 𝑦′) ∈ 𝑞 with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. Then, 𝑦′ must 
be the predecessor of 𝑦, and 𝑥 cannot be the root of 𝑞′. It follows from the 
definition of 𝑈, that there is an 𝑆(𝑥, 𝑥′) ∈ 𝑞′ with 𝒪 ⊧ 𝑆 ≡ 𝑅. Hence, 𝑥 ∈ 𝐴𝒰𝑞′𝑥,𝒪, 
contradicting that 𝑞′𝑥 ⊈𝒪 𝑞𝑦.

Thus, there is a 𝑝 ∈ 𝐹0(𝑦) constructed by dropping the concept atom 𝐴(𝑦). 
Define ℎ𝑥 by setting ℎ𝑥(𝑥) = 𝑦.

In the induction step, let 𝑥 ∈ 𝑈 be a variable with codepth > 0 in 𝑞𝑈 and assume 
that the claim holds for all variables of smaller codepth. From 𝑞′𝑥 ⊈𝒪 𝑞𝑦 it follows 
that 𝑞𝑦(𝑦) ↛ 𝒰𝑞′𝑥,𝒪, 𝑥. We distinguish the following cases:

• There is an 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦 such that 𝑞𝑦′(𝑦′) ↛ 𝒰𝑞′𝑥′ ,𝒪
, 𝑥′ for all 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with 

𝒪 ⊧ 𝑆 ⊑ 𝑅.

If func(𝑅) ∈ 𝒪, then 𝑆 = 𝑅. If there is an 𝑅(𝑥, 𝑥′) ∈ 𝑞′𝑥, then, by the induction 
hypothesis, there is a 𝑝′ ∈ 𝐹0(𝑦′) such that 𝑞′𝑥′(𝑥′) → 𝒰𝑝′,𝒪, 𝑥′. Let 𝑝 ∈ 𝐹0(𝑦) be 
the query constructed by generalizing the subquery attached to 𝑅(𝑦, 𝑦′) and 
choosing 𝑝′ in Point 4.

If func(𝑅) ∉ 𝒪, then let 𝑝 ∈ 𝐹0(𝑦) be constructed by generalizing the subquery 
attached to the role atom 𝑅(𝑦, 𝑦′).

We construct the homomorphism ℎ𝑥 from 𝑞𝑈𝑥  to 𝒰𝑝,𝒪 by starting with ℎ𝑥(𝑥) = 𝑦
and continuing to map all successors of 𝑥. Let 𝑆(𝑥, 𝑥′) ∈ 𝑞𝑈𝑥 .
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If 𝑔(𝑥′) ≠ 𝑦′, then define ℎ𝑥 for the subtree below 𝑥′ by setting ℎ𝑥(𝑧) = 𝑔(𝑧) for 
all 𝑧 ∈ var(𝑞𝑥′).
If 𝑔(𝑥′) = 𝑦′, then the definition of 𝑈 implies that 𝒪 ⊧ 𝑆 ≡ 𝑅. By the induction 
hypothesis, there is a 𝑝′ ∈ 𝐹0(𝑦′) and a homomorphism ℎ𝑥′ from 𝑞′𝑥′ to 𝒰𝑝′,𝒪
with ℎ𝑥′(𝑥′) = 𝑦′. Extend ℎ𝑥 to the variables in 𝑞′𝑥′ by setting ℎ𝑥(𝑧) = ℎ𝑥′(𝑧) for 
all 𝑧 ∈ var(𝑞𝑥′) where ℎ𝑥′ is considered to map into the copy of 𝑝′ that was 
attached to 𝑦 in Point 3 or Point 4 of generalizing a subquery.

• For every 𝑅(𝑦, 𝑦′) ∈ 𝑞𝑦 there is a 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with 𝑞𝑦′(𝑦′) → 𝒰𝑞′𝑥′,𝒪
, 𝑥′ and 

𝒪 ⊧ 𝑆 ⊑ 𝑅.

Then there is an 𝐴(𝑦) ∈ 𝑞𝑦 with 𝑥 ∉ 𝐴𝒰𝑞′𝑥,𝒪 and there must even be an 𝐴
with these properties such that there is no 𝐵(𝑦) ∈ 𝑞𝑦 with 𝒪 ⊧ 𝐵 ⊑ 𝐴 and 
𝒪 ⊧̸ 𝐴 ⊑ 𝐵. Thus, Property (a) of dropping concept atoms is satisfied. To show 
that Property (b) is also satisfied, we have to argue that there is no 𝑅(𝑦, 𝑦′) ∈ 𝑞
with 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐴. If 𝑦′ is a successor of 𝑦, then 𝑞𝑦′(𝑦′) → 𝒰𝑞′𝑥′ ,𝒪

, 𝑥′ for 
some 𝑆(𝑥, 𝑥′) ∈ 𝑞′𝑥 with 𝒪 ⊧ 𝑆 ⊑ 𝑅. This implies 𝐴(𝑥) ∈ 𝒰𝑞′𝑥,𝒪, a contradiction. 
Hence, 𝑦′ must be a predecessor of 𝑦. Then 𝑥 is not the root of 𝑞′ and by 
definition of 𝑈, there is a predecessor 𝑥″ of 𝑥 with 𝑆(𝑥, 𝑥″) ∈ 𝑞′ and 𝒪 ⊧ 𝑅 ≡ 𝑆. 
This implies 𝐴(𝑥) ∈ 𝒰𝑞′𝑥,𝒪, a contradiction.

We may thus construct 𝑝 ∈ 𝐹0(𝑦) by dropping the concept atom 𝐴(𝑦). Set 
ℎ𝑥(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ var(𝑞𝑈𝑥 ).

This completes the proof of Claim 2.

By Claim 2, there is a 𝑝′ ∈ 𝐹0(𝑥0) such that 𝑞𝑈(𝑥0) → 𝒰𝑝′,𝒪, 𝑥0. Let 𝑝 ∈ 𝐹 be the 
query that was obtained by applying Step 2 to 𝑝′. Then clearly also 𝑞𝑈(𝑥0) → 𝒰𝑝,𝒪, 𝑥0. 
Define ℎ for all variables in 𝑈 according to the homomorphism ℎ𝑥0.

In the second step of the construction of ℎ, we consider atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′ with 
ℎ(𝑥) defined, ℎ(𝑥′) undefined and 𝑆(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝑞 for some role 𝑆 with 𝒪 ⊧̸ 𝑆 ≡ 𝑅. 
Then 𝒪 ⊧ 𝑆 ⊑ 𝑅. If ℎ(𝑥) is the root of a 𝑝 ∈ 𝐹0(𝑔(𝑥)) that was created by generalizing 
the subquery below 𝑆(𝑔(𝑥), 𝑔(𝑥′)), then Step 5 of generalizing a subquery added a 
disjoint copy of 𝑞𝑔(𝑥′) and an atom 𝑅(ℎ(𝑥), 𝑔(𝑥′)). Set ℎ(𝑥′) = 𝑔(𝑥′) and continue to 
map the subtree below 𝑥′ into the copy of 𝑞𝑔(𝑥′) according to 𝑔 until an atom 𝑅′(𝑧, 𝑧′)
is encountered with ℎ(𝑧) defined, ℎ(𝑧′) undefined and 𝑔(𝑧′) ∉ var(𝑞) or 𝑆′(𝑔(𝑧), 𝑔(𝑧′))
is directed towards 𝑥0. Otherwise, if ℎ(𝑥) is not the root of a 𝑝 ∈ 𝐹0(𝑔(𝑥)), 𝑝 contains 
an atom 𝑆(ℎ(𝑥), 𝑔(𝑥′)) and the entire subtree 𝑞𝑔(𝑥′). Set ℎ(𝑥′) = 𝑔(𝑥′) and continue 
mapping the subtree 𝑞′𝑥′ as in the previous case.

We continue with the third step of the construction of ℎ which covers subtrees of 
𝑞′ that are connected to the initial segment 𝑞𝑈 and whose root is mapped by 𝑔 to 
traces of 𝒰𝑞,𝒪 (rather than to a variable from var(𝑞)). Consider all atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′
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with ℎ(𝑥) defined, ℎ(𝑥′) undefined and 𝑔(𝑥′) ∉ var(𝑞). Before extending ℎ to 𝑞′𝑥′, we 
first show that there is an atom 𝑆(ℎ(𝑥), 𝑧) ∈ 𝑝 with 𝒪 ⊧ 𝑆 ⊑ 𝑅, added in Step 2 A.

Since 𝑔(𝑥′) ∉ var(𝑞), 𝑔(𝑥′) must be a trace 𝑔(𝑥)𝑆𝑀 ∈ Δ𝒰𝑞,𝒪 for some set of concept 
names 𝑀 = {𝐴1, … , 𝐴𝑘} and some role 𝑆 with 𝒪 ⊧ 𝑆 ⊑ 𝑅. Hence, 𝑔(𝑥) ⇝𝑆

𝑞,𝒪 𝑀. We 
aim to show that Step 2 A of compensation is applicable. To this end, take any 
concept name 𝐵 such that 𝒪 ⊧ ∃𝑅.⊤ ⊑ 𝐵 and 𝐵(𝑔(𝑥)) ∈ 𝑞. We have to show that 
𝐵(ℎ(𝑥)) ∈ 𝑝. Assume to the contrary that 𝐵(ℎ(𝑥)) ∉ 𝑝. Then, 𝑝 must be the result of 
dropping the concept atom 𝐵(𝑔(𝑥)). Since 𝑥 ∈ 𝑈, the choice of 𝑝 and construction of 
ℎ in the proof of Claim 2 imply that 𝑥 ∉ 𝐵𝒰𝑞′𝑥,𝒪. However, 𝑅(𝑥, 𝑥′) ∈ 𝑞′ implies that 
𝑥 ∈ 𝐵𝒰𝑞′𝑥,𝒪, a contradiction.

Hence, Step 2 A adds the atoms 𝑅(ℎ(𝑥), 𝑧), 𝐴1(𝑧), … , 𝐴𝑘(𝑧), 𝑆(𝑧′, 𝑧) with 𝑧 and 𝑧′

fresh variables and adds a disjoint copy �𝑞 of 𝑞, gluing the copy of ℎ(𝑥)↓ in �𝑞 to 
𝑧′. Extend ℎ to the variables in 𝑞′𝑥′ by setting ℎ(�𝑥) = 𝑧𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 if 𝑔(�𝑥) =
𝑔(𝑥)𝑆𝑀𝑅2𝑀2 … 𝑅𝑛𝑀𝑛 for all �𝑥 in the subtree below 𝑥′. If there is an 𝑥″ ∈ var(𝑞′𝑥′)
with 𝑔(𝑥″) = 𝑔(𝑥), then instead set ℎ(𝑥″) = 𝑧′ and continue mapping the subtree 
below 𝑥″ into the attached copy �𝑞 of 𝑞 according to 𝑔.

In the fourth step of the construction of ℎ, we consider the remaining subtrees of 
𝑞′. Let 𝑅(𝑥, 𝑥′) ∈ 𝑞′ be directed away from 𝑥0 with ℎ(𝑥) defined and ℎ(𝑥′) undefined.

Then ℎ(𝑥) was defined in the first step of the construction of ℎ, and thus 𝑥 ∈ 𝑈. As 
ℎ(𝑥′) was not defined in the first or second step, 𝑥′ ∉ 𝑈 and 𝑔(𝑥′) ∈ var(𝑞). Therefore, 
𝑅(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝒰𝑞,𝒪 must be directed towards 𝑥0. This implies that 𝑥 is not the root 
of 𝑞′ and that there is an atom 𝑇(𝑥, 𝑥″) ∈ 𝑞′ directed towards 𝑥0 with 𝑔(𝑥″) = 𝑔(𝑥′). 
From 𝑥 ∈ 𝑈 follows that 𝑥″ ∈ 𝑈 and therefore ℎ(𝑥″) and ℎ(𝑥) were defined in the 
first step of the construction of ℎ.

Since ℎ is a homomorphism where it is defined, there is an atom 𝑆(ℎ(𝑥), ℎ(𝑥″)) ∈ 𝑝
directed towards 𝑥0 with 𝒪 ⊧ 𝑆 ⊑ 𝑇 that was not added in Step 2 A. By the invari­
ant (∗), ℎ(𝑥″)↓ = 𝑔(𝑥″) = 𝑔(𝑥′) and ℎ(𝑥)↓ = 𝑔(𝑥), therefore 𝒜𝑞, 𝒪 ⊧ 𝑅(ℎ(𝑥)↓, ℎ(𝑥″)↓)
and func(𝑅) ∉ 𝒪.

Therefore, the start of Step 2 B added an atom 𝑅(ℎ(𝑥), 𝑧) to 𝑝 where 𝑧 is a fresh 
variable, and marked it. Set ℎ(𝑥′) = 𝑧. We continue to map the subtree 𝑞′𝑥′ in the 
next step of the construction of ℎ.

In the fifth and final step of the construction of ℎ we define ℎ for all remaining 
variables using the atoms that were introduced in the iteration of Step 2 B. We do 
this by repeatedly choosing atoms 𝑅(𝑥, 𝑥′) ∈ 𝑞′ directed away from 𝑥0 such that

1. ℎ(𝑥) and ℎ(𝑥′) are defined, and

2. for all 𝑆(𝑥′, 𝑥″) ∈ 𝑞′ directed away from 𝑥0, ℎ(𝑥″) is undefined and there is at 
least one such 𝑆(𝑥′, 𝑥″).
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If we choose such an 𝑅(𝑥, 𝑥′) directly at the beginning of this step of the construction 
of ℎ, then 𝑔(𝑥′) ∈ var(𝑞) and there is an atom 𝑅′(ℎ(𝑥), ℎ(𝑥′)) ∈ 𝑝 with 𝒪 ⊧ 𝑅′ ⊑ 𝑅 that 
was marked and processed in Step 2 B of the construction of 𝑝. We will extend ℎ
such that these conditions are always satisfied when we choose an 𝑅(𝑥, 𝑥′) ∈ 𝑞′.

Let 𝑅(𝑥, 𝑥′) ∈ 𝑞′ be an atom that satisfied Properties 1 and 2 and consider the 
atom 𝑅′(ℎ(𝑥), ℎ(𝑥′)) ∈ 𝑝. If func(𝑅′−) ∉ 𝒪, then Step 2 B attached a copy of 𝑞 to ℎ(𝑥′). 
Extend ℎ to the entire subtree 𝑞′𝑥′ by setting ℎ(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ var(𝑞′𝑥′) where 
𝑔 is considered to be a homomorphism into that copy of 𝑞. If func(𝑅′−) ∈ 𝒪, then 
consider each 𝑆(𝑥′, 𝑥″) ∈ 𝑞′ directed away from 𝑥0. We distinguish cases

• 𝑔(𝑥″) ∈ var(𝑞). Since 𝑔(𝑥′) ∈ var(𝑞), there is an atom 𝑆′(𝑔(𝑥′), 𝑔(𝑥″)) ∈ 𝑞 for 
some role name 𝑆′ with 𝒪 ⊧ 𝑆′ ⊑ 𝑆. If 𝑆 = 𝑅′−, then func(𝑆) ∈ 𝒪 and 𝑆 = 𝑆′. 
Additionally, since func(𝑅′−) ∈ 𝒪, there must be the atom 𝑅′(𝑔(𝑥), 𝑔(𝑥′)) =
𝑆−(𝑔(𝑥), 𝑔(𝑥′)) ∈ 𝑞. This contradicts that 𝑞 satisfies all functionality constraints 
in 𝒪, implying that 𝑆 ≠ 𝑅′−.
Therefore, Point 2 of Step 2 B adds the atom 𝑆(ℎ(𝑥′), 𝑧) where 𝑧 is a fresh 
variable. Set ℎ(𝑥″) = 𝑧.

• 𝑔(𝑥″) ∉ var(𝑞). Since 𝑔(𝑥′) ∈ var(𝑞), 𝑔(𝑥″) must be of the shape 𝑔(𝑥′)𝑆′𝑀 for 
some role 𝑆′ with 𝒪 ⊧ 𝑆′ ⊑ 𝑆 and some set 𝑀 = {𝐴1, … 𝐴𝑘} of concept names. 
Hence, 𝑔(𝑥′) ⇝𝑆′

𝑞,𝒪 𝑀 and since ℎ(𝑥′)↓ = 𝑔(𝑥′), Point 3 of Step 2 B added the 
atoms 𝑆′(ℎ(𝑥′), 𝑢), 𝐴1(𝑢), … 𝐴𝑘(𝑢), 𝑆′−(𝑢, 𝑦′) where 𝑢 and 𝑦′ are fresh variables. 
Set ℎ(𝑥″) = 𝑢 and extend ℎ to the initial segment of 𝑞′𝑥″ that maps into the 
traces below 𝑔(𝑥′)𝑆′𝑀 by setting ℎ(𝑧) = 𝑢𝑅2𝑀2𝑡 if 𝑔(𝑧) = 𝑔(𝑥′)𝑆′𝑀𝑅2𝑀2𝑡 for 
all 𝑧 ∈ var(𝑞′𝑥″) until 𝑔(𝑧) = 𝑔(𝑥′). If an atom 𝑇(𝑧, 𝑧′) ∈ 𝑞𝑥″ with ℎ(𝑧) defined 
and 𝑔(𝑧′) = 𝑔(𝑥′) is encountered, set ℎ(𝑧′) = 𝑦′. As 𝑇(𝑧, 𝑧′) fulfills Properties 1 
and 2, we will extend ℎ to its subtree at some point in the future.

This completes the construction of ℎ and the proof that the second condition of 
frontiers is satisfied.

We next show that the constructed frontier is of polynomial size and that its 
computation takes only polynomial time.

Lemma 4.27. The construction of 𝐹𝑞 runs in time polynomial in ‖𝑞‖ + ‖𝒪‖ and ∑𝑝∈𝐹𝑞
‖𝑝‖

is polynomial in ‖𝑞‖ + ‖𝒪‖.

 Proof. In order to reduce notational clutter, we introduce some abbreviations used 
throughout the proof.

• 𝑠 = |sig(𝑞)| denotes the number of concept and role names used in 𝑞;

• 𝑜 = ‖𝒪‖ denotes the size of 𝒪;
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• for an ELIQ 𝑝, 𝑛𝑝 = |var(𝑝)| denotes the number of variables in 𝑝;

• for a set 𝑄 of ELIQs, 𝑛𝑄 denotes ∑𝑝∈𝑄 𝑛𝑝.

We assume without loss of generality that 𝑠 and 𝑜 are at least one.
We start with analyzing the size of the queries in 𝐹0(𝑥) that are obtained as the 

result of the generalization step.

Claim. For every 𝑥 ∈ var(𝑞),

1. |𝐹0(𝑥)| ≤ 𝑠 ⋅ 𝑛𝑞𝑥, and

2. 𝑛𝐹0(𝑥) ≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞𝑥.

 Proof of the claim. The proof of both points is by induction on the codepth of 𝑥 in 𝑞. 
We start with Point 1. For the base case, consider a variable 𝑥 of codepth 0 in 𝑞, that 
is, a leaf. In this case, only Drop a concept atom is applicable, and the construction 
adds at most 𝑠 queries to 𝐹0(𝑥).

For the inductive step, consider a variable 𝑥 of codepth greater than 0. We parti­
tion 𝐹0(𝑥) into 𝐹𝐴

0 (𝑥) and 𝐹𝐵
0 (𝑥), that is, the queries that are obtained by dropping a 

concept atom and the queries that are obtained by generalizing a subquery, respec­
tively, and analyze them separately, starting with 𝐹𝐴

0 (𝑥). Clearly there are at most 𝑠
queries in 𝐹𝐴

0 (𝑥), that is
|𝐹𝐴
0 (𝑥)| ≤ 𝑠.

Next, we analyze 𝐹𝐵
0 (𝑥). Each query in 𝐹𝐵

0 (𝑥) is obtained by picking, in Point 1, an 
atom 𝑅(𝑥, 𝑦) ∈ 𝑞𝑥. If func(𝑅) ∉ 𝒪, then Point 3 adds one query to 𝐹𝐵

0 (𝑥). Otherwise, 
Point 4 adds |𝐹0(𝑦)| queries. Thus,

|𝐹𝐵
0 (𝑥)| ≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∉𝒪

1 + �
𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∈𝒪

|𝐹0(𝑦)|.

Using the induction hypothesis and the fact that 𝑛𝑞𝑦 ≥ 1, we obtain

|𝐹𝐵
0 (𝑥)| ≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑠 ⋅ 𝑛𝑞𝑦 = 𝑠 ⋅ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑛𝑞𝑦 = 𝑠 ⋅ (𝑛𝑞𝑥 − 1).

Hence,
|𝐹0(𝑥)| = |𝐹𝐴

0 (𝑥)| + |𝐹𝐵
0 (𝑥)| ≤ 𝑠 + 𝑠 ⋅ (𝑛𝑞𝑥 − 1) = 𝑠 ⋅ 𝑛𝑞𝑥.

We now prove Point 2 by induction on the codepth of 𝑥 in 𝑞. For the base case, 
consider a variable 𝑥 of codepth 0 in 𝑞, that is, a leaf. In this case, only Drop a concept 
atom is applicable, and it adds at most 𝑠 queries to 𝐹0(𝑥), each with a single variable.
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For the inductive step, consider a variable 𝑥 of codepth greater than 0 and the 
same partition of 𝐹0(𝑥) into 𝐹𝐴

0 (𝑥) and 𝐹𝐵
0 (𝑥) as before. Every 𝑝 ∈ 𝐹𝐴

0 (𝑥) uses 𝑛𝑞𝑥
variables, and there are at most 𝑠 queries in 𝐹𝐴

0 (𝑥). Thus,

𝑛𝐹𝐴0 (𝑥)
≤ 𝑠 ⋅ 𝑛𝑞𝑥.

Next, we analyze 𝐹𝐵
0 (𝑥). Each query in 𝐹𝐵

0 (𝑥) is obtained by first picking, in Point 1, 
an atom 𝑅(𝑥, 𝑦) in 𝑞𝑥. If func(𝑅) ∉ 𝒪, Point 3 adds 𝑛𝐹0(𝑦) variables. Otherwise, Point 4 
replaces 𝑞𝑦 with some element of 𝐹0(𝑦). Then, Point 5 adds some copies of 𝑞𝑦, 
depending on the number of role inclusions in 𝒪. Hence,

𝑛𝐹𝐵0 (𝑥)
≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∉𝒪

(𝑛𝑞𝑥 + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦) + �
𝑅(𝑥,𝑦)∈𝑞𝑥
func(𝑅)∈𝒪

(𝑛𝑞𝑥 ⋅ |𝐹0(𝑦)| + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ |𝐹0(𝑦)|)

≤ �
𝑅(𝑥,𝑦)∈𝑞𝑥

(𝑛𝑞𝑥 ⋅ |𝐹0(𝑦)| + 𝑛𝐹0(𝑦) + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ |𝐹0(𝑦)|).

Plugging in the induction hypothesis and Point 1 of the claim, we obtain

𝑛𝐹𝐵0 (𝑥)
≤ �

𝑅(𝑥,𝑦)∈𝑞𝑥
(𝑛𝑞𝑥 ⋅ 𝑠 ⋅ 𝑛𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ 𝑛3

𝑞𝑦 + 𝑜 ⋅ 𝑛𝑞𝑦 ⋅ 𝑠 ⋅ 𝑛𝑞𝑦)

= 𝑠 ⋅ 𝑛𝑞𝑥 ⋅ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛3
𝑞𝑦 + 𝑠 ⋅ 𝑜 ⋅ �

𝑅(𝑥,𝑦)∈𝑞𝑥
𝑛2
𝑞𝑦.

We simplify the right-hand side by observing that

�
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦 = 𝑛𝑞𝑥 − 1

and for 𝑘 ≥ 0

�
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑘
𝑞𝑦 ≤

⎛
⎜⎜⎜⎜⎝ �
𝑅(𝑥,𝑦)∈𝑞𝑥

𝑛𝑞𝑦

⎞
⎟⎟⎟⎟⎠

𝑘

= (𝑛𝑞𝑥 − 1)𝑘.

Here, the inequality is an application of the general inequality ∑𝑖 𝑎𝑘𝑖 ≤ �∑
𝑖 𝑎𝑖�

𝑘
, 

for every sequence of non-negative numbers 𝑎1, … , 𝑎𝑚 and 𝑘 ≥ 1. Using these 
observations, the inequality can be simplified to:

𝑛𝐹𝐵0 (𝑥)
≤ 𝑠 ⋅ 𝑛𝑞𝑥 ⋅ (𝑛𝑞𝑥 − 1) + 𝑠 ⋅ 𝑜 ⋅ (𝑛𝑞𝑥 − 1)3 + 𝑠 ⋅ 𝑜 ⋅ (𝑛𝑞𝑥 − 1)2

≤ 𝑠 ⋅ 𝑜 ⋅ �𝑛𝑞𝑥 ⋅ (𝑛𝑞𝑥 − 1) + (𝑛𝑞𝑥 − 1)3 + (𝑛𝑞𝑥 − 1)2�

= 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 3𝑛𝑞𝑥 + 1� .
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Overall, we get

𝑛𝐹0(𝑥) = 𝑛𝐹𝐴0 (𝑥)
+ 𝑛𝐹𝐵0 (𝑥)

≤ 𝑠 ⋅ 𝑛𝑞𝑥 + 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 3𝑛𝑞𝑥 + 1�

≤ 𝑠 ⋅ 𝑜 ⋅ �(𝑛𝑞𝑥 − 1)3 + 2𝑛2
𝑞𝑥 − 2𝑛𝑞𝑥 + 1�

≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞𝑥.

For the last inequality, we used that 𝑧3 ≥ (𝑧 − 1)3 + 2𝑧 + 1, for all real numbers 𝑧. This 
finishes the proof of the claim.

We now analyze the Step 2, in which the queries in 𝐹0(𝑥0) are further extended. 
We denote with 𝐹1 the result of applying Step 2 A to 𝐹0(𝑥0). In Step 2 A, we add at 
most one variable and a copy of 𝑞 for every variable in 𝐹0(𝑥0) and concept ∃𝑅.𝐵 or 
role inclusion 𝑅 ⊑ 𝑆 in 𝒪.

Therefore, the step adds at most (1 + 𝑛𝑞) ⋅ 𝑛𝐹0(𝑥0) ⋅ 𝑜 variables in total. Using the 
bound on 𝑛𝐹0(𝑥0), we get

𝑛𝐹1 ≤ 𝑛𝐹0(𝑥0) + (1 + 𝑛𝑞) ⋅ 𝑛𝐹0(𝑥0) ⋅ 𝑜

≤ 𝑠 ⋅ 𝑜 ⋅ 𝑛3
𝑞 ⋅ �1 + (1 + 𝑛𝑞) ⋅ 𝑜� .

We now analyze Step 2 B, applied to some query 𝑝 ∈ 𝐹. We argue that the itera­
tion terminates after a polynomial number of steps, thus resulting in a query of 
polynomial size.

Consider an atom 𝑅(𝑥, 𝑦) that was marked. If func(𝑅−) ∉ 𝒪, then a copy of 𝑞 is 
attached and no new atoms are marked. Otherwise, for all atoms 𝑆(𝑦↓, 𝑧) ∈ 𝑞 and 
roles 𝑆′ with 𝒪 ⊧ 𝑆 ⊑ 𝑆′ such that 𝑆′ ≠ 𝑅−, new atoms are added and marked. For 
all new atoms with 𝑆 ≠ 𝑆′ no new atoms are marked when they are processed, as 
𝒪 ⊧ 𝑆− ⊑ 𝑆′− and hence func(𝑆′−) ∉ 𝒪. All new atoms with 𝑆 = 𝑆′ must be copies of 
atoms in 𝑞, and, due to the 𝑆′ ≠ 𝑅− condition and the tree-shape of 𝑞, the marking 
process never changes its direction and creates at most a single copy of each atom 
in 𝑞. Overall, we obtain that, per role atom in 𝑝, the marking process adds at most 
𝑛𝑞 ⋅ 𝑜 role atoms in Step 2, for each such atom and every ∃𝑅.𝐵 in 𝒪 one more role 
atom in Step 3, and for each introduced variable at most one copy of 𝑞. All this is 
polynomial in ‖𝑞‖ and ‖𝒪‖.

Moreover, the computation of 𝐹𝑞 can be carried out in polynomial time since all 
involved queries are of polynomial size and consequences of 𝒪 can be decided in 
polynomial time.

From Lemma 4.26 and Lemma 4.27 it now follows that the frontier construction 
in this section actually yields frontiers of ELIQs under DL-Liteℋℱ−

core  ontologies in 
polynomial time. Thus, we have shown Theorem 4.23.
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Lower Bounds on the Size of Frontiers

The construction of a frontier in polynomial time crucially relies on the choice of on­
tology language. In the remainder of this section we show that any extension of the 
ontology language DL-Liteℋℱ−

core  by including conjunctions, unrestricted functionality 
constraints, or qualified existential restrictions, leads to frontiers of exponential or 
even infinite size. These results are interesting on their own, as they already hold 
for simple query and ontology languages.

In a sense, the first two results mirror the learning lower bounds in Section 4.1. 
Indeed, we can view the non-existence of frontiers of polynomial size as the reason 
for the impossibility of polynomial query learning. Again, the first result concerns 
conjunctions in the ontology language, and uses the same queries and ontologies 
as the proof of Theorem 4.5.

Theorem 4.28. For every 𝑛 ≥ 1, there is a conjunction of atomic queries 𝑞𝑛 and a conjunctive 
ontology 𝒪𝑛 of size polynomial in 𝑛, such that any frontier of 𝑞𝑛 under 𝒪𝑛 has size at least 
2𝑛.

 Proof. For 𝑛 ≥ 1, let 𝐴1, … , 𝐴𝑛, 𝐵1, … , 𝐵𝑛 be concept names and let

𝑞𝑛(𝑥) ← 𝐴1(𝑥) ∧ 𝐵1(𝑥) ∧ ⋯ ∧ 𝐴𝑛(𝑥) ∧ 𝐵𝑛(𝑥),
𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.

Suppose a set of queries 𝐹 is a frontier of 𝑞𝑛 under 𝒪𝑛. Let 𝑝 be any query that for 
each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 contains either 𝐴𝑖(𝑥) or 𝐵𝑖(𝑥). It suffices to show that 𝑝 ∈ 𝐹.

Clearly, 𝑞𝑛 ⊆𝒪𝑛 𝑝 and 𝑝 ⊈𝒪𝑛 𝑞𝑛. Hence, the second condition of Definition 4.13 
implies that there is a 𝑝′ ∈ 𝐹 with 𝑝′ ⊆𝒪 𝑝. Since 𝑝′ ∈ 𝐹, it must be that 𝑝′ ⊈𝒪𝑛 𝑞𝑛, 
and therefore 𝑝′ does not contain both atoms 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) for any 𝑖.

But then the ontology does not have an effect on 𝑝′ ⊆𝒪𝑛 𝑝 and hence every atom 
that occurs in 𝑝 must occur in 𝑝′. As 𝑝′ does not contain both atoms 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) for 
any 𝑖, it follows that 𝑝′ = 𝑝, which was to be shown.

If we lift the restriction on the interaction of functionality constraints and exis­
tential restrictions, so consider proper DL-Liteℱcore ontologies, Theorem 4.23 also 
fails, even if we permit frontiers that consist of CQs. A CQ-frontier of an ELIQ 𝑞
under an ontology 𝒪 is a finite set of unary CQs that satisfies Conditions 1 and 2 of 
Definition 4.13. Note that every frontier is a CQ-frontier, but not vice versa.

Theorem 4.29. There is an ELIQ 𝑞 and a DL-Liteℱcore ontology 𝒪 such that every CQ-
frontier of 𝑞 under 𝒪 is infinite.

 Proof. Let 𝑞(𝑥) ← 𝐴(𝑥) and

𝒪 = { 𝐴 ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟.⊤ ⊑ ∃𝑠.⊤, func(𝑟−) }.
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The universal model 𝒰𝑞,𝒪 of 𝒜𝑞 and 𝒪 is an infinite 𝑟-path in which every point has 
a single 𝑠-successor.

Suppose, for the sake of showing a contradiction, that 𝐹 is a CQ-frontier of 𝑞 under 
𝒪. We can assume without loss of generality that all queries in 𝐹 are satisfiable 
under 𝒪, especially that they satisfy func(𝑟−). Since 𝐹 is finite, there is an 𝑛 ≥ 1 such 
that |var(𝑝)| < 𝑛, for all 𝑝 ∈ 𝐹. Consider the following ELIQ 𝑞′:

𝑞′(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧
𝑠(𝑥𝑛, 𝑦) ∧ 𝑠(𝑥′𝑛, 𝑦) ∧
𝑟(𝑥′1, 𝑥′2) ∧ ⋯ ∧ 𝑟(𝑥′𝑛−1, 𝑥′𝑛) ∧ 𝐴(𝑥′1).

Note that 𝑞′ ⊈𝒪 𝑞 ⊆𝒪 𝑞′ and that 𝑞′ satisfies func(𝑟−).
By the second condition of frontiers, there is a query 𝑝(𝑧) ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞′. 

By Lemma 3.5, there is a homomorphism ℎ from 𝑞′ to 𝒰𝑝,𝒪 with ℎ(𝑥1) = 𝑧. We 
distinguish cases.

Suppose first that ℎ(𝑥𝑖) ∈ var(𝑝) for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, then by the choice of 𝑛
there must be 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that ℎ(𝑥𝑖) = ℎ(𝑥𝑗). Since 𝑞′ contains a directed 𝑟-path 
from 𝑥𝑖 to 𝑥𝑗 and 𝒰𝑝,𝒪 does not contain edges between variables that are not part 
of 𝑝, this implies that 𝑝 must contain an 𝑟-cycle. Thus, 𝑞 ⊈𝒪 𝑝, violating the first 
condition of frontiers.

Suppose now that ℎ(𝑥𝑖) ∉ var(𝑝) for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, that is, ℎ(𝑥𝑖) is a trace 
starting with some 𝑦 ∈ var(𝑝). Since 𝑞′ is an ELIQ, there is a 𝑗 < 𝑖 such that ℎ(𝑥𝑗) = 𝑦
and ℎ(𝑥𝑗+1), … , ℎ(𝑥𝑖) ∉ var(𝑝). The structure of 𝑞′ and the structure of the proper 
traces in universal models of 𝒪 imply that ℎ(𝑥′𝑗 ) = ℎ(𝑥𝑗).

We now show that ℎ(𝑥1) = ℎ(𝑥′1). If 𝑗 = 1, we are done. If 𝑗 > 1, there are atoms 
𝑟(𝑥𝑗−1, 𝑥𝑗) and 𝑟(𝑥′𝑗−1, 𝑥′𝑗 ) in 𝑞′. Since ℎ is a homomorphism, ℎ(𝑥𝑗) = ℎ(𝑥′𝑗 ), and 𝑝 satisfies 
func(𝑟−), we obtain ℎ(𝑥𝑗−1) = ℎ(𝑥′𝑗−1). Repeating this argument yields ℎ(𝑥1) = ℎ(𝑥′1)
as required. Since ℎ(𝑥1) = 𝑧, we also have ℎ(𝑥′1) = 𝑧. Since ℎ is a homomorphism 
and 𝐴(𝑥′1) ∈ 𝑞′, we have 𝐴(𝑧) ∈ 𝑝 and thus 𝑝 ⊆𝒪 𝑞, violating the first condition of 
frontiers.

Theorem 4.28 already implies that there do not always exist frontiers of poly­
nomial size under ℰℒ ontologies. Kriegel showed that there even are cases where 
no finite frontiers4 exist under an ℰℒ ontology that does not use any conjunc­
tion [Kri18a]. We give a self-contained proof of Theorem 4.30 using the terminology 
of this section.

Theorem 4.30 ([Kri18a]). There is an ELQ 𝑞 and an ℰℒ ontology 𝒪 that does not contain 
any conjunctions, such that every frontier of 𝑞 under 𝒪 is infinite.

4Upper neighborhoods of ℰℒ concepts correspond to minimal finite frontiers.
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 Proof. Let 𝒪 = {𝐴 ≡ ∃𝑟.𝐴} and 𝑞(𝑥) ← 𝐴(𝑥). Suppose, for the sake of showing a 
contradiction, that a finite set of ELIQs 𝐹 is a frontier of 𝑞 under 𝒪.

Consider, for each 𝑖 ≥ 1, the ELQ

𝑝𝑖(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑖−1, 𝑥𝑖).

For all 𝑖 ≥ 1, 𝑞 ⊆𝒪 𝑝𝑖 and 𝑝𝑖 ⊈𝒪 𝑞. Hence, by definition of frontiers, for each 𝑖 there is 
a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑝𝑖. As 𝐹 is finite, there must be a 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑝𝑖 for 
infinitely many 𝑖. We distinguish cases.

If the concept name 𝐴 occurs in 𝑝, then 𝑝 ≡𝒪 𝑞, contradicting that 𝐹 is a frontier.
If only the role name 𝑟 occurs in 𝑝, then Δ𝒰𝑝,𝒪 = var(𝑝). As 𝑝 itself is also finite, 

𝒰𝑝,𝒪 cannot contain an 𝑟-path of infinite length. Hence, it cannot be true that 𝑝 ⊆𝒪 𝑝𝑖
for infinitely many 𝑖.

Recall that DL-Liteℋℱ−
core  ontologies also restrict the interaction of functionality 

constraints and role inclusions, that is, no functional role may have subroles. We 
used this restriction heavily in our proof of Theorem 4.23. We show that this 
restriction is indeed essential for (finite) frontiers to exist. We conjecture that this 
restriction is also necessary for polynomial time learning of queries using only 
membership queries.
Theorem 4.31. There is an ELQ 𝑞 and an ontology 𝒪 consisting only of role inclusions 
and functionality constraints, such that every frontier of 𝑞 under 𝒪 is infinite.

 Proof. Let 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) and

𝒪 = {𝑟 ⊑ 𝑠, 𝑟 ⊑ 𝑡, func(𝑠), func(𝑡), func(𝑠−), func(𝑡−)},

and assume for contradiction that 𝐹 is a finite frontier of 𝑞 under 𝒪. For every 𝑖 ≥ 1, 
consider the query

𝑞𝑖(𝑦0) ← 𝑠(𝑦0, 𝑦′0) ∧ 𝑡(𝑦1, 𝑦′0) ∧ ⋯ ∧ 𝑠(𝑦𝑖−1, 𝑦′𝑖−1) ∧ 𝑡(𝑦𝑖, 𝑦′𝑖−1).

Every 𝑞𝑖 is satisfiable under 𝒪, and it holds that 𝑞 ⊆𝒪 𝑞𝑖 and 𝑞𝑖 ⊈𝒪 𝑞.
Therefore, for each 𝑞𝑖 there must be an ELIQ 𝑝 ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑖. Since 𝐹 is 

finite, there must be a 𝑝(𝑧0) ∈ 𝐹 such that 𝑝 ⊆𝒪 𝑞𝑖 for infinitely many 𝑞𝑖. As 𝐹 is a 
frontier, 𝑝 ⊈𝒪 𝑞. Hence, this 𝑝 may not contain an 𝑟 atom at the root. Due to the 
functionality constraints in 𝒪, 𝑝 is only satisfiable under 𝒪 if it does not contain 
an 𝑟 atom at all. Now consider a 𝑞𝑖 with 𝑝 ⊆𝒪 𝑞𝑖 and 𝑖 > |var(𝑞𝑓)|. Since 𝑝 contains 
no 𝑟 atoms, also 𝑝 ⊆∅ 𝑞𝑖. Let ℎ be a homomorphism from 𝑞𝑖 to 𝑝 with ℎ(𝑦0) = 𝑧0. 
It follows from |var(𝑞𝑖)| > |var(𝑝)| that ℎ is non-injective. This, together with the 
construction of 𝑞𝑖 implies that 𝑝 is cyclic, contradicting that 𝑝 is an ELIQ.

Theorems 4.28 to 4.31 together indicate that DL-Liteℋℱ−
core  is a maximal ontology 

language for which polynomial size frontiers of ELIQs exist, in the sense that this 
property does not hold for many of its common extensions.
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Figure 4.8: An infinite generalizing chain of ELIQs under the empty ontology.

4.4 Generalization Sequences of Queries

We intend to use the frontier construction from Section 4.3 as part of a learning 
algorithm to approach the target query 𝑞𝑇 step-by-step under an DL-Liteℋℱ−

core  ontol­
ogy. In Example 4.24 we can observe that the queries in a frontier of 𝑞 are usually 
much larger than 𝑞, and the proof of Lemma 4.27 indeed gives an upper bound 
on their size that is cubic in ‖𝑞‖. Thus, if the algorithm naively applies the frontier 
construction multiple times, it does approach the target query, but it produces 
larger and larger queries, and the algorithm cannot possibly run in polynomial 
time.

A related issue is the question of how often we need to apply the frontier 
construction to reach 𝑞𝑇. Already in the case without ontologies, there are in­
finite chains of generalizing queries. Consider the empty ontology and the ELIQs 
𝑞0(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) and 𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1). Then, there is an infinite sequence 
of ELIQs consisting of

𝑞𝑖(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥2, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥2𝑖, 𝑥2𝑖−1) ∧ 𝑟(𝑥2𝑖, 𝑥2𝑖+1) ∧ 𝐴(𝑥2𝑖+1)

for all 𝑖 ≥ 1, with 𝑞𝑖 ⊆∅ 𝑞𝑖+1, 𝑞𝑖+1 ⊈∅ 𝑞𝑖, and 𝑞𝑖 ⊆∅ 𝑞𝑇 for all 𝑖 ≥ 0. Additionally, it can 
be verified that 𝑞𝑖+1 must occur in the frontier of 𝑞𝑖 for all 𝑖 ≥ 0. The first steps of 
this sequence are displayed in Figure 4.8. This indicates that if we naively apply the 
frontier construction, we might end up following an infinite chain of ELIQs that 
increase in size, and never reach 𝑞𝑇.

A solution to this problem lies in the observation that while 𝑞1 is larger than 𝑞0, 
not all atoms of 𝑞1 are necessary for 𝑞1 ⊆∅ 𝑞𝑇 to hold. Indeed, if we remove all atoms 
that mention the variables 𝑥2 and 𝑥3 from 𝑞1, then 𝑞1 becomes (𝑞𝑇, 𝒪)-minimal and 
𝑞1 ≡∅ 𝑞𝑇. When a learning algorithm selects a new query 𝑝 from the frontier of the 
current hypothesis 𝑞, the algorithm, of course, cannot inspect 𝑞𝑇 to safely remove 
parts of 𝑝 to obtain (𝑞𝑇, 𝒪)-minimality. However, a learning algorithm can check 
if the removal of some atoms is safe by using membership queries to verify that 
𝑝 ⊆𝒪 𝑞𝑇 holds still.

For this, we define a subroutine minimize𝒪 that we will use as part of our learning 
algorithm. Again, we define the subroutine for all CQs, not just ELIQs and for 
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𝐴
𝑟

Figure 4.9: The unary rooted CQs 𝑞1, … , 𝑞6 form a generalization sequence towards 
𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) under 𝒪 = {∃𝑠 ⊑ 𝐴 ⊓ 𝐵, 𝑠 ⊑ 𝑟}.

multiple ontology languages, since we will reuse minimize𝒪 in later sections. Let 𝒪
be an ℰℒ𝑟, DL-Liteℱhorn or DL-Liteℋℱ−

core  ontology, and assume that membership queries 
are answered with regard to 𝒪 and a target CQ 𝑞𝑇. The subroutine minimize𝒪 takes 
as input a CQ 𝑞 that is satisfiable under 𝒪 such that 𝑞 ⊆𝒪 𝑞𝑇 and computes a (𝑞𝑇, 𝒪)-
minimal CQ 𝑞′ such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊆𝒪 𝑞𝑇. It does this by applying the following 
operation exhaustively:

Drop variable. Select an existential variable 𝑥 ∈ var(𝑞). Use a membership query to 
test whether 𝑞−𝒪𝑥 ⊆𝒪 𝑞𝑇. If yes, continue with 𝑞−𝒪𝑥 instead of 𝑞, otherwise 
continue with 𝑞.

Using Definition 4.18, it is easy to see that minimize𝒪 achieves (𝑞𝑇, 𝒪)-minimality.

Lemma 4.32. Let 𝑞 be a CQ with 𝑞 ⊆𝒪 𝑞𝑇 that is satisfiable under 𝒪. Then, minimize𝒪(𝑞)
terminates in time polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns a (𝑞𝑇, 𝒪)-minimal CQ 𝑞′
such that 𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇.

Note that Lemma 4.32 does not hold if 𝒪 is an ℰℒℐ or ℰℒℐℋℱ⊥ ontology, as then 
𝑞−𝒪𝑥 cannot be computed in polynomial time as deciding whether 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑦) for 
some concept name 𝐴 is ExpTime-complete.

Next, we show that applying minimize𝒪 to obtain (𝑞𝑇, 𝒪)-minimality of hypotheses 
is sufficient to guarantee that the learning algorithm reaches 𝑞𝑇 after a polynomial 
number of applications of the frontier construction, and that the involved queries 
stay bounded in size. First, we formalize the notion of approaching 𝑞𝑇 by general­
izing hypotheses.

Definition 4.33 (Generalization Sequence). Let 𝑞𝑇 be a CQ and 𝒪 an ontology. A 
sequence 𝑞1, 𝑞2, … of CQs is a generalization sequence towards 𝑞𝑇 under 𝒪 if for all 𝑖 ≥ 0, 
𝑞𝑖 ⊆𝒪 𝑞𝑖+1, 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, and 𝑞𝑖 ⊆𝒪 𝑞𝑇.

Example 4.34. Consider the queries 𝑞1, … , 𝑞6 displayed in Figure 4.9 and the ontol­
ogy

𝒪 = {∃𝑠.⊤ ⊑ 𝐴 ⊓ 𝐵, 𝑠 ⊑ 𝑟}.
The queries 𝑞1, … , 𝑞6 form a generalization sequence towards 𝑞𝑇 under 𝒪. Note that 
𝑞5 is not (𝑞𝑇, 𝒪)-minimal.
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Then, we are interested in generalization sequences that consist of (𝑞𝑇, 𝒪)-minimal 
CQs. If 𝑞𝑇 is rooted, then the length of such a sequence must be bounded by a 
polynomial. Again, we show this result in a very general way, for rooted CQs and 
for ℰℒℐℋℱ⊥ ontologies, which include all DL-Liteℋℱ−

core  ontologies, as we will also 
apply it in Chapter 5. Moreover, it is also interesting on its own that such a bound 
exists even for relatively expressive ℰℒℐℋℱ⊥ ontologies.

Theorem 4.35. Let 𝑞𝑇 be a rooted CQ and 𝒪 an ℰℒℐℋℱ⊥ ontology in normal form, and 
let 𝑞1, 𝑞2, … be a generalization sequence towards 𝑞𝑇 under 𝒪. If all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal 
and satisfiable under 𝒪, then the sequence has length at most |var(𝑞𝑇)|3 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).

 Proof. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology in normal form and 𝑞𝑇 a rooted CQ. Further, 
let 𝑞1(𝑥1), 𝑞2(𝑥2) … be a generalization sequence towards 𝑞𝑇(𝑥) under 𝒪 such that all 
𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal and satisfiable under 𝒪. We start by showing that all 𝑞𝑖 are 
rooted and have at most as many variables as 𝑞𝑇.

Claim 1. For all 𝑖 with 𝑖 ≥ 1, |var(𝑞𝑖)| ≤ |var(𝑞𝑇)| and 𝑞𝑖 is rooted.

 Proof of Claim 1. Since 𝑞𝑖 ⊆𝒪 𝑞𝑇, there is a homomorphism ℎ from 𝑞𝑇 to 𝒰𝑞𝑖,𝒪 with 
ℎ(𝑥) = 𝑥𝑖. Lemma 4.20 then implies that var(𝑞𝑖) ⊆ img(ℎ). Therefore, |var(𝑞𝑖)| ≤
|var(𝑞𝑇)|. Additionally, rootedness of 𝑞𝑖 follows from rootedness of 𝑞𝑇.

We show next that the queries 𝑞𝑖 have a non-decreasing number of role atoms. 
Since 𝑞𝑖−1 ⊆𝒪 𝑞𝑖, for all 𝑖 ≥ 2, we fix homomorphisms ℎ𝑖−1 from 𝑞𝑖 to 𝒰𝑞𝑖−1,𝒪 with 
ℎ𝑖−1(𝑥𝑖) = 𝑥𝑖−1.

Claim 2. For all 𝑖 ≥ 2, var(𝑞𝑖−1) ⊆ img(ℎ𝑖−1) and |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)|.

 Proof of Claim 2. Since var(𝑞𝑖−1) ⊆ img(ℎ𝑖−1) implies |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)|, it suffices 
to show the former. Assume to the contrary that there is an 𝑥 ∈ var(𝑞𝑖−1) with 
𝑥 ∉ img(ℎ𝑖−1).

Let 𝑞′𝑖−1 = 𝑞−𝒪𝑥𝑖−1  Then, by Lemma 4.19, ℎ𝑖−1 is also a homomorphism from 𝑞𝑖 to 
𝒰𝑞′𝑖−1 with ℎ𝑖−1(𝑥𝑖) = 𝑥𝑖−1. By Lemma 3.8, there is also a homomorphism ℎ from 
𝒰𝑞𝑖,𝒪 to 𝒰𝑞′𝑖−1 with 𝑔(𝑥𝑖) = 𝑥𝑖−1. Composing ℎ with a homomorphism 𝑔 from 𝑞𝑇 to 
𝒰𝑞𝑖,𝒪 with 𝑔(𝑥) = 𝑥𝑖 yields a homomorphism 𝑔′ from 𝑞𝑇 to 𝒰𝑞′𝑖−1,𝒪 with 𝑔′(𝑥) = 𝑥𝑖−1. 
Therefore, 𝑞′𝑖−1 = 𝑞−𝒪𝑥𝑖−1 ⊆𝒪 𝑞𝑇, contradicting (𝑞𝑇, 𝒪)-minimality of 𝑞𝑖−1.

This completes the proof of Claim 2.

Now, we use the two claims to show that the generalization sequence must 
be finite and that its length is bounded by |var(𝑞𝑇)|3 ⋅ (|sig(𝒪)| + |sig(𝑞1)|). Claim 2 
implies that |var(𝑞𝑖−1)| ≤ |var(𝑞𝑖)| for all 𝑖 ≥ 2. By Claim 1, it suffices to show that 
the length of any subsequence 𝑞𝑗, … , 𝑞𝑘 with |var(𝑞𝑗)| = ⋯ = |var(𝑞𝑘)| is bounded by 
|var(𝑞𝑇)|2 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).
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Consider any 𝑖 ∈ {𝑗, … , 𝑘 − 1}. By Claim 2, var(𝑞𝑖) ⊆ img(ℎ𝑖), and since |var(𝑞𝑖+1)| =
|var(𝑞𝑖)|, the homomorphism ℎ𝑖 is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖). Addition­
ally, it follows from ℎ𝑖 being a homomorphism that

1. for every concept name 𝐴 and variable 𝑥1 ∈ var(𝑞𝑖+1), 𝑥1 ∈ 𝐴𝒰𝑞𝑖+1,𝒪 implies that 
ℎ𝑖(𝑥1) ∈ 𝐴𝒰𝑞𝑖,𝒪, and

2. for every role name 𝑟 and variables 𝑥1, 𝑥2 ∈ var(𝑞𝑖+1), (𝑥1, 𝑥2) ∈ 𝑟𝒰𝑞𝑖+1,𝒪 implies 
that (ℎ𝑖(𝑥1), ℎ𝑖(𝑥2)) ∈ 𝐴𝒰𝑞𝑖,𝒪.

Since 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, the function ℎ−𝑖  cannot be a homomorphism from 𝑞𝑖 to 𝒰𝑞𝑖+1,𝒪. 
Therefore, one of the following cases must apply:

1. there is a concept atom 𝐴(𝑥1) ∈ 𝑞𝑖 such that ℎ−𝑖 (𝑥1) ∉ 𝐴𝒰𝑞𝑖+1,𝒪;

2. there is a role atom 𝑟(𝑥1, 𝑥2) ∈ 𝑞𝑖 such that (ℎ−𝑖 (𝑥1), ℎ−𝑖 (𝑥2)) ∉ 𝑟𝒰𝑞𝑖+1,𝒪.

Thus, going from 𝒰𝑞𝑖,𝒪 to 𝒰𝑞𝑖+1,𝒪, there must be a concept name 𝐴 such that the 
number of variables in the interpretation of 𝐴 strictly decreases, or a role name 𝑟
such that the number of pairs of variables in the interpretation of 𝑟 strictly decreases.

Let 𝑛𝑟 and 𝑛𝐴 be the numbers of role names and concept names in sig(𝒪) ∪
sig(𝑞1), respectively. Since 𝑞1 ⊆𝒪 𝑞𝑗, all concept and role names with non-empty 
interpretations in 𝒰𝑞𝑗,𝒪 must be in sig(𝒪) ∪ sig(𝑞1). Therefore, the number of times 
variables occur in interpretations of concept names or role names in 𝒰𝑞𝑗,𝒪 is bounded 
by

𝑛𝑟 ⋅ |var(𝑞𝑗)|2 + 𝑛𝐴 ⋅ |var(𝑞𝑗)|.

Since |var(𝑞𝑗)| ≤ |var(𝑞𝑇)| by Claim 1, the length of the sequence 𝑞𝑗, … , 𝑞𝑘 is thus 
bounded by

𝑛𝑟 ⋅ |var(𝑞𝑗)|2 + 𝑛𝐴 ⋅ |var(𝑞𝑗)| ≤ (𝑛𝑟 + 𝑛𝐴) ⋅ |var(𝑞𝑗)|2 ≤ (|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|2.

Theorem 4.35 is restricted to rooted CQs. This is not an issue in this chapter, as all 
ELIQs are rooted, but it is still an interesting question if this restriction is necessary. 
The following example shows that the theorem fails already for Boolean CQs that 
do not use any role names under ℰℒℐ ontologies.

Example 4.36. Let 𝑛 ≥ 1, let 𝐴𝑖, 𝐵𝑖 be concept names for 1 ≤ 𝑖 ≤ 𝑛 and 𝑟 a role name. 
Let 𝒪 be an ℰℒℐ ontology that contains the following concept inclusions, for all 𝑖
with 1 ≤ 𝑖 ≤ 𝑛 and for all 𝑗 with 1 ≤ 𝑗 < 𝑖:

𝐵𝑖 ⊑ ∃𝑟.⊤
∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐵𝑖) ⊑ 𝐴𝑖 ∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐴𝑖) ⊑ 𝐵𝑖

∃𝑟−.𝐵𝑖 ⊓ 𝐵𝑗 ⊑ 𝐵𝑖 ∃𝑟−.𝐴𝑖 ⊓ 𝐵𝑗 ⊑ 𝐴𝑖
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Each subset of {𝐴𝑖, 𝐵𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} that contains exactly one of 𝐴𝑖, 𝐵𝑖 for each 𝑖 repre­
sents a binary number between 0 and 2𝑛−1, starting at {𝐵1, … , 𝐵𝑛} for 0, {𝐴1, 𝐵2, … , 𝐵𝑛}
for 1, and so on. Consider the ABox 𝒜 = {𝐵1(𝑎), … , 𝐵𝑛(𝑎)}. In 𝒰𝒜,𝒪, there is an 𝑟-path 
starting at 𝑎 of length 2𝑛 − 1, where the elements are labeled from 0 to 2𝑛 − 1. For 
any given set 𝑀𝑖 that represents the number 𝑖, we construct the Boolean CQ

𝑞𝑖() ← �
𝐴∈𝑀𝑖

𝐴(𝑥).

Then, the concept inclusions in 𝒪 ensure that 𝑞𝑗 ⊆𝒪 𝑞𝑖 if and only if 𝑗 ≥ 𝑖. Therefore, 
the sequence 𝑞0, 𝑞1, … , 𝑞2𝑛−1 is a generalization sequence towards 𝑞2𝑛−1 under 𝒪 of 
length 2𝑛. Furthermore, all 𝑞𝑖 are (𝑞2𝑛−1, 𝒪)-minimal and ‖𝒪‖ + ‖𝑞2𝑛−1‖ is polynomial 
in 𝑛.

Note that the ontology used in Example 4.36 is an ℰℒℐ ontology. We will see in 
Chapter 5 that Theorem 4.35 can be generalized to queries that are not rooted, if we 
restrict the ontology to be formulated in ℰℒ𝑟.

4.5 Obtaining an Initial Hypothesis

We now know that a learning algorithm can construct a generalization sequence 
towards the target query 𝑞𝑇 under a DL-Liteℋℱ−

core  ontology by using the frontier 
construction and minimize𝒪, and that this is possible in polynomial time. What is 
missing, is a way to construct from the input signature Σ and ontology 𝒪 an initial 
query 𝑞1 of the generalization sequence The requirements we have for 𝑞1 are that it 
must imply the target query 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ under the ontology 𝒪, and that it is 
satisfiable under 𝒪. Additionally, it should be of size polynomial in ‖𝑞𝑇‖, ‖𝒪‖ and 
|Σ| for the learning algorithm to run in polynomial time.

If we approach this directly and construct an ELIQ 𝑞1 that guarantees that 𝑞1 ⊆𝒪 𝑞𝑇
for all 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ, we then require the full tree ELIQ of a certain depth, 
where every variable is labeled with all concept names, and every variable has 
a successor for every role in Σ. Unfortunately, such a full tree ELIQ must be of 
exponential size in ‖𝑞𝑇‖. Thus, we have to rely on membership queries to obtain a 
suitable ELIQ.

As a first step, we construct, given a DL-Liteℋℱ−
core  ontology 𝒪 and signature Σ, 

directly a unary rooted CQ 𝑞0𝐻 that is satisfiable under 𝒪 and implies any target 
query 𝑞𝑇 with sig(𝑞𝑇) ⊆ Σ. Then, as a second step, we will see how we can use 
membership queries to generalize this 𝑞0𝐻 into an ELIQ 𝑞1 such that 𝑞1 still implies 
the target query.
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Obtaining a Suitable Initial CQ

The construction of 𝑞0𝐻 is simple if the ontology 𝒪 contains no role disjointness 
constraints and no concept disjointness constraints. Simply set

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥, 𝑥).

If, however, 𝒪 contains role disjointness constraints, then the above construction 
yields a query that is not satisfiable under 𝒪. In that case (but still without concept 
disjointness constraints in 𝒪), we can still construct such a CQ, although it requires 
a bit more thought.

Let 𝐑 = {𝑟1, … , 𝑟𝑚} be the set of all role names 𝑟 ∈ Σ ∩ NR such that the concepts 
∃𝑟.⊤ and ∃𝑟−.⊤ are satisfiable under 𝒪. If, for example, 𝒪 contains 𝑟 ⊑ 𝑠 and 
𝑟 ⊓ 𝑠 ⊑ ⊥, then ∃𝑟.⊤ is not satisfiable under 𝒪 and the role name 𝑟 is not included 
in 𝐑.

To construct 𝑞0𝐻, we use variables 𝑥0, … , 𝑥2𝑚 and let 𝐾2𝑚+1 be the undirected 2𝑚 + 1-
clique graph that uses these variables as its vertices. It is known that for all odd 
𝑛 ≥ 1, the 𝑛-clique 𝐾𝑛 has at least 𝑛−12  Hamilton cycles that are pairwise edge-
disjoint [ABS90]. We thus find in 𝐾2𝑚+1 Hamilton cycles 𝑃1, … , 𝑃𝑚 that are pairwise 
edge-disjoint. By directing the cycles, we may view each 𝑃𝑖 as a set of directed edges 
(𝑥𝑖, 𝑥𝑗). We then construct

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC
0≤𝑖≤2𝑚

𝐴(𝑥𝑖) ∧ �
(𝑥𝑖,𝑥𝑗)∈𝑃1

𝑟1(𝑥𝑖, 𝑥𝑗) ∧ ⋯ ∧ �
(𝑥𝑖,𝑥𝑗)∈𝑃𝑚

𝑟𝑚(𝑥𝑖, 𝑥𝑗).

By construction, 𝑞0𝐻 has no multi-edges and thus satisfies all role disjointness con­
straints in 𝒪. Moreover, every variable has exactly one 𝑟-successor and exactly 
one 𝑟-predecessor for every role name 𝑟 ∈ 𝐑 and hence satisfies all functionality 
assertions in 𝒪. Additionally, 𝑞0𝐻 implies every possible target ELIQ 𝑞𝑇, as 𝑞𝑇 may 
only use role names from 𝐑.

Example 4.37. For 𝒪 = {𝑟 ⊓ 𝑠 ⊑ ⊥} and Σ = {𝑟, 𝑠}, the set 𝐑 is {𝑟, 𝑠}. The initial 
hypothesis that results from the construction is displayed in Figure 4.10, where 
the 5-clique is decomposed into two Hamilton cycles. Note how all role atoms are 
disjoint and functional.

If 𝒪 contains at least one concept disjointness constraint 𝐴 ⊓ 𝐵 ⊑ ⊥, then the 
above construction of 𝑞0𝐻 yields a query that is not satisfiable under 𝒪. Indeed, then 
there is no single satisfiable CQ that implies every possible 𝑞𝑇. We can, however, 
obtain a suitable 𝑞0𝐻 by using a single equivalence query. If 𝐴 ⊓ 𝐵 ⊑ ⊥ ∈ 𝒪, then 
the ELIQ 𝑞(𝑥0) ← 𝐴(𝑥0) ∧ 𝐵(𝑥0) is not satisfiable under 𝒪 and for every example 
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𝑞0𝐻
𝑠

𝑠

𝑠

𝑠

𝑠

𝑟

𝑟

𝑟

𝑟

𝑟

Figure 4.10: The query 𝑞0𝐻 for 𝐑 = {𝑟, 𝑠}. The 𝑠 Hamilton cycle is marked in blue, the 
𝑟 Hamilton cycle is marked in purple.

(𝒜, 𝑎), 𝒜, 𝒪 ⊧̸ 𝑞(𝑎). Hence, when the learning algorithm uses 𝑞 in an equivalence 
query, the teacher is forced to return a counterexample (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧
𝑞𝑇(𝑎). This counterexample can then be viewed as a CQ 𝑞0𝐻, and it holds that 
𝑞0𝐻 ⊆𝒪 𝑞𝑇 by Lemma 3.7. Note that although the size of 𝑞0𝐻 is then not bounded 
polynomially by ‖𝒪‖, ‖𝑞𝑇‖ and |Σ|, this way to obtain 𝑞0𝐻 also results in a polynomial 
time learning algorithm since the running time of learning algorithms may also 
depend polynomially on the size of the largest counterexample received.

We later show that this single equivalence query is necessary in this case, meaning 
that ELIQs are not polynomial time learnable under ontologies that contain concept 
disjointness constraints without using a single equivalence query.

Extracting an ELIQ

With a way to obtain a unary rooted CQ 𝑞0𝐻 that implies 𝑞𝑇 and is satisfiable under 
𝒪, it remains to show that we can extract from it an ELIQ with the same properties. 
For this, we need to make 𝑞0𝐻 acyclic, that is, remove all cycles in 𝑞0𝐻. A cycle in a CQ 
𝑞 is a sequence 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) of distinct role atoms in 𝑞 such that 𝑥1, … 𝑥𝑛
are distinct. Using the definition of acyclicity, it is easy to verify that a CQ is acyclic 
(defined through the underlying graph of 𝒜𝑞) if and only if it contains no cycles.

For removing all cycles from 𝑞0𝐻 while maintaining 𝑞0𝐻 ⊆𝒪 𝑞𝑇, we define a new 
subroutine called extractELIQ that we use as part of our learning algorithm. It takes 
as input the ontology 𝒪 and a unary CQ 𝑞(𝑥0) that is satisfiable under 𝒪, and 
satisfies 𝑞 ⊆𝒪 𝑞𝑇. It then computes an ELIQ 𝑞′, such that 𝑞 ⊆𝒪 𝑞′ and 𝑞′ ⊆𝒪 𝑞𝑇 by 
repeatedly doubling the length of cycles in 𝑞 and then using minimize𝒪 to attain 
(𝑞𝑇, 𝒪)-minimality. A procedure similar to extractELIQ is used in [tCD22] to obtain 
acyclic queries in the case without ontologies. Here, role inclusions need to be taken 
into account.
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Figure 4.11:  The CQ 𝑝1 contains the cycle 𝑟(𝑥0, 𝑥1), 𝑠(𝑥1, 𝑥2), 𝑡(𝑥2, 𝑥0) which is re­
moved by Double cycle (𝑝2), since the cycle is not necessary for 𝑞𝑇.

The subroutine extractELIQ starts by setting 𝑝 = minimize𝒪(𝑞) and then returns the 
result of exhaustively applying the following operations:

Double cycle. Choose a role atom 𝑟(𝑥, 𝑦) ∈ 𝑝 that is part of a cycle and such that there 
is no 𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑠 ⊑ 𝑟 and 𝑟 ≠ 𝑠. Then, add a disjoint copy 𝑝′ of 𝑝 to 𝑝
and let 𝑥′, 𝑦′ be the copies of 𝑥, 𝑦 in 𝑝′. Remove the atoms 𝑟(𝑥, 𝑦), 𝑟(𝑥′, 𝑦′) and 
add the atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦). Apply minimize𝒪 to the result.

Drop double edge. Choose a role atom 𝑟(𝑥, 𝑦) ∈ 𝑝 such that there is a role atom 
𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑟 ≡ 𝑠 and 𝑠 ≠ 𝑟 and remove 𝑟(𝑥, 𝑦).

Example 4.38. Consider the CQs 𝑝1, 𝑝2, 𝑞𝑇 displayed in Figure 4.11 and 𝒪 = ∅. It 
holds that 𝑝1 ⊆𝒪 𝑞𝑇, but 𝑝1 is not acyclic. Applying Double cycle to 𝑝1 first results 
in the CQ 𝑝2 with 𝑝2 ⊆𝒪 𝑞𝑇. Then, minimize𝒪 is applied to 𝑝2, which in this case, 
removes the remaining cycles.

It remains to show that extractELIQ always results in an ELIQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇, and 
that it only applies a polynomial number of operations before terminating. For 
this, we will view the intermediate steps between applications of Double cycle as 
a sequence of queries 𝑝0, 𝑝1, … and show that they form a generalization sequence 
towards 𝑞𝑇 under 𝒪. Since all 𝑝𝑖 are the result of applying minimize𝒪, they are all 
(𝑞𝑇, 𝒪)-minimal, and we can apply Theorem 4.35 to show that extractELIQ terminates 
after a polynomial number of steps. We show that 𝑝0, 𝑝1, … is a generalization 
sequence by relating 𝑝𝑖 to 𝑝𝑖+1 using ℰℒℐ simulations.

Definition 4.39 (ℰℒℐ simulation). An ℰℒℐ simulation from interpretation ℐ1 to 
interpretation ℐ2 is a relation 𝑆 ⊆ Δℐ1 × Δℐ2 such that for all (𝑑1, 𝑑2) ∈ 𝑆:

1. for all 𝐴 ∈ NC: if 𝑑1 ∈ 𝐴ℐ1, then 𝑑2 ∈ 𝐴ℐ2;

2. for all 𝑟 ∈ NR and 𝑅 ∈ {𝑟, 𝑟−}: if there is some 𝑑′1 ∈ Δℐ1 with (𝑑1, 𝑑′1) ∈ 𝑅ℐ1, then 
there is 𝑑′2 ∈ Δℐ2 such that (𝑑′1, 𝑑′2) ∈ 𝑆 and (𝑑2, 𝑑′2) ∈ 𝑅ℐ2.

89



4 Learning with Membership Queries

If there is an ℰℒℐ simulation 𝑆 from an interpretation ℐ1 to an interpretation 
ℐ2 with (𝑑1, 𝑑2) ∈ 𝑆, we write ℐ1, 𝑑1 ⪯ℰℒℐ ℐ2, 𝑑2. As usual, as we can view ABoxes 
as finite interpretations, we also define this notation for ABoxes. The important 
property that connects ℰℒℐ simulations to ELIQs is given in the following lemma, 
the proof is standard and omitted.

Lemma 4.40. Let 𝒪 be an ℰℒℐℋℱ⊥ ontology, 𝒜1, 𝒜2 ABoxes such that 𝒜1 and 𝒜2 are 
satisfiable under 𝒪. If 𝒜1, 𝑎1 ⪯ℰℒℐ 𝒜2, 𝑎2, then for all ELIQs 𝑞, 𝒜1, 𝒪 ⊧ 𝑞(𝑎1) implies 
𝒜2, 𝒪 ⊧ 𝑞(𝑎2).

Note that Lemma 4.40 does not hold for all CQs in place of just ELIQs. Consider 
the ABoxes 𝒜1 = {𝑟(𝑎, 𝑎)} and 𝒜2 = {𝑟(𝑏1, 𝑏2), 𝑟(𝑏2, 𝑏1)}, the CQ 𝑞(𝑥) ← 𝑟(𝑥, 𝑥) and 
𝒪 = ∅. Then 𝒜1, 𝒪 ⊧ 𝑞(𝑎) and 𝒜2, 𝒪 ⊧̸ 𝑞(𝑏1), but 𝒜1, 𝑎 ⪯ℰℒℐ 𝒜2, 𝑏1 as witnessed by 
the ℰℒℐ simulation 𝑆 = {(𝑎, 𝑏1), (𝑎, 𝑏2)}.

Lemma 4.41. Let 𝒪 be a DL-Liteℋℱ−
core  or DL-Liteℱhorn ontology, 𝑞𝑇 an ELIQ and 𝑞 a unary 

CQ with 𝑞 ⊆𝒪 𝑞𝑇 that is satisfiable under 𝒪. Then, extractELIQ(𝒪, 𝑞) runs in time poly­
nomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns an ELIQ 𝑞′ that is (𝑞𝑇, 𝒪)-minimal and satisfies 
𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇.

 Proof. We first proof that the sequence 𝑝0, 𝑝1, … is a generalization sequence towards 
𝑞𝑇 under 𝒪, and then apply Theorem 4.35 to show that this sequence must terminate 
after a polynomial number of steps. Additionally, if this sequence terminates, then 
both Double cycle and Drop double edge are no longer applicable, and the result must 
be an ELIQ.

First, note that Double cycle preserves satisfiability under 𝒪. Since the input 
𝑞 to extractELIQ is assumed to be satisfiable under 𝒪, all 𝑝𝑖 are satisfiable under 
𝒪 as well, and we can use the characterization of query containment in terms 
of homomorphisms to the universal model provided in Lemma 3.7. We do this 
without further notice below.

We start by showing 𝑝𝑖 ⊆𝒪 𝑝𝑖+1 for all 𝑖 ≥ 0. Let 𝑝′𝑖  be the result of applying 
Double cycle to 𝑝𝑖 before using minimize𝒪. Then 𝑝𝑖+1 = minimize𝒪(𝑝′𝑖 ). It suffices to 
show 𝑝𝑖 ⊆𝒪 𝑝′𝑖 . To achieve this, in turn, it is enough to point out that we obtain a 
homomorphism ℎ𝑖 from 𝑝′𝑖  to 𝑝𝑖 with ℎ𝑖(𝑥0) = 𝑥0 by setting ℎ𝑖(𝑥) = 𝑥 for all 𝑥 ∈ var(𝑝𝑖)
and ℎ𝑖(𝑥′) = 𝑥 for all variables 𝑥′ in the disjoint copy of 𝑝𝑖 that is added in Double 
Cycle. We shall reuse ℎ𝑖 below and call it the natural homomorphism from 𝑝′𝑖  to 𝑝𝑖.

Next, we show that 𝑝𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 0 by induction on 𝑖. In the induction 
start, 𝑝0 = minimize𝒪(𝑝), where 𝑝 is the input to extractELIQ. Since 𝑝 ⊆𝒪 𝑞𝑇, applying 
Lemma 4.32 yields 𝑝0 ⊆𝒪 𝑞𝑇. Now assume that 𝑝𝑖 ⊆𝒪 𝑞𝑇 and thus 𝒜𝑝𝑖, 𝒪 ⊧ 𝑞𝑇(𝑥0). 
Let again 𝑝′𝑖  be the result of applying Double cycle to 𝑝𝑖 before using minimize𝒪. Again 
it suffices to show 𝑝′𝑖 ⊆𝒪 𝑞𝑇. Define the relation

𝑆 = {(ℎ𝑖(𝑥), 𝑥) ∣ 𝑥 ∈ var(𝑝′𝑖 )}
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where ℎ𝑖 is the natural homomorphism from 𝑝′𝑖  to 𝑝𝑖. By construction of 𝑝′𝑖 , 𝑆 is 
an ℰℒℐ simulation from 𝒜𝑝𝑖 to 𝒜𝑝′𝑖  with (𝑥0, 𝑥0) ∈ 𝑆. Thus, 𝒜𝑝′𝑖 , 𝒪 ⊧ 𝑞𝑇(𝑥0) by 
Lemma 4.40, and 𝑝′𝑖 ⊆𝒪 𝑞𝑇 follows as required.

It remains to show that 𝑝𝑖+1 ⊈𝒪 𝑝𝑖 for all 𝑖 ≥ 0. Similarly to what was done above, 
it suffices to show that 𝑝′𝑖 ⊈𝒪 𝑝𝑖 where 𝑝′𝑖  is the result of applying Double cycle to 𝑝𝑖. 
Assume to the contrary that 𝑝′𝑖 ⊆𝒪 𝑝𝑖 for some 𝑖. Then, there is a homomorphism 
𝑔 from 𝑝𝑖 to 𝒰𝑝′𝑖 ,𝒪 with 𝑔(𝑥0) = 𝑥0. Composing 𝑔 with the extension ℎ+𝑖  of the 
natural homomorphism ℎ𝑖 to a homomorphism from 𝒰𝑝′𝑖 ,𝒪 to 𝒰𝑝𝑖,𝒪, which exists 
by Lemma 3.8 yields a homomorphism �𝑔 from 𝑝𝑖 to 𝒰𝑝𝑖,𝒪 with �𝑔(𝑥0) = 𝑥0.

Let 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1) be the cycle that was expanded in the construction of 
𝑝′𝑖  and consider the set Γ of all sets of variables that form a cycle of length 𝑛 in 𝒰𝑝𝑖,𝒪. 
For example, {𝑦1, … , 𝑦𝑛} ∈ Γ.

Let {𝑥1, … , 𝑥𝑛} be any element of Γ. We show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ. If for some 
𝑥𝑖, �𝑔(𝑥𝑖) is a proper trace, then Lemma 4.21 implies that 𝑝𝑖 is not (𝑞𝑇, 𝒪)-minimal, a 
contradiction. Since �𝑔 is a homomorphism, it thus suffices to show that �𝑔(𝑥1), … , �𝑔(𝑥𝑛)
are all pairwise different. Assume the contrary. Then there are 𝑥𝑗 and 𝑥𝑘 with 𝑥𝑗 ≠ 𝑥𝑘
and �𝑔(𝑥𝑗) = �𝑔(𝑥𝑘), implying that �𝑔 is not injective. This, in turn, implies that there 
is an 𝑥 ∈ var(𝑝𝑖) with 𝑥 ∉ img(�𝑔). It then follows from Lemma 4.21 that 𝑝𝑖 is not 
(𝑞𝑇, 𝒪)-minimal, a contradiction.

Therefore, we can define a function 𝑓∶ Γ → Γ by setting for all {𝑥1, … , 𝑥𝑛} ∈ Γ

𝑓({𝑥1, … , 𝑥𝑛}) = {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)}.

Assume that there are sets 𝛾, 𝛾′ ∈ Γ with 𝛾 ≠ 𝛾′ and 𝑓(𝛾) = 𝑓(𝛾′). Since 𝛾 ≠ 𝛾′

and |𝛾| = |𝛾′|, there must be a variable 𝑥 ∈ 𝛾 with 𝑥 ∉ 𝛾′. Since 𝑓(𝛾) = 𝑓(𝛾′), there 
is a variable 𝑥′ ∈ 𝛾′ with �𝑔(𝑥) = �𝑔(𝑥′), and clearly 𝑥′ ≠ 𝑥. This again contradicts 
(𝑞𝑇, 𝒪)-minimality of 𝑝𝑖 via Lemma 4.21. Thus, 𝑓 is a bijection from Γ to Γ.

Since Γ is finite, it follows that there must be a 𝑗 ≥ 1 such that 𝑓𝑗({𝑦1, … , 𝑦𝑛}) =
{𝑦1, … , 𝑦𝑛}. By definition of 𝑓 this implies that {�𝑔𝑗(𝑦1), … , �𝑔𝑗(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. Recall 
that �𝑔 is the composition of the homomorphism 𝑔 from 𝑝𝑖 to 𝒰𝑝′𝑖 ,𝒪 and the homo­
morphism ℎ+𝑖  from 𝒰𝑝′𝑖 ,𝒪 to 𝒰𝑝𝑖,𝒪. Since (𝑞𝑇, 𝒪)-minimality of 𝑝𝑖 implies that �𝑔 is 
injective by Lemma 4.21, 𝑔 must also be injective. Thus, composing �𝑔𝑗−1 and 𝑔 yields 
an injective homomorphism 𝑔′ that maps the cycle {𝑦1, … , 𝑦𝑛} in 𝑝𝑖 to some subset 
of the expanded cycle {𝑦1, 𝑦′1, … , 𝑦𝑛, 𝑦′𝑛} in 𝒰𝑝′𝑖 ,𝒪. We distinguish cases.

First, consider the case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. By the construction 
of 𝑝′𝑖  from 𝑝𝑖, the restriction of 𝒰𝑝′𝑖 ,𝒪 to {𝑦1, … , 𝑦𝑛} contains one less role than the 
restriction of 𝒰𝑝𝑖,𝒪 to {𝑦1, … , 𝑦𝑛}, implying that 𝑔′ cannot be an injective homomor­
phism, leading to a contradiction. The case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦′1, … , 𝑦′𝑛} is 
analogous.

The remaining case is that {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} contains both variables of the form 𝑦𝑗
and 𝑦′𝑗 . Then, there must be two different atoms in the cycle 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1)
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Algorithm 4.1: Learning algorithm for ELIQs under DL-Liteℋℱ−
core  ontologies

Input A signature Σ and a DL-Liteℋℱ−
core  ontology 𝒪 in normal form

Output An ELIQ 𝑞𝐻 such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞0𝐻)
while there is a 𝑞𝐹 ∈ 𝐹𝑞𝐻 with 𝑞𝐹 ⊆𝒪 𝑞𝑇 do
 𝑞𝐻 ≔ minimize𝒪(𝑞𝐹)
end while
return 𝑞𝐻

that are mapped by 𝑔′ to the role atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦) that were added by Double 
cycle to connect the disjoint copy of 𝑝𝑖. However, since ℎ𝑖(𝑥′) = ℎ𝑖(𝑥) and ℎ𝑖(𝑦′) = ℎ𝑖(𝑦), 
this implies that the composition of 𝑔′ and ℎ+𝑖  is a non-injective homomorphism 
from 𝑝𝑖 to 𝒰𝑝𝑖,𝒪, again contradicting (𝑞𝑇, 𝒪)-minimality of 𝑝𝑖.

The purpose of Drop double edge is to deal with cycles that cannot be handled 
by Double cycle due to the “ such that there is no 𝑠(𝑥, 𝑦) ∈ 𝑝 with 𝒪 ⊧ 𝑠 ⊑ 𝑟 and 
𝑟 ≠ 𝑠” condition, which, in turn, is necessary for Drop double edge to produce a 
generalization sequence. It follows directly from the definition of the operation that 
it can be applied at most ‖𝑝‖ times.

Note that the number of applications of Double cycle does not depend on the 
ontology language. However, the running time of extractELIQ depends on the 
ontology language, as it applies minimize𝒪. Per Lemma 4.32, minimize𝒪 runs in 
polynomial time if 𝒪 is an DL-Liteℋℱ−

core  or DL-Liteℱhorn ontology, but not if 𝒪 is an 
ℰℒℐ or ℰℒℐℋℱ⊥ ontology.

Therefore, we can use extractELIQ(𝒪, 𝑞0𝐻) in a learning algorithm to produce an 
initial hypothesis ELIQ to start the generalization sequence that approaches 𝑞𝑇.

4.6 The Learning Algorithm for ELIQs

In Sections 4.3 to 4.5 we obtained the necessary pieces for a learning algorithm of 
ELIQs under DL-Liteℋℱ−

core  ontologies. The resulting algorithm is Algorithm 4.1. It 
takes as input a signature Σ and an ontology in normal form, produces an initial CQ 
𝑞0𝐻 according to Section 4.5, and then uses extractELIQ, minimize𝒪 and the frontier 
construction to produce an ELIQ that is equivalent to 𝑞𝑇 under 𝒪.

In order to show that Algorithm 4.1 is indeed a polynomial time learning al­
gorithm, we use the facts that extractELIQ and minimize𝒪 run in polynomial time 
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(Lemma 4.32 and Lemma 4.41), and show that the assignments to 𝑞𝐻 form a gener­
alization sequence towards 𝑞𝑇 under 𝒪, which allows us then to apply Theorem 4.35.

Theorem 4.42. ELIQs are polynomial time learnable under DL-Liteℋℱ−
core  ontologies using 

only membership queries. If the ontology contains concept disjointness constraints, then 
this requires one additional equivalence query.

 Proof. We show that Algorithm 4.1 is a polynomial time learning algorithm for 
ELIQs under DL-Liteℋℱ−

core  ontologies in normal form.
Let Σ be a signature and 𝒪 a DL-Liteℋℱ−

core  ontology in normal form. Then an initial 
CQ 𝑞0𝐻 satisfiable under 𝒪 and such that 𝑞0𝐻 ⊆𝒪 𝑞𝑇 can be obtained from Σ and 𝒪 in 
polynomial time, as described in Section 4.5. Further, let 𝑞1, 𝑞2, … be the sequence of 
queries that is assigned to 𝑞𝐻 during a run of Algorithm 4.1. We aim to show that 
𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 1 by induction on 𝑖. Since 𝑞0𝐻 ⊆𝒪 𝑞𝑇, 
Lemma 4.41 implies that 𝑞1 ⊆𝒪 𝑞𝑇. Now, assume that 𝑞𝑖 ⊆𝒪 𝑞𝑇 and that there 
is a query 𝑞𝑖+1 in the sequence. Then there is a 𝑞′𝑖 ∈ 𝐹𝑞𝑖 such that 𝑞′𝑖 ⊆𝒪 𝑞𝑇 and 
𝑞𝑖+1 = minimize𝒪(𝑞′𝑖 ). Lemma 4.32 then implies 𝑞𝑖+1 ⊆𝒪 𝑞𝑇.

Then, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖 ≥ 1. Consider any 𝑖. Again, 
there is a 𝑞′𝑖 ∈ 𝐹𝑞𝑖 with 𝑞𝑖+1 = minimize𝒪(𝑞′𝑖 ). By Definition 4.13, 𝑞𝑖 ⊆𝒪 𝑞′𝑖  and 𝑞′𝑖 ⊈𝒪 𝑞𝑖. 
Lemma 4.32 then implies that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖.

Hence, 𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪. Since all 𝑞𝑖
are (𝑞𝑇, 𝒪)-minimal, Theorem 4.35 implies that the sequence has length at most 
|var(𝑞𝑇)|3⋅(|sig(𝒪)|+|sig(𝑞1)|). Thus, the sequence has a last element 𝑞𝑛, that is returned 
by Algorithm 4.1. The while loop condition implies that there is no 𝑞′𝑛 ∈ 𝐹𝑞𝑛 with 
𝑞′𝑛 ⊆𝒪 𝑞𝑇. Therefore, 𝑞𝑛 ≡𝒪 𝑞𝑇 by Definition 4.13.

As minimize𝒪 runs in polynomial time by Lemma 4.32, extractELIQ runs in poly­
nomial time by Lemma 4.41, and 𝐹𝑞𝐻 can be computed in polynomial time by 
Theorem 4.23, and the number of loop iterations is bounded by a polynomial, 
Algorithm 4.1 runs in polynomial time in ‖𝒪‖, |Σ| and ‖𝑞𝑇‖.

As mentioned in Section 4.5, the single equivalence query in the case of dis­
jointness constraints is really necessary. The following theorem shows that we 
cannot learn the simple class of conjunctions of atomic queries using only a polyno­
mial number of membership queries under disjointness constraints. A disjointness 
ontology is an ontology that contains only concept disjointness constraints.

Theorem 4.43. Conjunctions of atomic queries are not polynomial query learnable under 
disjointness ontologies using only membership queries.

 Proof. We follow the same strategy as the proof of Theorem 4.5. For every 𝑛 ≥ 1, let

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ ⊥ ∣ 1 ≤ 𝑖 ≤ 𝑛}
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and

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛}.

Note that 𝑆𝑛 is a frontier of ⊥ under 𝒪𝑛, if only conjunctions of atomic queries 
using the concept names 𝐴𝑖 and 𝐵𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 are considered for Condition 25. 
Clearly, 𝑆𝑛 contains 2𝑛 queries.

Assume to the contrary of what is to be shown that conjunctions of atomic 
queries are polynomial query learnable under disjointness ontologies using only 
membership queries. Then there exists a learning algorithm and polynomial 𝑝
such that the number of membership queries needed to identify a target query 
𝑞𝑇 is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇), where 𝑛Σ is the size of the signature Σ, 𝑛𝒪 is the 
size of the ontology and 𝑛𝑞𝑇 is the size of the target query. We choose 𝑛 such that 
2𝑛 > 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)), where 𝑟 is a polynomial such that every query 𝑞 ∈ 𝑆𝑚 satisfies 
‖𝑞‖ = 𝑟(𝑚).

Now, consider a membership query posed by the learning algorithm with the 
data example (𝒜, 𝑎). The teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for no 𝑞 ∈ 𝑆𝑛, then answer no;

2. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for a single 𝑞 ∈ 𝑆𝑛, then answer no and remove 𝑞 from 𝑆𝑛;

3. if 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎) for more than one 𝑞 ∈ 𝑆𝑛, then answer yes.

Note that the third response is consistent since 𝒜 must then contain 𝐴𝑖(𝑎) and 𝐵𝑖(𝑎)
for some 𝑖 and thus 𝒜 is not satisfiable under 𝒪𝑛. Moreover, the answers are always 
correct with respect to the updated set 𝑆𝑛. Thus, the learner cannot distinguish the 
remaining candidate queries by answers to queries posed so far.

It follows that the learning algorithm removes at most 𝑝(2𝑛, ‖𝒪𝑛‖, 𝑟(𝑛)) queries 
from 𝑆𝑛. By the choice of 𝑛, at least two candidate concepts remain in 𝑆𝑛 after the 
algorithm is finished. Thus, the learner cannot distinguish between them, and we 
have derived a contradiction.

4.7 Discussion

In this chapter, we investigated the learnability of ELIQs under ontologies using 
only membership queries. The results can be summarized as follows. ELIQs are

• not learnable under ontology languages that contain DL-Liteℱcore (Theorem 4.6);
5In fact, it can be shown similarly as in the proof of Theorem 4.28 that 𝑆𝑛 is contained in any frontier 

of ⊥ under 𝒪𝑛. Hence, ⊥ does not have polynomially sized frontiers under disjointness ontologies.
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• not polynomial query learnable under ontology languages that can express 
conjunctions such as DL-Litehorn or ℰℒ (Theorem 4.5);

• polynomial time learnable under DL-Liteℋℱ−
core  ontologies, using at most one ad­

ditional equivalence query (Theorem 4.42).

Recall that these results also apply to learning ℰℒℐ concepts using membership 
queries.

The learning algorithm for ELIQs under DL-Liteℋℱ−
core  ontologies is based on fron­

tiers of ELIQs. The existence of frontiers of ELIQs under DL-Liteℋℱ−
core  ontologies that 

can be computed in polynomial time is an interesting result on its own, and may 
have applications in other query engineering tasks. For showing that the learning 
algorithm runs in polynomial time, we used the notion of generalization sequences, 
and proved that generalization sequences of (𝑞𝑇, 𝒪)-minimal rooted queries are of 
at most polynomial length, even under ℰℒℐℋℱ⊥ ontologies. This too might be 
interesting for other query engineering tasks.

Next, we discuss some properties of Algorithm 4.1 and point to possible future 
directions.

What happens when 𝑞𝑇 is not an ELIQ? One of the basic assumptions of the 
learning algorithm is that 𝑞𝑇 is an ELIQ or rather that the membership queries are 
answered according to some ELIQ. This cannot always be guaranteed in practical 
scenarios. If we consider the scenario where 𝑞𝑇 is not an ELIQ but a rooted CQ, then 
there are two different behaviors of Algorithm 4.1. Recall that rooted CQs are not 
polynomial query learnable. If there is no ELIQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇 because 𝑞𝑇 con­
tains directed cycles, then Algorithm 4.1 gets stuck in extractELIQ. This can easily be 
detected, and the algorithm can abort. If there is such an ELIQ, then Algorithm 4.1 
produces the most general ELIQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇. This result can be useful, 
as it provides information about 𝑞𝑇. However, in the scenario where membership 
queries are not answered consistently with some CQ, it is not guaranteed that Algo­
rithm 4.1 produces any useful result. More research is necessary to develop learning 
algorithms that can cope with inconsistently answered membership queries.

The ℰℒ subsumption lattice. As we can view ELQs as ℰℒ concepts, we can view 
Algorithm 4.1 applied to an ELQ target query as a way to traverse the ℰℒ sub­
sumption lattice by using upwards neighbors (under the empty ontology). Kriegel 
observed that concepts of size 𝑛 have up to 𝑛-fold exponential distances in this 
lattice and identified this as an obstacle to ℰℒ learning algorithms [Kri21]. Algo­
rithm 4.1 avoids this obstacle by minimizing the current hypothesis using member­
ship queries. Indeed, Theorem 4.35 fails if the (𝑞𝑇, 𝒪)-minimality requirement is 
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dropped. Intuitively, we can view Algorithm 4.1 as working on the structure of ℰℒ
concepts of size at most ‖𝑞𝑇‖.

Concept membership queries. In some scenarios, it might make sense to restrict 
membership queries further. For example, one might be interested in learning 
ℰℒℐ concepts using membership queries that use concept examples and not data 
examples. In this setting, the target is an ℰℒℐ concept 𝐶𝑇 and a membership query 
is asked with an ℰℒℐ concept 𝐶 to which the teacher responds yes if 𝒪 ⊧ 𝐶 ⊑ 𝐶𝑇
and no otherwise. The basic principle of Algorithm 4.1 still works in this case, as 
the frontier construction and minimize𝒪 produce only ELIQs that we can view as 
ℰℒℐ concepts. However, extractELIQ needs to ask membership queries with cyclic 
data examples to obtain an initial hypothesis, and we conjecture that this cannot be 
avoided. Consider 𝒪 = ∅ and the set

𝑆𝑛 = {∃𝑟1. ⋯ ∃𝑟𝑛.⊤ ∣ 𝑟𝑖 ∈ {𝑟, 𝑠} for 1 ≤ 𝑖 ≤ 𝑛}.

A similar proof to the proof of Theorem 4.5 could show that an adversarial teacher 
can answer every membership query with concept 𝐶 with no, and only needs to 
remove ‖𝐶‖ concepts from 𝑆𝑛. Since there are 2𝑛 concepts in 𝑆𝑛, a learning algorithm 
cannot identify every concept in 𝑆𝑛 using membership queries of polynomial size.

Fixed ontologies. The lower bounds in Theorem 4.5 and Theorem 4.43 rely on 
ontologies and signatures that are chosen based on the learning algorithm. Since 
in practice ontologies are relatively small and seldom change, it may make sense 
to consider a modified version of polynomial time learning in which the ontology 
is fixed and the running time of a learning algorithm need not be polynomial in 
the size of the ontology. As Theorem 4.5 and Theorem 4.43 do not apply in this 
modified setting, determining the learnability of ELIQs in that setting is a possible 
direction to extend the work of this chapter.

Known size of 𝑞𝑇. The lower bound in Theorem 4.6 uses a fixed ontology, but the 
structure of the used queries is simple. If the size of the target query were known, 
a learning algorithm could quickly determine it. A possible future direction is to 
consider learnability of ELIQs under DL-Liteℱcore ontologies, where the size of the 
target query is known to the learning algorithm. We conjecture that the proof of 
Theorem 4.6 can be modified for this setting by using a binary-tree-like structure to 
show that polynomial query learnability remains impossible in this case.

Conjunction-free ℰℒ ontologies. A different possible extension is to consider 
restrictions of the DL ℰℒ that cannot use conjunctions, as this avoids the lower bound 
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of Theorem 4.28. It is an interesting question whether ELIQs have frontiers under 
these ontologies, and whether this enables polynomial time learning. However, it 
is questionable if such an ℰℒ fragment is found in practice. Note that it does not 
make sense to restrict ℰℒℐ to be conjunction-free, as a conjunction 𝐴1 ⊓ 𝐴2 ⊑ 𝐵 can 
be expressed as

𝐴1 ⊑ ∃𝑟𝐴1.⊤, ∃𝑟−𝐴1
.𝐴2 ⊑ 𝐴2, ∃𝑟−𝐴1

.𝐴2 ⊑ 𝐵,

without the use of explicit conjunction.

𝑐-acyclic queries. Ten Cate and Dalmau show that frontiers of a larger class of 
CQs, namely 𝑐-acyclic CQs, can be constructed in polynomial time under the empty 
ontology. The frontiers themselves consist of CQs that are not 𝑐-acyclic, but can be 
used as part of a learning algorithm by applying a procedure like extractELIQ. We 
conjecture that this result can be extended to the case with DL-Liteℋℱ−

core  ontologies, 
generalizing Theorem 4.23. If frontiers of 𝑐-acyclic CQs under DL-Liteℋℱ−

core  ontologies 
can be computed in polynomial time, this could be the basis for polynomial time 
learnability of 𝑐-acyclic CQs under DL-Liteℋℱ−

core  ontologies using only membership 
queries, which also includes queries with multiple answer variables.

In the next chapter, we consider learning algorithms that use both membership 
queries and equivalence queries.
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Chapter 5

Learning with Membership and 
Equivalence Queries

In Chapter 4, we have observed that learning with only membership queries has 
its limits. Under many extensions of DL-Liteℋℱ−

core  that contain ℰℒ or DL-Litehorn, 
every correct learning algorithm needs to ask at least an exponential number of 
membership queries to identify a target query in the worst case. In this chapter, we 
consider more powerful learning algorithms that are in addition to membership 
queries able to ask equivalence queries. We show that equivalence queries allow 
polynomial time learning of queries under ontologies in cases where membership 
queries alone do not suffice.

Recall that a learning algorithm for a query class 𝒬 that attempts to identify a 
target query 𝑞𝑇 ∈ 𝒬 under an ontology 𝒪 asks an equivalence query by handing 
a hypothesis query 𝑞𝐻 ∈ 𝒬 to the teacher. The teacher responds with yes if 𝑞𝐻 is 
equivalent to 𝑞𝑇 under 𝒪 and otherwise returns a counterexample, that is a data 
example (𝒜, 𝑎) such that 𝒜, 𝒪 ⊧ 𝑞𝐻(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑇(𝑎), or the other way around. 
As soon as the learner receives a yes as an answer to an equivalence query, it can 
terminate as it has identified the target query.

Example 5.1. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵} and the target query 𝑞𝑇(𝑥0) ←
𝑟(𝑥0, 𝑥1) ∧ 𝐵(𝑥1). If the learning algorithm asks an equivalence query with the 
hypothesis 𝑞𝐻(𝑥0) ← 𝐵(𝑥0), then the teacher could respond with the counterex­
ample (𝒜1, 𝑎) with 𝒜1 = {𝐴(𝑎)} since 𝒜1, 𝒪 ⊧ 𝑞𝐻(𝑎) and 𝒜1, 𝒪 ⊧̸ 𝑞𝑇(𝑎), or with 
the counterexample (𝒜2, 𝑎) with 𝒜2 = {𝑟(𝑎, 𝑏), 𝑟(𝑏, 𝑏), 𝐴(𝑏)} since 𝒜2, 𝒪 ⊧ 𝑞𝑇(𝑎) and 
𝒜2, 𝒪 ⊧̸ 𝑞𝐻(𝑎).

Equivalence queries allow learning algorithms to circumvent many of the obsta­
cles identified in Chapter 4.

Example 5.2. Consider, for some 𝑛 ≥ 1, the set

𝑆𝑛 = {𝑞(𝑥) ← 𝛼1(𝑥) ∧ … ∧ 𝛼𝑛(𝑥) ∣ 𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛},

and the ontology

𝒪𝑛 = {𝐴𝑖 ⊓ 𝐵𝑖 ⊑ 𝐴1 ⊓ 𝐵1 ⊓ ⋯ ⊓ 𝐴𝑛 ⊓ 𝐵′
𝑛 ∣ 1 ≤ 𝑖 ≤ 𝑛}.
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from the proof of Theorem 4.5. We have shown that every learning algorithm 
requires in the worst case 2𝑛 − 1 membership queries to identify a target query 
from the set 𝑆𝑛. However, a single equivalence query with the hypothesis 𝑞𝐻(𝑥0) ←
𝐴1(𝑥0) ∧ 𝐵1(𝑥0), forces the teacher to return a counterexample (𝒜, 𝑎) such that 
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for all 𝑞 ∈ 𝑆𝑛 with 𝑞 ≠ 𝑞𝑇. Hence, a target query 
𝑞𝑇 ∈ 𝑆𝑛 can be identified with a single equivalence query.

In this chapter, we consider polynomial learnability of queries under ℰℒ𝑟, ℰℒℐ, 
and DL-Liteℱ−horn ontologies, all of which extend DL-Litecore with conjunctions and 
hence make polynomial time learning of queries with only membership queries 
impossible.

To show learnability with both membership and equivalence queries, we use 
learning algorithms that follow a similar structure as the ones in Chapter 4. Be­
ginning at an initial hypothesis, they produce a sequence of queries that are more 
specific than the target query 𝑞𝑇 and approach 𝑞𝑇 step-by-step. The main differ­
ence lies in how this sequence is produced, as frontiers of polynomial size are not 
available under the ontology languages we consider in this chapter. Instead, the 
learning algorithms use the counterexamples provided by equivalence queries to 
update hypotheses.

Structure of This Chapter

We begin in Section 5.1 by discussing how counterexamples can be used in learning 
algorithms. While it is relatively easy to use counterexamples to update a hypoth­
esis in learning algorithms under the empty ontology, ontologies complicate the 
situation. This is because least general generalizations do not always exist under 
ontologies.

Then, in Section 5.2 we turn to learning under DL-Liteℱ−horn ontologies that in 
contrast to DL-Liteℱ−core ontologies allow the use of conjunctions in concept inclusions. 
We show that ELIQs are polynomial time learnable under DL-Liteℱ−horn ontologies 
using both membership queries and equivalence queries. For this, we introduce 
guided generalizations and combine them with results from Chapter 4 concerning 
minimization and generalization sequences.

In Section 5.3, we consider learning under ℰℒ𝑟, which extends DL-Litecore with 
conjunction and qualified existential restrictions, but restricts the use of inverse 
roles. We show that ELQs are polynomial time learnable under ℰℒ𝑟 ontologies using 
membership queries and equivalence queries, and extend this result to so-called 
symmetry-free ELIQs and chordal symmetry-free CQs of fixed arity. For this, we need 
to generalize our results regarding minimization and generalization sequences to 
CQs that are not rooted and have multiple answer variables, which brings some 
technical challenges.
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5.1 Updating Hypotheses with Counterexamples

Algorithm 5.1: Learning algorithm for CQs under the empty ontology [tCDK13]

Input A signature Σ
Output A 𝑘-ary CQ 𝑞𝐻 such that 𝑞𝐻 ≡∅ 𝑞𝑇
𝑞𝐻 ≔ initial-CQ(Σ, ∅)
while the equivalence query “𝑞𝐻 ≡∅ 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞𝐻(𝑥 ⊗ 𝑎) ≔ minimize∅(𝑞𝐻 × 𝒜)
end while
return 𝑞𝐻

We lift the restriction to queries of fixed arity in Section 5.4 by allowing learning 
algorithms to make CQ-equivalence queries, that is, equivalence queries where the 
hypothesis need not be a chordal symmetry-free CQ itself, but can be any CQ.

In Section 5.5, we look at ℰℒℐ ontologies, which extend both ℰℒ𝑟 and DL-Litehorn
by permitting qualified existential restrictions and unrestricted inverse roles. We 
show that already the class of ELQs is not polynomial query learnable under ℰℒℐ
ontologies using membership queries and equivalence queries.

We briefly look at the learnability of query classes with disjunction and review 
related results in Section 5.6.

Finally, we conclude in Section 5.7 with a discussion about these results and 
possible future directions.

Related Publications

Sections 5.1 and 5.2 are based on [FJL22a]. Sections 5.3 to 5.5 are based on [FJL21a], 
but resolve an issue in the definition of symmetry-free CQ.

5.1 Updating Hypotheses with Counterexamples

The main question regarding the use of equivalence queries in learning algorithms 
is how counterexamples can be used to update the current hypothesis to be closer 
to the target query. One possible way for this is shown in Algorithm 5.1, which 
is a learning algorithm for CQs under the empty ontology. It is a special case 
of the learning algorithm for GAV schema mappings by ten Cate, Dalmau, and 
Kolaitis [tCDK13]. Like Algorithm 4.1 from Chapter 4, this algorithm starts with 
an initial query 𝑞0𝐻 that implies 𝑞𝑇 and then generalizes it step-by-step until 𝑞𝐻 is 
equivalent to 𝑞𝑇. Since CQs in general do not possess frontiers of polynomial size, 
Algorithm 5.1 employs an equivalence query to obtain a counterexample from the 
teacher, with which it then updates 𝑞𝐻.
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As the algorithm maintains 𝑞𝐻 ⊆∅ 𝑞𝑇 at all times, there never exists a counterex­
ample (𝒜, 𝑎) such that 𝒜, ∅ ⊧̸ 𝑞𝑇(𝑎) and 𝒜, ∅ ⊧ 𝑞𝐻(𝑎). Instead, the teacher is always 
forced to return a counterexample (𝒜, 𝑎) such that 𝒜, ∅ ⊧ 𝑞𝑇(𝑎) and 𝒜, ∅ ⊧̸ 𝑞𝐻(𝑎). 
In each iteration of its loop, Algorithm 5.1 uses this counterexample to construct 
the direct product 𝑞𝐻 × (𝒜, 𝑎). To understand why this constitutes a suitable up­
date of the hypothesis, it is best to view (𝒜, 𝑎) as a CQ 𝑞𝒜(𝑎), and to consider the 
properties of products stated in Lemma 3.3 together with the characterization of 
query implication in Lemma 3.7.

The properties of the counterexample (𝒜, 𝑎) tell us that 𝑞𝒜 ⊆∅ 𝑞𝑇 and 𝑞𝒜 ⊈∅ 𝑞𝐻. 
It follows, if we view the product 𝑞𝐻 × 𝑞𝒜 as a query with answer variables 𝑥 ⊗ 𝑎, 
that 𝑞𝐻 × 𝑞𝒜 ⊆∅ 𝑞𝑇 and 𝑞𝐻 ⊆∅ 𝑞𝐻 × 𝑞𝒜. Additionally, it must be that 𝑞𝐻 × 𝑞𝒜 ⊈∅ 𝑞𝐻
since 𝑞𝒜 ⊆∅ 𝑞𝐻 × 𝑞𝒜. Hence, 𝑞𝐻 × 𝑞𝒜 is a generalization of 𝑞𝐻, and all assignments 
to 𝑞𝐻 during a run of Algorithm 5.1 form a generalization sequence towards 𝑞𝑇
under ∅. As in Algorithm 4.1, the subroutine minimize∅ assures (𝑞𝑇, ∅)-minimality 
of the queries in the sequence, which bounds the number of loop iterations. We 
later show that such a bound also applies to CQs that are not rooted.

In the absence of an ontology, the initial CQ 𝑞0𝐻 can easily be obtained. Given the 
signature Σ (and the required arity), the algorithm constructs

𝑞0𝐻(𝑥, … , 𝑥) ← �
𝐴∈Σ∩NC

𝐴(𝑥) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥, 𝑥).

By construction of 𝑞0𝐻, 𝑞0𝐻 ⊆∅ 𝑞 for all CQs 𝑞. Combining these arguments, one can 
show that Algorithm 5.1 learns CQs in polynomial time.

Proposition 5.3 ([tCDK13]). Fix an arity 𝑘 ≥ 0. The class of all 𝑘-ary CQs is polynomial 
time learnable under the empty ontology using membership queries and equivalence queries.

When we attempt to use Algorithm 5.1 for learning queries under non-empty 
ontologies, we run into two problems. The first problem is that if we learn ELIQs or 
ELQs, that the hypotheses used in equivalence queries must also be ELIQs or ELQs 
by definition of exact learning. This is not guaranteed by Algorithm 5.1, which uses 
CQs as hypotheses. Even when both 𝑞𝐻 and 𝑞𝒜 are ELIQs, their product need not 
be an ELIQ.

Example 5.4. Consider the ELIQs 𝑞 and 𝑝 in Figure 5.1. Their product 𝑞 × 𝑝 is not 
acyclic. This means that even if a counterexample is acyclic and hence corresponds 
to an ELIQ, the product 𝑞𝐻 × 𝑞𝒜 need not be an ELIQ.

Fortunately, this problem can easily be addressed by using a subroutine like 
extractELIQ defined in Section 4.5 to obtain a suitable ELIQ from 𝑞𝐻 × 𝑞𝒜 using 
membership queries. The second problem concerns the effects of ontologies. If the 
ontology 𝒪 is not empty, then it is not guaranteed that 𝑞𝐻 × 𝑞𝒜 ⊆𝒪 𝑞𝑇.
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𝑞

𝑥1𝐴1, 𝐴2

𝑥2𝐴3 𝑥3 𝐴4
𝑟

𝑟

𝑝

𝑦1𝐴1
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𝑟

𝑟

𝑞 × 𝑝

(𝑥1, 𝑦1)𝐴1
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(𝑥1, 𝑦3)𝐴2

(𝑥3, 𝑦2) 𝐴4
𝑟

𝑟
𝑟

𝑟

Figure 5.1: The ELIQs 𝑞 and 𝑝, as well as their direct product 𝑞 × 𝑝.

Example 5.5. Consider the ontology 𝒪 = {𝐴1 ⊑ 𝐵, 𝐴2 ⊑ 𝐵} as well as the queries 
𝑞𝐻(𝑥0) ← 𝐴1(𝑥0), 𝑞𝒜(𝑥0) ← 𝐴2(𝑥0), and 𝑞𝑇(𝑥0) ← 𝐵(𝑥0). Then, 𝑞𝐻 ⊆𝒪 𝑞𝑇 and 𝑞𝒜 ⊆𝒪 𝑞𝑇
but 𝑞𝐻 × 𝑞𝒜 does not contain any atoms and therefore 𝑞𝐻 × 𝑞𝒜 ⊈𝒪 𝑞𝑇.

Hence, using the direct product to update hypotheses under ontologies does not 
result in a generalization sequence. We need an alternative way to update a hypoth­
esis with a counterexample that takes the ontology into account. One approach to 
formalize this is to view the product 𝑞𝐻 × 𝑞𝒜 as a least general generalization of both 
𝑞𝐻 and 𝑞𝒜, and to consider this notion under ontologies.

Definition 5.6 (Least general generalization). Let 𝒬 be a query class, 𝒪 an ontology 
and 𝑝, 𝑞 CQs of matching arity. A CQ �𝑞 is a 𝒬 least general generalization (𝒬-LGG) of 
𝑝 and 𝑞 under 𝒪 if

1. 𝑞 ⊆𝒪 �𝑞;

2. 𝑝 ⊆𝒪 �𝑞;

3. �𝑞 ⊆𝒪 𝑞′, for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′.

Note the similarity of Definition 5.6 to least common subsumers of concepts, if 𝒬 is 
a class of queries that corresponds to DL concepts, like the class of all ELQs. The 
existence and computation of LCSs of ELQs under ontologies is well investigated, 
see for example [BST07; TZ13], and [JLW20]. The difference between Definition 5.6 
and the LCS of two concepts is the requirement of the LCS to be from the same 
query class 𝒬. The LCS of two ℰℒ concepts must be an ℰℒ concept, but this is not 
the case for the ELQ-LGG. This means that LGGs may exist in situations where 
LCSs do not.

Also note that if 𝒪 = ∅, then a way to obtain a CQ least general generalization of 
two CQs is computing their direct product, as expected. If there is a way to compute 
CQ-LGGs under non-empty ontologies in polynomial time, then we could plug 
this into Algorithm 5.1 to obtain a learning algorithm for CQs under ontologies. 
However, as we see next, often it is not clear how such LGGs can be obtained.
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𝑝

𝐴
𝑟 𝑟

𝑠 𝑠

𝑞

𝐴
𝑟

𝒰𝑞,𝒪 × 𝒰𝑝,𝒪

𝐴

⋮ ⋮

𝑟 𝑟

𝑠 𝑠𝑟 𝑟

𝑠 𝑠𝑟 𝑟

𝑞3,3

𝐴
𝑟 𝑟

𝑟 𝑟

𝑠 𝑠

Figure 5.2: The queries 𝑝 and 𝑞 from Example 5.8 as well as the product of their 
universal models and the query 𝑞3,3.

Let 𝒪 be an ontology and 𝑞(𝑥1), 𝑝(𝑥2), 𝑞′(𝑥0) CQs that are satisfiable under 𝒪
Recall that, by Lemma 3.5 and Lemma 3.7, 𝑞 ⊆𝒪 𝑞′ if and only if 𝑞′(𝑥0) → 𝒰𝑞,𝒪, 𝑥1. 
It follows then from Lemma 3.3 that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′ if and only if 𝑞′(𝑥0) →
𝒰𝑞,𝒪 × 𝒰𝑝,𝒪, 𝑥1 ⊗ 𝑥2. A natural choice for a least general generalization of 𝑞 and 𝑝
under 𝒪 would therefore be 𝒰𝑞,𝒪×𝒰𝑝,𝒪 viewed as a query. Unfortunately, universal 
models are infinite in many cases, and therefore we cannot represent 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪
as a finite CQ, let alone as a CQ of polynomial size.

Example 5.7. Consider the ℰℒ𝑟 ontology

𝒪 = {𝐴 ≡ ∃𝑟.𝐴, 𝐴 ≡ ∃𝑠.𝐴, 𝐵 ≡ ∃𝑟.𝐵, 𝐵 ≡ ∃𝑠.𝐵}

and the CQs 𝑞(𝑥) ← 𝐴(𝑥) and 𝑝(𝑥) ← 𝐵(𝑥). The universal models 𝒰𝑞,𝒪 and 𝒰𝑝,𝒪 are 
both infinite binary trees, the former labeled with 𝐴, the latter with 𝐵. Their direct 
product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 is an infinite tree that is not labeled with any concept name

Now suppose that 𝑞̂ is a finite ELIQ-LGG of 𝑞 and 𝑝 under 𝒪. As 𝑞 ⊆𝒪 𝑞̂ and 𝑝 ⊆𝒪 𝑞̂, 
𝑞̂ can only use the role names 𝑟 and 𝑠. Consider all ELIQs 𝑞′ that are 𝑟 − 𝑠-paths. It 
holds that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′, and therefore it must be the case that 𝑞̂ ⊆𝒪 𝑞′. Since 
this holds for an infinite number of 𝑟 − 𝑠-paths and 𝑞̂ is finite, it follows that 𝑞̂ must 
contain cycles, contradicting that 𝑞 ⊆𝒪 𝑞̂.

Hence, no finite ELIQ-LGG of 𝑞 and 𝑝 under 𝒪 exists, and therefore also no finite 
CQ-LGG.

Even if we know the size of the target query and are only interested in LGGs for 
queries of at most this size, then Example 5.7 suggests that any suitable LGG must 
be of exponential size, as there are an exponential number of different 𝑟 − 𝑠-paths 
that need to be considered. Similar issues can also occur if we avoid qualified 
existential restrictions, and consider only DL-Litecore ontologies.
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Example 5.8. Let 𝒪 = {∃𝑟−.⊤ ⊑ ∃𝑟.⊤, ∃𝑟−.⊤ ⊑ ∃𝑠.⊤} and consider the unary CQs

𝑝(𝑥) ← 𝑟(𝑥, 𝑥) ∧ 𝑠(𝑥, 𝑦) ∧ 𝑠(𝑧, 𝑦) ∧ 𝑟(𝑧, 𝑧) ∧ 𝐴(𝑧)  and 𝑞(𝑥) ← 𝐴(𝑥) ∧ 𝑟(𝑥, 𝑦).

We argue that no finite ELIQ-LGG of 𝑝 and 𝑞 under 𝒪 exists. Assume that there is a 
CQ �𝑞(𝑥) that is an ELIQ-LGG of 𝑝 and 𝑞, and consider for all 𝑛, 𝑚 ≥ 1, the ELIQs

𝑞𝑛,𝑚(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑠(𝑥𝑛, 𝑧) ∧
𝐴(𝑦1) ∧ 𝑟(𝑦1, 𝑦2) ∧ ⋯ ∧ 𝑟(𝑦𝑚−1, 𝑦𝑚) ∧ 𝑠(𝑦𝑚, 𝑧).

The queries 𝑝, 𝑞 and 𝑞3,3 are depicted in Figure 5.2. Analyzing 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪, it can be 
verified that 𝑝 ⊆𝒪 𝑞𝑛,𝑚 and 𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only if 𝑛 = 𝑚, thus �𝑞 ⊆𝒪 𝑞𝑛,𝑚 if and only 
if 𝑛 = 𝑚. For all 𝑖 ≥ 1, let ℎ𝑖 be a homomorphism from 𝑞𝑖,𝑖 to 𝒰�𝑞,𝒪 that witnesses 
this. We distinguish cases.

• If there is an 𝑖 ≥ 1, such that ℎ𝑖 maps two variables 𝑥𝑘, 𝑥𝑘′ ∈ var(𝑞𝑖,𝑖) with 𝑘 ≠ 𝑘′
to the same element of 𝒰�𝑞,𝒪, then a pumping argument shows that �𝑞 ⊆𝒪 𝑞𝑗,𝑖
for some 𝑗 > 𝑖, a contradiction.

• Otherwise, by finiteness of �𝑞, there must be an 𝑖 ≥ 1 such that ℎ𝑖(𝑧) is an 
element of 𝒰�𝑞,𝒪 that was generated by an existential quantifier, a proper trace. 
Since the concept name 𝐴 cannot occur on proper traces in 𝒰�𝑞,𝒪, and 𝑞𝑖,𝑖 is 
connected, the ℎ𝑖-homomorphic image of 𝑞𝑖,𝑖 must leave the proper traces of 
𝒰�𝑞,𝒪 again. Since the proper traces are tree-shaped, the image must enter 
and leave the proper traces at the same element of 𝒰�𝑞,𝒪. Therefore, there are 
𝑛′, 𝑚′ ≥ 0 such that �𝑞 ⊆𝒪 𝑞′ where

𝑞′(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛′−1, 𝑧) ∧
𝐴(𝑦1) ∧ 𝑟(𝑦1, 𝑦2) ∧ ⋯ ∧ 𝑟(𝑦𝑚′−1, 𝑧).

But 𝑝 ⊈𝒪 𝑞′, contradicting that �𝑞 is an ELIQ-LGG of 𝑞 and 𝑝 under 𝒪.

Example 5.7 and Example 5.8 leave little hope that we can use LGGs to update a 
ELIQ or CQ hypothesis with a counterexample under ontologies in polynomial time. 
In the following Section 5.2 and Section 5.3, we circumvent this in two different 
ways. In Section 5.2 we notice that we still obtain a generalization sequence towards 
𝑞𝑇 if we relax Point 3 of the definition of LGGs. For this, we define the notion of 
guided generalization and show that guided ELIQ-generalizations of ELIQs under 
DL-Liteℱ−horn ontologies exist and can be constructed in polynomial time. This enables 
polynomial time learning of ELIQs under DL-Liteℱ−horn ontologies. In Section 5.3 we 
instead focus on combinations of query class and ontology languages, for which 
we can replace the infinite 𝒰𝑞𝐻,𝒪 × 𝒰𝑞𝒜,𝒪 with a product of polynomially sized 
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compact models. The motivating example are ELQs under ℰℒ𝑟 ontologies, for which 
the existence of such compact models is well known. We extend this to classes of 
ELIQs and CQs that exclude the problematic ELIQs used in Example 5.8. We show 
that these query classes are polynomial time learnable under ℰℒ𝑟 ontologies.

5.2 Learning ELIQs under DL-Litehorn Ontologies

In Section 5.1 we have observed that finite ELIQ-LGGs of two CQs under DL-Litecore
ontologies do not always exist. This means that in a learning algorithm for ELIQs 
we cannot use a product-like LGG construction to update an ELIQ hypothesis 𝑞𝐻
with an equivalence query counterexample 𝑞𝒜. However, if we recall the proof 
of Theorem 4.42, where we show that the hypotheses of Algorithm 4.1 form a 
generalization sequence towards the target query 𝑞𝑇, we see that for the updated 
hypothesis 𝑞′𝐻 with 𝑞𝐻 ⊆𝒪 𝑞′𝐻 ⊆𝒪 𝑞𝑇, it is actually not necessary to demand that 
𝑞𝒜 ⊆𝒪 𝑞′𝐻, it suffices to ensure that 𝑞′𝐻 ⊈𝒪 𝑞𝐻. We capture this relaxed requirement 
in the following definition.

Definition 5.9 (Guided generalization). Let 𝒪 be an ontology and 𝒬 a query class, 
and 𝑝, 𝑞 be CQs with 𝑝 ⊈𝒪 𝑞. A CQ �𝑞 is a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪 if

1. 𝑞 ⊆𝒪 �𝑞;

2. �𝑞 ⊈𝒪 𝑞;

3. �𝑞 ⊆𝒪 𝑞′, for every 𝑞′ ∈ 𝒬 with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′.

Note that assuming 𝑝 ⊈𝒪 𝑞, every least general generalization of 𝑝 and 𝑞 under 𝒪
is also a 𝑝-guided 𝒬-generalization of 𝑞 under 𝒪. The opposite is not true. Guided 
generalizations exist even when LGGs do not.

Example 5.10. Consider again the queries 𝑝 and 𝑞 and the ontology 𝒪 from Exam­
ple 5.8 that are depicted in Figure 5.2, and recall that there is no CQ-LGG of 𝑝 and 
𝑞 under 𝒪. In contrast, the ELIQ

�𝑞(𝑥) ← 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑥′, 𝑦) ∧ 𝐴(𝑥′)

is a 𝑝-guided CQ-generalization of 𝑞 under 𝒪. This query also demonstrates that 
guided generalizations are an asymmetric notion, as �𝑞 is not a 𝑞-guided CQ-gener­
alization of 𝑝 under 𝒪, since it does not satisfy Condition 1 of Definition 5.9.

Another consequence of this relaxation is that guided generalizations are not 
unique, while LGGs are.
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Example 5.11. Consider 𝑞(𝑥) ← 𝐴(𝑥) ∧ 𝐵(𝑥) ∧ 𝐶(𝑥) and 𝑝(𝑥) ← 𝐴(𝑥). Then both 
𝑞1(𝑥) ← 𝐴(𝑥) and 𝑞2(𝑥) ← 𝐴(𝑥) ∧ 𝐵(𝑥) are 𝑝-guided CQ-generalizations of 𝑞 under 
the empty ontology, and 𝑞1 ≢∅ 𝑞2.

It is also interesting to compare Definition 5.9, or more specifically guided ELIQ-
generalizations, to elements of frontiers as defined in Definition 4.13. Note that 
Conditions 1 and 2 of Definition 5.9 correspond to Condition 1 of Definition 4.13, 
and Condition 3 of Definition 5.9 corresponds to Condition 2 of Definition 4.13. 
Intuitively, we can view the query 𝑝 as a guide that helps us select a suitable query 
from a CQ-frontier of 𝑞, which is useful when 𝑞 has an exponentially large or 
infinite CQ-frontier. Indeed, the query �𝑞 from Example 5.10 is an element of an 
ELIQ-frontier of 𝑞 under 𝒪.

Constructing Guided ELIQ-generalizations

We now show that 𝑝-guided ELIQ-generalizations of an ELIQ 𝑞 always exist and can 
be computed in polynomial time when 𝑞 if (𝑞, 𝒪)-minimal, even under DL-Litehorn
ontologies that use conjunctions. In fact, this is also the case under DL-Liteℱhorn
ontologies 𝒪 that are subject to the same restriction on functionality constraints 
as DL-Liteℋℱ−

core  ontologies in Chapter 4, that is, if a ∃𝑅.⊤ occurs on the right side 
of a concept inclusion in 𝒪, then func(𝑅−) ∉ 𝒪. We call this ontology language 
DL-Liteℱ−horn.

For this, we again assume that 𝒪 is in normal form, which is not a crucial as­
sumption by Lemma 4.8. By inspecting the definition of the universal model of 
DL-Liteℱ−horn ontologies, we find that we can safely adopt a restriction on the set of 
all traces [Bot+16]. Specifically, we restrict the domain of 𝒰𝒜,𝒪 to only contain 
traces 𝑎𝑅1𝑀1 ⋯ 𝑅𝑛𝑀𝑛 with 𝑅𝑖+1 ≠ 𝑅−

𝑖  for 1 ≤ 𝑖 < 𝑛. Then, Lemma 3.5 still holds for 
DL-Liteℱ−horn ontologies (but not for DL-Liteℋcore or ℰℒℐ ontologies).

By adopting the above restriction, we can show the following property of 𝒰𝒜,𝒪, 
which in turn allows us to show that the construction of guided generalizations 
completes in polynomial time.

Lemma 5.12. Let 𝒪 be a DL-Liteℱ−horn ontology in normal form, 𝒜 an ABox that is satisfiable 
under 𝒪, and 𝑈 = Δ𝒰𝒜,𝒪 ⧵ ind(𝒜). Then, for every role 𝑅, 𝑅𝒰𝒜,𝒪 ∩ 𝑈2 is a partial function.

Note that universal models of DL-Liteℋcore or ℰℒ ontologies inherently do not have 
this property, as concept inclusions of the form 𝐴 ⊑ ∃𝑟.𝐵1, 𝐴 ⊑ ∃𝑟.𝐵2 require two 
different 𝑟 successors for a model to be universal.

Let 𝑞(𝑥1), 𝑝(𝑥2) be ELIQs and 𝒪 a DL-Liteℱ−horn ontology in normal form such that 
𝑞 and 𝑝 are satisfiable under 𝒪, 𝑞 is (𝑞, 𝒪)-minimal and 𝑝 ⊈𝒪 𝑞. We construct a 
𝑝-guided ELIQ-generalization �𝑞 of 𝑞 under 𝒪 in three steps.
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1. Start with the query
�𝑞((𝑥1, 𝑥2)) ← �

(𝑥1,𝑥2)∈𝐴
𝒰𝑞,𝒪×𝒰𝑝,𝒪

𝐴((𝑥1, 𝑥2)),

that is, the restriction of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to the element (𝑥1, 𝑥2) viewed as a query 
with answer variable (𝑥1, 𝑥2).

2. Then, extend �𝑞 by exhaustively applying the rule (A1) below.

(A1) For every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪, every atom 𝑅(𝑧, 𝑧′)
in 𝑞, and every (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪, add the atom 𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)), and all atoms 
𝐴((𝑧′, 𝑡′)) such that 𝑧′ ∈ 𝐴𝒰𝑞,𝒪 and 𝑡′ ∈ 𝐴𝒰𝑝,𝒪.

3. Finally, complete �𝑞 by exhaustively applying the rule (A2) below.

(A2) For every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪 and every role 𝑅
such that 𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for some 𝑀 add the atoms

𝑅((𝑧, 𝑡), 𝑧̂), 𝑅(𝑧′, 𝑧̂)

with 𝑧̂ a fresh variable, and add a copy 𝑞′ of 𝑞 in which the copy of 𝑧 is 𝑧′.

To understand this construction, recall that 𝒰𝑞,𝒪×𝒰𝑝,𝒪, when viewed as an infinitary 
CQ, may serve as a CQ-LGG of 𝑝 and 𝑞. Intuitively, the above construction may be 
viewed as producing an approximation of this product from below, in the sense 
that �𝑞 ⊆𝒪 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 if we consider 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to be restricted to all traces that are 
reachable from (𝑥1, 𝑥2). After applying Rule (A1) exhaustively, we have constructed 
exactly the restriction of the product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to the elements (𝑡1, 𝑡2) that are 
reachable from the element (𝑥1, 𝑥2) and satisfy 𝑡1 ∈ var(𝑞). We show that this is a 
finite structure and even of polynomial size, which is essentially due to Lemma 5.12. 
What is missing is the infinite part of 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 determined by elements (𝑡1, 𝑡2)
where 𝑡1 is a proper trace. The application of Rule (A2) approximates this part by 
adding atoms and copies of 𝑞 corresponding to traces of length one in 𝒰𝑞,𝒪.

Example 5.13. Consider the ELIQs 𝑞 and 𝑝 displayed in Figure 5.3 as well as the 
DL-Litehorn ontology 𝒪 = {𝐴 ⊑ ∃𝑠.⊤}. The steps of computing a 𝑝-guided ELIQ-
generalization of 𝑞 under 𝒪 are the queries �𝑞1, �𝑞2, �𝑞3 displayed in Figure 5.3.

The query �𝑞1 is the result of Step 1. Exhaustive application of Rule (A1) then 
yields �𝑞2. Applying Rule (A2) once at the root then yields �𝑞3. No other applications 
of Rule (A2) are possible, and �𝑞3 indeed is a 𝑝-guided ELIQ-generalization of 𝑞. 
Note that there is a homomorphism from 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪 to �𝑞3 and therefore also to 
𝒰�𝑞3,𝒪, demonstrating that �𝑞3 ⊆𝒪 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪.

We show that this construction, especially Step 2, always terminates after poly­
nomially many steps by using Lemma 5.12.

108



5.2 Learning ELIQs under DL-Litehorn Ontologies

𝑞

𝐴

𝐵

𝑟

𝑟

𝑝

𝐵
𝑟

𝑠

𝒰𝑞,𝒪 × 𝒰𝑝,𝒪

𝐵

𝑟

𝑟

𝑠

�𝑞1 �𝑞2

𝐵

𝑟

𝑟

�𝑞3

𝐵

𝐴

𝐵

𝑟

𝑟

𝑠 𝑠 𝑟

𝑟

Figure 5.3: The three steps �𝑞1, �𝑞2, �𝑞3 of the construction of a 𝑝-guided ELIQ-gener­
alization of 𝑞 under 𝒪 = {𝐴 ⊑ ∃𝑠.⊤}.

Lemma 5.14. The computation of �𝑞 terminates after polynomially many steps.

 Proof. The initial �𝑞 created in Step 1 can be computed in polynomial time, since it 
consists of a single variable and reasoning in DL-Liteℱ−horn is possible in polynomial 
time. We consider Rule (A2) first. Let the result of Step 2 have domain size 𝑁. Then, 
(A2) is applied at most 𝑁 ⋅ 𝑛𝑟 times, where 𝑛𝑟 denotes the number of roles in 𝒪. 
Moreover, for each application, we only add two atoms and a copy of 𝑞. Thus, to 
show that the overall construction finishes in polynomial time, it suffices to show 
that Step 2 finishes in polynomial time.

For the analysis of the Rule (A1), observe that, by definition, Rule (A1) computes 
an initial fragment of the product 𝒰𝑞,𝒪 × 𝒰𝑝,𝒪. Thus, the rule creates at most 
‖𝒪‖ ⋅ |var(𝑞)| ⋅ |var(𝑝)| atoms over variables (𝑥, 𝑦) with 𝑥 ∈ var(𝑞) and 𝑦 ∈ var(𝑝). 
The remaining rule applications can be structured into labeled trees 𝑇𝑥𝑦, for each 
(𝑥, 𝑦) ∈ var(𝑞) × var(𝑝), as follows:

• the root 𝜀 of 𝑇𝑥𝑦 is labeled with 𝜆(𝜀) = (𝑥, 𝑦);

• if some node 𝑛 is labeled with 𝜆(𝑛) = (𝑧, 𝑡) and Rule (A1) is applied to some 
𝑅(𝑧, 𝑧′) ∈ 𝑞 and (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪, then 𝑛 has a successor 𝑛′ with 𝜆(𝑛′) = (𝑧′, 𝑡′); we 
additionally associate with 𝑛′ another label 𝜌(𝑛′) = 𝑅(𝑧, 𝑧′).

It suffices to bound the sizes of each tree 𝑇𝑥𝑦 by a polynomial in the input. For this, 
in turn, it suffices to show that there are no two nodes 𝑛1, 𝑛2 in 𝑇𝑥𝑦 such that 𝑛1 ≠ 𝑛2, 
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𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2), and 𝑧1 = 𝑧2. We show this by contradiction.
Suppose there are 𝑛1 ≠ 𝑛2 in 𝑇𝑥𝑦 such that 𝜆(𝑛1) = (𝑧1, 𝑡1), 𝜆(𝑛2) = (𝑧2, 𝑡2), and 

𝑧1 = 𝑧2. Consider the unique shortest path from 𝑛1 to 𝑛2 in 𝑇𝑥𝑦 and let 𝑛 be the 
unique node closest to the root on this path, that is, the path 𝑤0 … 𝑤𝑘 from 𝑛1 to 
𝑛 goes up in the tree and the path 𝑣0 … 𝑣𝑚 from 𝑛 to 𝑛2 goes down. Consider the 
following sequence 𝛼0, … , 𝛼𝑘+𝑚−1 of facts:

(a) for 0 ≤ 𝑖 < 𝑘, let 𝛼𝑖 be the atom 𝑅−(𝑧, 𝑧′) when 𝜌(𝑤𝑖) = 𝑅(𝑧′, 𝑧);

(b) for 0 < 𝑖 ≤ 𝑚, let 𝛼𝑘+𝑖−1 = 𝜌(𝑣𝑖).

By definition of the Rule (A1) and the resulting definition of 𝑇𝑥𝑦, the sequence 
𝛼0, … , 𝛼𝑘+𝑚−1 is a path from 𝑧1 to 𝑧2 in 𝑞. Since 𝑧1 = 𝑧2 and 𝑞 is acyclic, there has to 
be some 𝑖 such that 𝛼𝑖 = 𝑅(𝑧, 𝑧′) and 𝛼𝑖+1 = 𝑅−(𝑧′, 𝑧), for some role 𝑅. We distinguish 
cases on where 𝛼𝑖 and 𝛼𝑖+1 were defined in (a) or in (b) above.

Suppose first that both were defined in (a) and consider the nodes 𝑤𝑖, 𝑤𝑖+1. By 
definition of 𝛼𝑖, 𝛼𝑖+1:

• 𝜌(𝑤𝑖) = 𝑅−(𝑧, 𝑧′) and 𝜌(𝑤𝑖+1) = 𝑅(𝑧′, 𝑧),

• 𝜆(𝑤𝑖) = (𝑧′, 𝑡1), for some 𝑡1, and 𝜆(𝑤𝑖+1) = (𝑧, 𝑡2), for some 𝑡2.

Note that 𝜌(𝑤𝑖) and 𝜌(𝑤𝑖+1) refer to the same atom. Let (𝑡, 𝑡2) ∈ 𝑅𝒰𝑝,𝒪 be the pair such 
that 𝑤𝑖+1 was added to 𝑇𝑥𝑦 via an application of Rule (A1) to (𝑧′, 𝑡) ∈ var(�𝑞), 𝑅(𝑧′, 𝑧) ∈
𝑞 and (𝑡, 𝑡2) ∈ 𝑅𝒰𝑝,𝒪. By Lemma 5.12, 𝑅− is a partial function when restricted to 
the domain Δ𝒰𝑝,𝒪 ⧵ var(𝑝), and thus 𝑡2 has no other 𝑅−-neighbor than 𝑡 and thus 
𝑡1 = 𝑡. But then Rule (A1) is not applicable to (𝑧, 𝑡2) ∈ var(�𝑞), 𝑅−(𝑧, 𝑧′) ∈ 𝑞, and 
(𝑡2, 𝑡1) = (𝑡2, 𝑡) ∈ (𝑅−)𝒰𝑝,𝒪 since 𝑅((𝑧, 𝑡2), (𝑧′, 𝑡1)) = 𝑅((𝑧, 𝑡2), (𝑧′, 𝑡)) is already present 
in �𝑞, a contradiction.

In the other two cases, where 𝛼𝑖, 𝛼𝑖+1 were both defined in (b) or 𝛼𝑖 was defined 
in (a) and 𝛼𝑖+1 was defined in (b), a contradiction is derived analogously.

Next, we show that the construction indeed yields a guided ELIQ-generalization. 
This relies heavily on the restriction on functionality constraints, as otherwise the 
atoms introduced by Rule (A2) may violate a functionality constraint func(𝑅−).

Lemma 5.15. �𝑞 is satisfiable under 𝒪 and is a 𝑝-guided ELIQ-generalization of 𝑞 under 𝒪.

 Proof. We show that �𝑞 satisfies Conditions 1 to 3 of Definition 5.9 and that �𝑞 is 
satisfiable under 𝒪. For the proof, it is convenient to define a mapping 𝑔 as follows:

• 𝑔(𝑧, 𝑡) = 𝑧 for every (𝑧, 𝑡) ∈ var(�𝑞) with 𝑧 ∈ var(𝑞) and 𝑡 ∈ Δ𝒰𝑝,𝒪;
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• 𝑔(𝑧̂) = 𝑧𝑅𝑀, for every variable 𝑧̂ introduced by Rule (A2) applied to the 
element (𝑧, 𝑡), the role 𝑅 and the set 𝑀;

• 𝑔(𝑥′) = 𝑥, for every copy 𝑥′ of some variable 𝑥 in 𝑞 introduced by Rule (A2).

Observe that 𝑔 is a homomorphism from �𝑞 to 𝒰𝑞,𝒪 with 𝑔(𝑥1, 𝑥2) = 𝑥1, and thus 
𝑞 ⊆𝒪 �𝑞. Hence, Condition 1 holds.

Satisfiability of �𝑞 under 𝒪 follows from the facts that 𝑞 is satisfiable under 𝒪, 
that the map 𝑔 defined above is a homomorphism from �𝑞 to 𝒰𝑞,𝒪, and that since 𝑞
satisfies all functionality assertions in 𝒪, by construction so does �𝑞. For the latter, 
it is important that 𝒪 is formulated in DL-Liteℱ−horn rather than in DL-Liteℱhorn. In 
particular, this ensures that when Rule (A2) is applied to a role 𝑅, it is not inverse 
functional.

For Condition 2, suppose to the contrary of what we have to show that �𝑞 ⊆𝒪 𝑞. 
Since �𝑞 is satisfiable, we can fix a homomorphism ℎ from 𝑞 to 𝒰�𝑞,𝒪 with ℎ(𝑥1) =
(𝑥1, 𝑥2). By Lemma 3.8, there is an extension of the homomorphism 𝑔 to a homomor­
phism 𝑔′ from 𝒰�𝑞,𝒪 to 𝒰𝑞,𝒪 with 𝑔′(𝑥1, 𝑥2) = 𝑥1. Then, the composition of ℎ and 𝑔′
is a homomorphism from 𝑞 to 𝒰𝑞,𝒪. Lemma 4.21 implies that the variables 𝑧̂ intro­
duced by Rule (A2) are not in the image of ℎ. Indeed, if ℎ(𝑥) = 𝑧̂ for some 𝑥 ∈ var(𝑞), 
then 𝑔′(ℎ(𝑥)) ∉ var(𝑞) takes the shape 𝑧𝑅𝑀, in contradiction to Lemma 4.21. Since 𝑞
is rooted, all ℎ(𝑥) take the shape (𝑧, 𝑡) for some 𝑧 ∈ var(𝑞) and some trace 𝑡 in 𝒰𝑝,𝒪. 
Consider the projection ℎ′ of ℎ to its second component, that is,

 for all 𝑥 ∈ var(𝑞) set ℎ′(𝑥) = 𝑡 where ℎ(𝑥) = (𝑧, 𝑡).

It is routine to show that ℎ′ is a homomorphism from 𝑞 to 𝒰𝑝,𝒪 with ℎ′(𝑥1) = 𝑥2, 
and thus 𝑝 ⊆𝒪 𝑞, a contradiction.

For Condition 3, let 𝑞′(𝑥0) be any ELIQ with 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′. We can fix 
a homomorphism ℎ𝑝 from 𝑞′ to 𝒰𝑝,𝒪 with ℎ𝑝(𝑥0) = 𝑥2 and a homomorphism ℎ𝑞
from 𝑞′ to 𝒰𝑞,𝒪 with ℎ𝑞(𝑥0) = 𝑥1. Based on ℎ𝑞 and ℎ𝑝, we iteratively define a map ℎ
from 𝑞′ to 𝒰�𝑞,𝒪. We start by setting ℎ(𝑥0) = (ℎ𝑞(𝑥0), ℎ𝑝(𝑥0)) = (𝑥1, 𝑥2). Now extend 
ℎ iteratively by selecting an atom 𝑅(𝑥, 𝑥′) ∈ 𝑞′ such that ℎ(𝑥) = (𝑧, 𝑡) is defined, 
𝑧 ∈ var(𝑞), and ℎ(𝑥′) is undefined. Note that 𝑧′ = ℎ𝑞(𝑥′) satisfies (𝑧, 𝑧′) ∈ 𝑅𝒰𝑞,𝒪 since 
ℎ𝑞 is a homomorphism. Similarly, 𝑡′ = ℎ𝑝(𝑥′) satisfies (𝑡, 𝑡′) ∈ 𝑅𝒰𝑝,𝒪. We distinguish 
cases.

1. Suppose first that 𝑧′ ∈ var(𝑞). Then, Rule (A1) is applicable to 𝑅(𝑧, 𝑧′), (𝑡, 𝑡′), 
and there is a 𝑅((𝑧, 𝑡), (𝑧′, 𝑡′)) ∈ �𝑞. Set ℎ(𝑥′) = (𝑧′, 𝑡′).

2. Otherwise, 𝑧′ ∉ var(𝑞). Since 𝑧 ∈ var(𝑞), 𝑧′ takes the form 𝑧𝑅𝑀 for some 𝑀
and thus 𝑧 ⇝𝑅

𝑞,𝒪 𝑀 for that 𝑀. Then Rule (A2) is applicable to (𝑧, 𝑡), 𝑅 and 
𝑀. Let 𝑧̂ be the variable introduced in Rule (A2). Using the definition of the 
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universal model, one can show that there is a homomorphism 𝑓 from 𝒰𝑞,𝒪 to 
𝒰�𝑞,𝒪 which maps 𝑧𝑅𝑀 to 𝑧̂ and 𝑞 to the copy of 𝑞 that was added to �𝑞 in this 
application of Rule (A2). We set

ℎ(𝑥″) = 𝑓(ℎ𝑞(𝑥″))

for every node 𝑥″ in the subtree rooted at 𝑥′.

It remains to argue that ℎ is a homomorphism from 𝑞′ to 𝒰�𝑞,𝒪 with ℎ(𝑥0) = (𝑥1, 𝑥2), 
and thus �𝑞 ⊆𝒪 𝑞′. To see this, first, let 𝐴(𝑥) ∈ 𝑞′.

• If ℎ(𝑥) was defined in Case 1 above, then ℎ(𝑥) = (𝑧, 𝑡) for 𝑧 = ℎ𝑞(𝑥) ∈ var(𝑞) and 
𝑡 = ℎ𝑝(𝑥) ∈ Δ𝒰𝑝,𝒪. Since both ℎ𝑞 and ℎ𝑝 are homomorphisms, both 𝑧 ∈ 𝐴𝒰𝑞,𝒪 and 
𝑡 ∈ 𝐴𝒰𝑝,𝒪. Thus, since (𝑧, 𝑡) was created by Rule (A1), 𝐴((𝑧, 𝑡)) = 𝐴(ℎ(𝑥)) ∈ �𝑞.

• If ℎ(𝑥) was defined in Case 2 above, then ℎ(𝑥) = 𝑓(ℎ𝑞(𝑥)) where 𝑓 is a homomor­
phism from 𝑞 to 𝒰�𝑞,𝒪. Since, additionally, ℎ𝑞 is a homomorphism, it follows 
that 𝐴(ℎ(𝑥)) ∈ 𝒰�𝑞,𝒪.

Suppose now 𝑅(𝑥, 𝑦) ∈ 𝑞′ and 𝑅(𝑥, 𝑦) is directed away from the root 𝑥0 in 𝑞′.

• If both ℎ(𝑥) and ℎ(𝑦) were defined in Case 1, then Rule (A1) created the atom 
𝑅((ℎ𝑞(𝑥), ℎ𝑝(𝑥)), (ℎ𝑞(𝑦), ℎ𝑝(𝑦))) ∈ �𝑞 and thus 𝑅(ℎ(𝑥), ℎ(𝑦)) ∈ �𝑞.

• If both ℎ(𝑥) and ℎ(𝑦) were defined in Case 2, then ℎ(𝑥) = 𝑓(ℎ𝑞(𝑥)) and ℎ(𝑦) =
𝑓(ℎ𝑞(𝑥)) for some homomorphism 𝑓 from 𝑞 to 𝒰�𝑞,𝒪. Since, additionally, ℎ𝑞 is a 
homomorphism, it follows that (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑅𝒰�𝑞,𝒪.

• If ℎ(𝑥) was defined in Case 1 and ℎ(𝑦) was defined in Step 2, then ℎ(𝑥) =
(ℎ𝑞(𝑥), ℎ𝑝(𝑥)) = (𝑧, 𝑡) and ℎ(𝑦) = 𝑓(ℎ𝑞(𝑦)) = 𝑧̂ for the element 𝑧̂ that was intro­
duced in the application of Rule (A2) to (𝑧, 𝑡) that defined ℎ(𝑦). Rule (A2) 
additionally implies that 𝑅((𝑧, 𝑡), 𝑧̂) ∈ �𝑞, and thus (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑅𝒰�𝑞,𝒪.

• The case that ℎ(𝑥) was defined in Case 2, but ℎ(𝑦) was defined in Case 1 is not 
possible since 𝑥 is closer to the root than 𝑦, by assumption and the fact that ℎ
is defined from root to leaves in 𝑞′.

Combining Lemma 5.14 and Lemma 5.15 we thus obtain the following.

Lemma 5.16. Given a DL-Liteℱ−horn ontology 𝒪 in normal form and ELIQs 𝑝, 𝑞 such that 𝑝, 𝑞
are satisfiable under 𝒪, 𝑝 ⊈𝒪 𝑞, and 𝑞 is (𝑞, 𝒪)-minimal, a 𝑝-guided ELIQ-generalization of 
𝑞 under 𝒪 that is satisfiable under 𝒪 can be computed in polynomial time.
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5.2 Learning ELIQs under DL-Litehorn Ontologies

Algorithm 5.2: Learning algorithm for ELIQs under DL-Liteℱ−horn ontologies

Input A signature Σ and a DL-Liteℱ−horn ontology 𝒪 in normal form
Output An ELIQ 𝑞𝐻 such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞0𝐻)
while the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞𝐷 ≔ extractELIQ(𝒪, 𝑞𝒜(𝑎))
 𝑞′𝐻 ≔ a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 under 𝒪
 𝑞𝐻 ≔ extractELIQ(𝒪, 𝑞′𝐻)
end while
return 𝑞𝐻

We conjecture that (𝑞, 𝒪)-minimality of an ELIQ 𝑞 under an DL-Liteℱ−horn ontology 
can also be achieved in polynomial time by extending techniques for answering 
ELIQs over DL-Litecore ontologies in polynomial time in [Bie+13] to DL-Liteℱ−horn
ontologies. However, this is not needed to use Lemma 5.16 as part of a learn­
ing algorithm, as (𝑞, 𝒪)-minimality can be achieved in polynomial time through 
membership queries.

Learning ELIQs under DL-Liteℱ−horn ontologies

Lemma 5.16 enables us to use guided generalizations as part of a polynomial time 
ELIQ learning algorithm to update the hypothesis with a counterexample. Such an 
algorithm is displayed as Algorithm 5.2. Algorithm 5.2 replaces the direct product 
used in Algorithm 5.1 with the construction of guided generalizations. As part of 
this replacement, two further adjustments are necessary. First, Lemma 5.16 expects 
both queries 𝑝 and 𝑞 to be ELIQs, however the counterexample (𝒜, 𝑎) viewed as 
a query 𝑞𝒜 may not be acyclic. To work around this, Algorithm 5.2 applies the 
subroutine extractELIQ from Section 4.5 to the counterexample and, since 𝑞𝒜 ⊈𝒪 𝑞𝐻
or equivalently 𝒜, 𝒪 ⊧̸ 𝑞𝐻(𝑎), obtains an ELIQ 𝑞𝐷 with 𝑞𝐷 ⊈𝒪 𝑞𝐻. As shown in 
Section 4.5, extractELIQ works in polynomial time, using a polynomial number of 
membership queries. Second, the same issue occurs after the construction of a 
guided ELIQ-generalization. The hypothesis used in an equivalence query must also 
be an ELIQ, but the guided ELIQ-generalization 𝑞′𝐻 constructed using Lemma 5.16 
may not be acyclic. Again, Algorithm 5.2 applies extractELIQ to obtain a suitable 
ELIQ 𝑞𝐻 with 𝑞′𝐻 ⊆𝒪 𝑞𝐻 ⊆𝒪 𝑞𝑇.

The initial CQ 𝑞0𝐻 can be obtained in the same way as described in Section 4.5, by 

113
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using

𝑞0𝐻(𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥0) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥0, 𝑥0)

or a single equivalence query, depending on the disjointness constraints in 𝒪. To 
show that Algorithm 5.2 is indeed a polynomial time learning algorithm, we show 
that the sequence 𝑞1, 𝑞2, … of assignments to 𝑞𝐻 forms a generalization sequence 
towards 𝑞𝑇 under 𝒪. Since every DL-Liteℱ−horn ontology is also an ℰℒℐℋℱ⊥ ontology, 
Theorem 4.35 then implies termination of Algorithm 5.2 after polynomially many 
steps. This is the main result of this section.

Theorem 5.17. ELIQs are polynomial time learnable under DL-Liteℱ−horn ontologies using 
both equivalence and membership queries.

 Proof. We will show that Algorithm 5.2 is a polynomial time learning algorithm for 
ELIQs under DL-Liteℱ−horn ontologies in normal form. It follows from Lemma 4.8 that 
this also implies polynomial time learnability under general DL-Liteℱ−horn ontologies. 
To show this, let 𝒪 be an DL-Liteℱ−horn ontology in normal form and let 𝑞1, 𝑞2, … be 
the sequence of assignments to the variable 𝑞𝐻 during a run of Algorithm 5.2. We 
show that this sequence is a generalization sequence towards 𝑞𝑇 under 𝒪. Since 
extractELIQ maintains satisfiability by Lemma 4.41, counterexamples are satisfiable 
under 𝒪 and the construction of guided generalizations maintains satisfiability by 
Lemma 5.16, all 𝑞𝑖 are satisfiable under 𝒪.

We first show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 by induction on 𝑖. In the induction start, recall 
that 𝑞1 = extractELIQ(𝑞0𝐻). Since 𝑞0𝐻 ⊆𝒪 𝑞𝑇, Lemma 4.41 implies that 𝑞1 ⊆𝒪 𝑞𝑇. Now 
assume that 𝑞𝑖−1 ⊆𝒪 𝑞𝑇. If the sequence does not end at 𝑞𝑖−1, then the equivalence 
query returned a counterexample (𝒜, 𝑎) with 𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑖−1(𝑎). 
Then, 𝑞𝐷 = extractELIQ(𝑞𝒜) ⊆𝒪 𝑞𝑇 and 𝑞𝐷 ⊈𝒪 𝑞𝑖−1, and 𝑞′𝐻 is a 𝑞𝐷-guided ELIQ 
generalization of 𝑞𝐻 under 𝒪. Therefore, 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and 𝑞𝑖 = extractELIQ(𝑞′𝐻) ⊆𝒪 𝑞𝑇
by Lemma 4.41, as required.

Next, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖. Again, if the sequence did 
not end at 𝑞𝑖, then the equivalence query for 𝑞𝑖 returned a counterexample (𝒜, 𝑎)
and 𝑞𝑖+1 = extractELIQ(𝑞′𝐻) for 𝑞′𝐻 a 𝑞𝐷-guided ELIQ-generalization of 𝑞𝐻 under 𝒪. 
Then, 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 by Definition 5.9 and Lemma 4.41.

Additionally, all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal as they are the result of the extractELIQ
subroutine. Therefore, 𝑞1, 𝑞2, …  is a generalization sequence towards 𝑞𝑇 under 𝒪
and each 𝑞𝑖 is (𝑞𝑇, 𝒪)-minimal. As every DL-Liteℱ−horn ontology is also a ℰℒℐℋℱ⊥
ontology, Theorem 4.35 then implies that the length of the sequence is bound by a 
polynomial. Therefore, Algorithm 5.2 must terminate with a hypothesis equivalent 
to 𝑞𝑇 after a polynomial number of iterations.
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5.3 Learning under ℰℒ𝑟 Ontologies

In Chapter 4 we have shown with Theorem 4.5 that membership queries alone 
do not suffice to learn ELIQs under DL-Litehorn ontologies in polynomial time. 
Here, we have shown that membership queries and equivalence queries suffice. 
Later, in Section 5.5 we will see that extending DL-Litehorn by qualified existential 
restrictions (obtaining ℰℒℐ) makes polynomial time learning with membership 
and equivalence queries impossible.

It is unclear how far Theorem 5.17 can be extended beyond DL-Liteℱ−horn and ELIQs. 
The known lower bound, that we discuss later, only applies to ℰℒℐ ontologies 
(Theorem 5.50). It is especially not clear whether guided generalizations of ELIQs 
under DL-Liteℱhorn or DL-Liteℋhorn exist, and whether they can be constructed in 
polynomial time. At least, we can see that the construction described in this section 
fails to produce guided generalizations of polynomial size for these two ontology 
languages.

Note that since guided generalizations are not unique, the construction of guided 
generalizations in this section is somewhat arbitrary, and that other constructions, 
with perhaps additional desirable properties, are possible. Many questions remain 
open in the area of generalizations. One of direct interest to learning queries is 
whether guided CQ-generalizations of CQs exist under ontologies. Unfortunately, 
the idea of the construction in this section cannot be extended to CQs.

For learning algorithms, it could also be useful to consider generalizations of 
Definition 5.9. Perhaps constructions exist of sets of guided generalizations that behave 
in a suitable way and can be used by learning algorithms like frontiers.

Next, we turn away from guided generalizations, and instead consider query 
classes and ontology languages for which we can use products of compact models 
in place of LGGs.

5.3 Learning under ℰℒ𝑟 Ontologies

As discussed in Section 5.1, an LGG of CQs can be computed in polynomial time 
in the case without an ontology, but already simple queries fail to have finite CQ-
LGGs under ontologies that use qualified existential restrictions (Example 5.7). In 
particular, the direct product of universal models has all the properties needed 
for LGGs but is usually infinite. In this section, we aim to learn queries under 
ℰℒ𝑟 ontologies that contain qualified existential restrictions, by focusing on query 
classes 𝒬 that allow us to replace the direct product of universal models with a 
direct product of finite models.

We observe two properties of ℰℒ𝑟 ontologies. First, ℰℒ𝑟 ontologies do not con­
tain any concept or role disjointness constraints, and thus every ABox and CQ 
is satisfiable under ℰℒ𝑟 ontologies. Second, ℰℒ𝑟 ontologies and ABoxes possess 
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𝑎𝐴 𝑏 𝐵

𝑐𝑟,𝐴𝐴 𝑐𝑠,𝐴 𝐴

𝑟 𝑠

𝑟
𝑟

Figure 5.4: The compact model 𝒞𝒜,𝒪 of 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑
∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴}.

ELQ-universal models of polynomial size, meaning that these models fulfill Point 3 
of Lemma 3.5 but only for all ELQs. The main reason for this is that the use of 
inverse roles in ℰℒ𝑟 is restricted, such that, for example, concept inclusions like the 
one in Example 4.36 cannot be expressed. ELQ-universal models of ℰℒ𝑟 ontologies 
and ABoxes can be constructed as follows.

Let 𝒪 be an ℰℒ𝑟 ontology in normal form and 𝒜 an ABox. The compact universal 
model 𝒞𝒜,𝒪 of 𝒜 and 𝒪 is obtained as follows. For every role name 𝑟, we use 𝐶𝑟 to 
denote the conjunction over all 𝐴 such that ∃𝑟−.⊤ ⊑ 𝐴 ∈ 𝒪, and ⊤ if the conjunction 
is empty. We define the interpretation 𝒞𝒜,𝒪 by

Δ𝒞𝒜,𝒪 = ind(𝒜) ∪ {𝑐𝑟,𝐴 ∣ 𝑟 ∈ NR ∩ sig(𝒪), 𝐴 ∈ (sig(𝒪) ∩ NC) ∪ {⊤}}
𝐴𝒞𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪ {𝑐𝑟,𝐵 ∣ 𝒪 ⊧ 𝐵 ⊓ 𝐶𝑟 ⊑ 𝐴}
𝑟𝒞𝒜,𝒪 ={(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜} ∪

{(𝑎, 𝑐𝑟,𝐴) ∣ 𝒜, 𝒪 ⊧ ∃𝑟.𝐴(𝑎)} ∪
{(𝑐𝑠,𝐴, 𝑐𝑟,𝐵) ∣ 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑠 ⊑ ∃𝑟.𝐵}

for all 𝐴 ∈ NC and 𝑟 ∈ NR.

Example 5.18. Consider the ℰℒ𝑟 ontology 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴} and 
the ABox 𝒜 = {𝐴(𝑎), 𝐵(𝑏)}. The interpretation 𝒞𝒜,𝒪 is displayed in Figure 5.4, where 
the redundant elements 𝑐𝑠,⊤ and 𝑐𝑟,⊤ are left out. Note how infinite paths in 𝒰𝒜,𝒪 are 
represented by cycles in 𝒞𝒜,𝒪, and how this makes 𝒞𝒜,𝒪 ELQ-universal but not ELIQ-
universal or CQ-universal: Consider the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥2, 𝑥1) ∧ 𝑟(𝑥3, 𝑥2). 
It holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎), but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) and 𝒰𝒜,𝒪 ⊧̸ 𝑞(𝑎). In general, if 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎)
and 𝒜, 𝒪 ⊧̸ 𝑞(𝑎) for any CQ 𝑞, we refer to this as a spurious match of 𝑞 in 𝒞𝒜,𝒪.

Indeed, 𝒞𝒜,𝒪 is an ELQ-universal model of 𝒜 and 𝒪.

Lemma 5.19. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Then,

1. 𝒞𝒜,𝒪 is a model of 𝒜 and 𝒪;
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2. for every ELQ 𝑞 and 𝑎 ∈ ind(𝒜), 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎).

The proof of this is standard [LTW09]. We later provide a proof of universality of 
a different compact model construction (Lemma 5.28). For CQs 𝑞, we again write 
𝒞𝑞,𝒪 instead of 𝒞𝒜𝑞,𝒪.

Now, let 𝑞(𝑥1) and 𝑝(𝑥2) be ELQs and 𝒪 an ℰℒ𝑟 ontology in normal form. We 
are interested in the properties of 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 viewed as a CQ �𝑞 with the answer 
variable (𝑥1, 𝑥2). First, note that �𝑞 is of size polynomial in ‖𝑝‖, ‖𝑞‖ and ‖𝒪‖. Further, 
let 𝑞′ be an ELQ such that 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′. It then follows from Lemma 5.19 and 
Lemma 3.7 that 𝒞𝑞,𝒪 ⊧ 𝑞′(𝑥1) and 𝒞𝑝,𝒪 ⊧ 𝑞′(𝑥2). By Lemma 3.3 it then follows that 
𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 ⊧ 𝑞′(𝑥1, 𝑥2). Since ℰℒ𝑟 is monotone, it also follows that 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪, 𝒪 ⊧
𝑞′(𝑥1, 𝑥2) and therefore �𝑞 ⊆𝒪 𝑞′. This means that �𝑞 fulfills Point 3 of Definition 5.6 
(LGGs). Note though that �𝑞 is not an LGG of 𝑞 and 𝑝 under 𝒪, as it does not satisfy 
Point 1 and Point 2 of Definition 5.6. In fact, even 𝑞 ⊆𝒪 𝒞𝑞,𝒪 does not hold for all 
ELQs 𝑞 and ℰℒ𝑟 ontologies 𝒪.

Example 5.20. Consider the ℰℒ𝑟 ontology 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴} and the ELQ 𝑞(𝑥) ← 𝐴(𝑥). 
Then, there is no homomorphism from 𝒞𝑞,𝒪 to 𝒰𝑞,𝒪 since 𝒞𝑞,𝒪 contains an element 
with a self-loop, and therefore 𝑞 ⊈𝒪 𝒞𝑞,𝒪.

However, 𝑞, 𝑝, and �𝑞 = 𝒞𝑞,𝒪 × 𝒞𝑝,𝒪 are of course not unrelated. In fact, for all ELQs 
𝑞′ it holds that �𝑞 ⊆𝒪 𝑞′ implies 𝑞 ⊆𝒪 𝑞′ and 𝑝 ⊆𝒪 𝑞′, which suffices for obtaining an 
updated hypothesis. When receiving a counterexample (𝒜, 𝑎), a learning algorithm 
can construct �𝑞 = 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪 to obtain a CQ that is a generalization of both 𝑞𝐻 and 
𝒜 under 𝒪. It is however not directly obvious that the algorithm makes progress 
towards 𝑞𝑇, since 𝑞 ⊆𝒪 �𝑞 does not necessarily hold. However, if the algorithm 
applies a subroutine like extractELIQ to �𝑞 to obtain an ELQ from �𝑞, then this ELQ is 
a proper next element of a generalization sequence towards 𝑞𝑇. We show that this 
not only holds for ELQs, but also for larger query classes later in this section.

Compact Models for Larger Query Classes

We extend the idea of using 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪 to update hypotheses to larger query 
classes. Unfortunately, this approach already fails for ELIQs. Consider the model 
𝒞𝒜,𝒪 from Example 5.18 displayed in Figure 5.4 and the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧
𝑟(𝑥2, 𝑥1) ∧ 𝑠(𝑥3, 𝑥2) ∧ 𝐵(𝑥3). It holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎) but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎), demonstrating 
that Point 2 of Lemma 5.19 does not hold for ELIQs instead of ELQs. The spurious 
match of 𝑞 into 𝒞𝒜,𝒪 relies on the multiple 𝑟-predecessors of 𝑐𝑟,𝐴 that are used to 
compactly represent multiple traces of 𝒰𝒜,𝒪. Unfortunately, this issue cannot be 
avoided by using a more carefully defined finite model.

117



5 Learning with Membership and Equivalence Queries

Example 5.21. Let 𝒪 = {⊤ ⊑ ∃𝑟.⊤} and 𝒜 = {𝐴(𝑎)}. The universal model 𝒰𝒜,𝒪 of 
𝒜 and 𝒪 extends 𝒜 with an infinite 𝑟-path consisting of traces 𝑎𝑟∅, 𝑎𝑟∅𝑟∅, …. Any 
ELIQ-universal model also needs to contain such an infinite 𝑟-path, and thus the 
only chance to obtain a finite ELIQ-universal model ℐ is to reuse elements on this 
path and create a cycle in ℐ. However, ℐ cannot be ELIQ-universal then. Let ℎ be a 
homomorphism from 𝒰𝒜,𝒪 to ℐ. If ℎ maps the trace of length 𝑛 and the trace of 
length 𝑚 with 𝑛 < 𝑚 to the same element in ℐ, then ℐ ⊧ 𝑞(𝑎) for the ELIQ

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑚−1, 𝑥𝑚) ∧ 𝑟(𝑥𝑚+1, 𝑥𝑚) ∧ ⋯ ∧ 𝑟(𝑥𝑚+𝑛, 𝑥𝑚+𝑛−1) ∧ 𝐴(𝑥𝑚+𝑛),

but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎).

Example 5.21 and the previous Example 5.8 indicate that atoms of the shape 
𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) for some role name 𝑟 cause difficulties, as these allow ELIQs to see 
predecessors in the compact model 𝒞𝒜,𝒪 that do not exist in 𝒰𝒜,𝒪. We refer to 
these predecessors as spurious. The same issue with spurious predecessors also 
occurs with CQs that avoid inverse roles, but include cycles. Consider 𝒜 and 𝒪 as 
in Example 5.21. For the CQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥1), it holds that 𝒞𝒜,𝒪 ⊧ 𝑞(𝑎)
but 𝒜, 𝒪 ⊧̸ 𝑞(𝑎). We therefore refer to the cycle in 𝒞𝒜,𝒪 as a spurious cycle.

Since every finite model must have spurious predecessors, we can only circumvent 
these problems by restricting our attention to a subclass of ELIQs that does not 
allow this shape of atoms to occur. Similarly, we also consider a class of CQs that 
do not contain atoms of this shape and avoid large cycles, but still contains many 
useful CQs.

Let 𝑞 be a CQ. A path of length 𝑛 in 𝑞 from 𝑥 ∈ var(𝑞) to 𝑦 ∈ var(𝑞) is a sequence 
𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑞 such that 𝑥1 = 𝑥 and 𝑥𝑛+1 = 𝑦. We say that a path is 
simple if 𝑥1, … , 𝑥𝑛+1 are distinct. We define the distance dist𝑞(𝑥, 𝑦) of 𝑥, 𝑦 ∈ var(𝑞) to 
be the length of the shortest simple path from 𝑥 to 𝑦, or to be ∞ if there is no path 
from 𝑥 to 𝑦. A path is a cycle of length 𝑛 if 𝑥1 = 𝑥𝑛+1 and 𝑥2, … , 𝑥𝑛+1 are distinct. Note 
that this matches the definition of cycle in Section 4.5. A chord of a cycle is an atom 
𝑅(𝑥𝑖, 𝑥𝑗) with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑗 ∉ {𝑖 − 1 mod 𝑛 + 1, 𝑖, 𝑖 + 1 mod 𝑛 + 1}.

A symmetry in 𝑞 consists of atoms 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) for some role name 𝑟 and 𝑦1 ≠ 𝑦2. 
We say that a symmetry is safe, if at least one of the following is true:

1. 𝑥 is an answer variable,

2. at least one of the atoms occurs on a cycle in 𝑞,

3. 𝑞 contains an atom 𝑠(𝑧, 𝑧) for some 𝑧 ∈ {𝑥, 𝑦1, 𝑦2}, or

4. 𝑞 has only a single answer variable 𝑧, there is a path in 𝑞 from 𝑧 to 𝑥, and 
dist𝑞(𝑧, 𝑥) + 1 = dist𝑞(𝑧, 𝑦1) = dist𝑞(𝑧, 𝑦2).
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Figure 5.5: Examples of CQcsf queries.

We denote with CQcsf the class of CQs 𝑞(𝑥) that are

1. chordal: every cycle 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛−1(𝑥𝑛−1, 𝑥1) in 𝑞 of length at least four that 
contains at least one existential variable has a chord;

2. symmetry-free: every symmetry in 𝑞 is safe.

Example 5.22. Consider the CQs 𝑞1, 𝑞2, 𝑞3, 𝑞4 and 𝑞5 displayed in Figure 5.5. All of 
these queries are chordal and symmetry-free. The symmetries in 𝑞1, 𝑞2, 𝑞4, 𝑞5 are 
safe since they occur on a cycle. The symmetry in 𝑞3 is safe since it fulfills Point 4. 
The queries 𝑞1, 𝑞2, 𝑞3 and 𝑞4 are chordal, since every cycle is of length smaller than 
four. The cycle in 𝑞5 is chordal, since it does not contain any existential variable.

For ELIQs, we denote with ELIQsf the class of all ELIQs that are symmetry-free. If 
we view ELIQs as ℰℒℐ concepts, then symmetry-free ℰℒℐ concepts may not contain 
a subconcept of the shape ∃𝑟.(𝐶1 ⊓ ∃𝑟−.𝐶2). Due to the definition of symmetry 
and Point 4 of safety, all other subconcept shapes that involve role names and 
their inverses are allowed: ∃𝑟−.(𝐶1 ⊓ ∃𝑟.𝐶2), ∃𝑟−.𝐶1 ⊓ ∃𝑟.𝐶2, ∃𝑟.𝐶1 ⊓ ∃𝑟.𝐶2, and 
∃𝑟−.𝐶1 ⊓ ∃𝑟−.𝐶2. This restricted class of ELIQs was previously introduced by Jung, 
Lutz, and Wolter [JLW20] in the context of computing least common subsumers of 
ℰℒℐ concepts under ontologies.

Note that every ELIQsf query is also a CQcsf query, and that queries in CQcsf

need not be connected. Every CQ whose underlying graph is a clique or a 𝑘-tree 
(a maximal graph of treewidth 𝑘) is a CQcsf query. Particularly, this means that 
many CQs that occur in practical applications are CQcsf. For example, the three 
ontology-mediated querying benchmarks Fishmark [Bai+12], LUBM∃ [Lut+13], 
and NPD [Lan+15] contain 65 queries. Of those, 85 % are CQcsf queries. Less than 
5 % of the 65 queries are ELIQsf queries, mostly due to the existence of multiple 
answer variables.

We define a compact model of ℰℒ𝑟 ontologies that is tailored towards the two 
properties of CQcsf queries: chordality and being symmetry-free. The 3-compact 
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Figure 5.6: The 3-compact model 𝒞3
𝒜,𝒪 for 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and 𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑

∃𝑠.⊤, ∃𝑠−.⊤ ⊑ 𝐴}.

model 𝒞3
𝒜,𝒪 of an ABox 𝒜 and an ℰℒ𝑟 ontology 𝒪 in normal form is defined as follows. 

The model uses the individual names from 𝒜 as well as individual names of the form 
𝑐𝑎,𝑖,𝑟,𝐴 where 𝑎 ∈ ind(𝒜), 0 ≤ 𝑖 ≤ 4, 𝑟 is a role name from 𝒪, and 𝐴 ∈ (sig(𝒪)∩NC)∪{⊤}. 
Let 𝑖 ⊕ 1 be short for (𝑖 mod 4) + 1. We define the interpretation 𝒞3

𝒜,𝒪 by 

Δ𝒞3
𝒜,𝒪 = ind(𝒜) ∪

{𝑐𝑎,𝑖,𝑟,𝐴 ∣ 𝑎 ∈ ind(𝒜), 0 ≤ 𝑖 ≤ 4, 𝑟 ∈ NR ∩ sig(𝒪), 𝐴 ∈ (sig(𝒪) ∩ NC) ∪ {⊤}}

𝐴𝒞3
𝒜,𝒪 ={𝑎 ∈ ind(𝒜) ∣ 𝒜, 𝒪 ⊧ 𝐴(𝑎)} ∪

{𝑐𝑎,𝑖,𝑟,𝐵 ∣ 𝒪 ⊧ 𝐵 ⊓ 𝐶𝑟 ⊑ 𝐴}

𝑟𝒞
3
𝒜,𝒪 ={(𝑎, 𝑏) ∣ 𝑟(𝑎, 𝑏) ∈ 𝒜} ∪

{(𝑎, 𝑐𝑎,0,𝑟,𝐴) ∣ 𝒜, 𝒪 ⊧ ∃𝑟.𝐴(𝑎)} ∪
{(𝑐𝑎,𝑖,𝑠,𝐴, 𝑐𝑎,𝑖⊕1,𝑟,𝐵) ∣ 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑠 ⊑ ∃𝑟.𝐵}

 for all 𝐴 ∈ NC and 𝑟 ∈ NR.

Example 5.23. Consider the same ABox 𝒜 = {𝐴(𝑎), 𝐵(𝑏)} and ontology 𝒪 = {𝐴 ⊑
∃𝑟.𝐴, 𝐵 ⊑ ∃𝑠.⊤, ∃𝑠−.⊤ ⊑ ∃𝑟.𝐴} as in Example 5.18. The interpretation 𝒞3

𝒜,𝒪 is 
displayed in Figure 5.6, or more precisely, the part of 𝒞3

𝒜,𝒪 that is connected to 𝒜. 
Again, redundant elements of the shape 𝑐𝑎,𝑖,𝑟,⊤ and 𝑐𝑏,𝑖,𝑟,⊤ are left out. Note that 
compared to the interpretation 𝒞𝒜,𝒪 displayed in Figure 5.4, all cycles have length 4
and that the elements attached to 𝑎 are not connected to the elements attached to 𝑏.

We call 𝒞3
𝒜,𝒪 3-compact as it avoids all spurious cycles of length 3 or smaller, and 

thereby does not allow spurious matches of CQs that are chordal. The model also 
avoids spurious predecessors connected via different role names, or predecessors 
coming from different individuals in the ABox-part. The spurious predecessors 
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that remain are irrelevant for CQs that are symmetry-free. Note the existence of the 
elements 𝑐𝑎,𝑖,𝑟,𝐴 with 𝑖 = 0, which are not part of cycles. They exist to handle sym­
metries that are part of cycles, that could otherwise see the spurious predecessors 
of the elements of shape 𝑐𝑎,1,𝑟,𝐴.

Lemma 5.24. Every cycle in 𝒞3
𝒜,𝒪 of length at most three consists only of individuals 

from ind(𝒜).

 Proof. The statement is clear by construction of 𝒞3
𝒜,𝒪 for cycles of length 1. It is also 

clear for cycles of length 2 since for any pair of individuals of which at least one is 
of the form 𝑐𝑎,𝑖,𝑟,𝐴, the ABox 𝒞3

𝒜,𝒪 contains at most one assertion that involves both 
of them.

Now for cycles of length 3. Assume to the contrary of what is to be shown that 
𝒞3
𝒜,𝒪 contains a cycle of length 3 that contains an individual not from ind(𝒜). First, 

assume that there is an individual 𝑎 ∈ ind(𝒜) on the cycle. Since all individuals of 
the form 𝑐𝑏,𝑖,𝑟,𝐴 that are on the cycle are adjacent to 𝑎 on the cycle, 𝑏 = 𝑎 and 𝑖 = 0
for all such 𝑐𝑏,𝑖,𝑟,𝐴. This implies that 𝑎 is the only individual from 𝑎 ∈ ind(𝒜) on the 
cycle. But then the cycle contains two distinct individuals of the form 𝑐𝑎,0,𝑟,𝐴 that 
are connected by an edge, which is never the case in 𝒞3

𝒜,𝒪.
Now assume that the cycle contains only individuals of the form 𝑐𝑏,𝑖,𝑟,𝐴. Then all 

these individuals are connected in 𝒞3
𝒜,𝒪 by an edge. This is impossible due to the 

use of the index 𝑖 in the construction of 𝒞3
𝒜,𝒪.

There is a homomorphism from 𝒰𝒜,𝒪 to 𝒞3
𝒜,𝒪 that is the identity on ind(𝒜), but 

in general, there is no homomorphism from 𝒞3
𝒜,𝒪 to 𝒰𝒜,𝒪. Nevertheless, 𝒞3

𝒜,𝒪 is 
CQcsf-universal. Before showing this, we first describe how 𝒞3

𝒜,𝒪 relates to 𝒰𝒜,𝒪 in 
terms of ℰℒ simulations.

Definition 5.25 (ℰℒ simulation). An ℰℒ simulation from interpretation ℐ1 to 
interpretation ℐ2 is a relation 𝑆 ⊆ Δℐ1 × Δℐ2 such that for all (𝑑1, 𝑑2) ∈ 𝑆:

1. for all 𝐴 ∈ NC: if 𝑑1 ∈ 𝐴ℐ1, then 𝑑2 ∈ 𝐴ℐ2;

2. for all 𝑟 ∈ NR: if there is some 𝑑′1 ∈ Δℐ1 with (𝑑1, 𝑑′1) ∈ 𝑟ℐ1, then there is a 
𝑑′2 ∈ Δℐ2 such that (𝑑′1, 𝑑′2) ∈ 𝑆 and (𝑑2, 𝑑′2) ∈ 𝑟ℐ2.

We write ℐ1, 𝑑1 ⪯ℰℒ ℐ2, 𝑑2 if there exists an ℰℒ simulation 𝑆 from ℐ1 to ℐ2 with 
(𝑑1, 𝑑2) ∈ 𝑆.

ℰℒ simulations are similar to the ℰℒℐ simulations defined in Definition 4.39, but 
they are not the same. For ℰℒ simulations, Point 2 only needs to be satisfied for role 
names, not inverse roles. The ℰℒ in the name of ℰℒ simulations refers to the fact 
that they are closely connected to ℰℒ concepts or ELQs.
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Lemma 5.26. Let ℐ1, ℐ2 be interpretations with 𝑑1 ∈ Δℐ1, 𝑑2 ∈ Δℐ2, and 𝑞 an ELQ. If 
ℐ1, 𝑑1 ⪯ℰℒ ℐ2, 𝑑2, then ℐ1 ⊧ 𝑞(𝑑1) implies ℐ2 ⊧ 𝑞(𝑑2).

The proof of this lemma is standard, see for example [LW10] and [CS01]. Using 
ℰℒ simulations, we can express the important relation of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 as follows.

Lemma 5.27. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Further, let 
𝑐𝑎,𝑖,𝑟,𝐴 ∈ Δ𝒞3

𝒜,𝒪 and 𝑡𝑟𝑀 ∈ Δ𝒰𝒜,𝒪 with 𝐴 ∈ 𝑀 (using the same role name 𝑟). Then, 
𝒞3
𝒜,𝒪, 𝑐𝑎,𝑖,𝑟,𝐴 ⪯ℰℒ 𝒰𝒜,𝒪, 𝑡𝑟𝑀.

 Proof. We define the relation

𝑆 = {(𝑐𝑎,𝑖,𝑟,𝐴, 𝑡𝑟𝑀) ∈ Δ𝒞3
𝒜,𝒪 × Δ𝒰𝒜,𝒪 ∣ 𝐴 ∈ 𝑀}.

It suffices to show that 𝑆 is an ℰℒ simulation from 𝒞3
𝒜,𝒪 to 𝒰𝒜,𝒪. Let (𝑐𝑎,𝑖,𝑟,𝐴, 𝑡𝑟𝑀) ∈ 𝑆. 

If 𝑐𝑎,𝑖,𝑟,𝐴 ∈ 𝐵𝒞3
𝒜,𝒪 for some concept name 𝐵, then 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵. We aim to show 

that 𝑡𝑟𝑀 ∈ 𝐵𝒰𝒜,𝒪. If 𝑡 = 𝑎 ∈ ind(𝒜), then 𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎) and 𝑀 must be maximal 
with this condition. Since 𝐴 ∈ 𝑀 and 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵, it follows that 𝐵 ∈ 𝑀 and 
therefore, 𝑡𝑟𝑀 ∈ 𝐵𝒰𝒜,𝒪. If 𝑡 = 𝑡′𝑟′𝑀′ is a proper trace, then 𝒪 ⊧ ⨅ 𝑀′ ⊑ ∃𝑟. ⨅ 𝑀
and 𝑀 must be maximal with this condition. Since 𝐴 ∈ 𝑀 and 𝒪 ⊧ 𝐴 ⊓ ∃𝑟−.⊤ ⊑ 𝐵, 
it follows that 𝐵 ∈ 𝑀.

If (𝑐𝑎,𝑖,𝑟,𝐴, 𝑐𝑏,𝑗,𝑟′,𝐵) ∈ 𝑠𝒞
3
𝒜,𝒪 for some role name 𝑠, then 𝑟′ = 𝑠 by definition of 𝒞3

𝒜,𝒪. We 
aim to show that there is an 𝑡𝑟𝑀𝑟′𝑀′ ∈ Δ𝒰𝒜,𝒪 such that (𝑡𝑟𝑀, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑟′𝒰𝒜,𝒪 and 
(𝑐𝑏,𝑗,𝑟′,𝐵, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑆. From the definition of 𝒞3

𝒜,𝒪 it follows that 𝒪 ⊧ 𝐴 ⊓ 𝐶𝑟 ⊑ ∃𝑟′.𝐵. 
Since, as argued above, ∅ ⊧ ⨅ 𝑀 ⊑ 𝐴⊓𝐶𝑟, there is a set 𝑀′ such that 𝑀 ⇝𝑟′

𝒪 𝑀′ and 
𝐵 ∈ 𝑀′. Therefore, there is a trace 𝑡𝑟𝑀𝑟′𝑀′ ∈ Δ𝒰𝒜,𝒪 with (𝑡𝑟𝑀, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑟′𝒰𝒜,𝒪

and (𝑐𝑏,𝑗,𝑟′,𝐵, 𝑡𝑟𝑀𝑟′𝑀′) ∈ 𝑆.

Most importantly, Lemma 5.27 can be used to show that 𝒞3
𝒜,𝒪, 𝑎 ⪯ℰℒ 𝒰𝒜,𝒪, 𝑎 for 

all 𝑎 ∈ ind(𝒜). Using the properties of CQcsf queries, we now show that 𝒞3
𝒜,𝒪 is a 

CQcsf-universal model of 𝒜 and 𝒪.

Lemma 5.28. Let 𝒜 be an ABox and 𝒪 an ℰℒ𝑟 ontology in normal form. Then,

1. 𝒞3
𝒜,𝒪 is a model of 𝒜 and 𝒪;

2. for every 𝑘-ary 𝑞(𝑥) ∈ CQcsf and 𝑎 ∈ ind(𝒜)𝑘, 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎) if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎).

 Proof. Point 1 follows from the definition of 𝒞3
𝒜,𝒪, details are omitted. For Point 2, 

let 𝑞(𝑥) be a 𝑘-ary CQcsf query and 𝑎 ∈ ind(𝒜)𝑘. We have to show that 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎)

if and only if 𝒜, 𝒪 ⊧ 𝑞(𝑎). For the first direction, assume that 𝒜, 𝒪 ⊧ 𝑞(𝑎). By 
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Lemma 3.5, it follows that 𝒰𝒜,𝒪 ⊧ 𝑞(𝑎). Since there is a homomorphism from 𝒰𝒜,𝒪
to 𝒞3

𝒜,𝒪 that is the identity on ind(𝒜), 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎). For the second direction, assume 

that 𝒞3
𝒜,𝒪 ⊧ 𝑞(𝑎). Then, there is a homomorphism ℎ from 𝑞 to 𝒞3

𝒜,𝒪 with ℎ(𝑥) = 𝑎. In 
what follows, we construct a homomorphism 𝑔 from 𝑞 to 𝒰𝒜,𝒪 with 𝑔(𝑥) = 𝑎. Thus, 
𝒜, 𝒪 ⊧ 𝑞(𝑎) as required.

To start the definition of 𝑔, set 𝑔(𝑥) = ℎ(𝑥) whenever ℎ(𝑥) ∈ ind(𝒜). It follows from 
the construction of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 that 𝑔 is a homomorphism from 𝑞 restricted to 
the domain of 𝑔 to 𝒰𝒜,𝒪.

Because of Lemma 5.24, if a variable 𝑥 occurs on a cycle of length 1 or 2 in 𝑞, 
then 𝑔(𝑥) is now defined. We next define 𝑔(𝑥) for all variables 𝑥0 that are on a 
cycle 𝑅0(𝑥0, 𝑥1), 𝑅1(𝑥1, 𝑥2), 𝑅2(𝑥2, 𝑥0) of length 3 in 𝑞. Assume that 𝑔(𝑥0) was not yet 
defined. It then follows from Lemma 5.24 that ℎ(𝑥1) = ℎ(𝑥2) ∈ ind(𝒜), and thus 𝒜
contains a reflexive 𝑅1-cycle on ℎ(𝑥1), 𝑅0 = 𝑅−

2 , and ℎ(𝑥0) ∉ ind(𝒜). Let ℎ(𝑥1) = 𝑎. 
By construction of 𝒞3

𝒜,𝒪, ℎ(𝑥0) = 𝑐𝑎,0,𝑟,𝐴 for some 𝐴 and where 𝑟 = 𝑅0 if 𝑅0 is a role 
name and 𝑟 = 𝑅2 otherwise. Then there must be a set 𝑀 with 𝐴 ∈ 𝑀 such that 
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎). If there is a 𝑏 ∈ ind(𝒜) with 𝑟(𝑎, 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), then 
set 𝑔(𝑥0) = 𝑏. Otherwise, there is a trace 𝑎𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑥0) = 𝑎𝑟𝑀. After this 
extension, 𝑔 is a homomorphism from the restriction of 𝑞 to the (now extended) 
domain of 𝑔 to 𝒰𝒜,𝒪. This is easily seen to be a consequence of the definition of the 
extension and of the construction of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪.
At this point, 𝑔(𝑥) is defined for all variables 𝑥 that occur on a cycle in 𝑞. Assume 

that 𝑥 is such a variable. If 𝑥 is an answer variable, then 𝑔(𝑥) is clearly already 
defined. Otherwise, chordality of 𝑞 implies that 𝑥 also occurs on a cycle of length at 
most 3 and thus 𝑔(𝑥) has been defined above. It remains to define 𝑔(𝑥) for variables 
𝑥 that do not occur on a cycle.

We begin by mapping certain symmetries in 𝑞. Let 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) be a symmetry 
such that 𝑔(𝑥) is undefined and there is an atom 𝑠(𝑦𝑖, 𝑦𝑖) for some 𝑖 ∈ {1, 2}. Then 
𝑔(𝑦𝑖) must be defined, ℎ(𝑦𝑖) ∈ ind(𝒜), and by definition of 𝒞3

𝒜,𝒪, ℎ(𝑦1) = ℎ(𝑦2). Hence, 
𝑔(𝑦𝑗) must be defined for 𝑗 ∈ {1, 2} and ℎ(𝑥) = 𝑐ℎ(𝑦𝑖),0,𝑟,𝐴 for some concept name 𝐴. 
Then, as above, there must be a set 𝑀 with 𝐴 ∈ 𝑀 such that 𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(ℎ(𝑦𝑖)). 
If there is a 𝑏 ∈ ind(𝒜) with 𝑟(ℎ(𝑦𝑖), 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), then set 𝑔(𝑥) = 𝑏. 
Otherwise, there is a trace ℎ(𝑦𝑖)𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑥) = 𝑔(𝑦𝑖)𝑟𝑀.

We continue by mapping the rest of 𝑞. Let 𝑞′ be the subquery of 𝑞 consisting of 
all atoms that contain at least one variable 𝑥 with 𝑔(𝑥) undefined at this point. We 
make four observations about 𝑞′.

1. Observe that no atom in 𝑞′ is part of a cycle, as otherwise 𝑔 would already be 
defined for both variables of this atom.

2. If 𝑔(𝑥) is defined for some variable 𝑥, then 𝑞′ contains no atom 𝑟(𝑦, 𝑥).
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To ascertain this, assume that there is such an atom. Then 𝑔(𝑦) must be 
undefined by choice of 𝑞′, and ℎ(𝑦) ∉ ind(𝒜). Since 𝑔(𝑥) is defined, ℎ(𝑥) ∈
ind(𝒜) or ℎ(𝑥) is of the shape 𝑐𝑎,0,𝑠,𝐴. But by definition of 𝒞3

𝒜,𝒪, no 𝑎 ∈ ind(𝒜)
and no element of shape 𝑐𝑎,0,𝑠,𝐴 has a predecessor that is not in ind(𝒜), hence 
ℎ cannot be a homomorphism, a contradiction.

3. If 𝑞′ contains atoms 𝑟1(𝑦1, 𝑥), 𝑟2(𝑦2, 𝑥), then 𝑟1 = 𝑟2.
By the previous observation, 𝑔(𝑥) must be undefined, hence ℎ(𝑥) ∉ ind(𝒜). 
Therefore, ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 for some 𝑎, 𝑖, 𝑟, 𝐴. But by construction of 𝒞3

𝒜,𝒪, 𝑐𝑎,𝑖,𝑟,𝐴
only has 𝑟-predecessors and since ℎ is a homomorphism, 𝑟1 = 𝑟2 = 𝑟.

4. 𝑞′ does not contain any symmetry.
Assume that there is a symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑞 with 𝑦1 ≠ 𝑦2. Since 𝑞 is 
symmetry-free, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must be a safe symmetry in 𝑞. By the previous 
observation, 𝑔(𝑥) cannot yet be defined. Hence, 𝑥 is not an answer variable, no 
atom of the symmetry is part of a cycle, and there is no atom 𝑠(𝑥, 𝑥) ∈ 𝑞. If there 
is an atom 𝑠(𝑦1, 𝑦1) ∈ 𝑞 or 𝑠(𝑦2, 𝑦2) ∈ 𝑞, then 𝑔(𝑥) was already defined earlier. 
Thus, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must be a safe symmetry for the reason that 𝑥 consists of 
a single answer variable 𝑧 with dist𝑞(𝑧, 𝑥) + 1 = dist𝑞(𝑧, 𝑦1) = dist𝑞(𝑧, 𝑦2).
This implies, that there is a simple path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) in 𝑞 with 
𝑥1 = 𝑧, 𝑥𝑛+1 = 𝑥 and 𝑥𝑛 ∉ {𝑦1, 𝑦2}. By construction of 𝒞3

𝒜,𝒪, either 𝑅𝑛 = 𝑟 or 
𝑅𝑛 = 𝑠− for some role name 𝑠. If 𝑅𝑛 = 𝑟, then the atoms 𝑅𝑛(𝑥𝑛, 𝑥), 𝑟(𝑦1, 𝑥) form 
another symmetry. Since 𝑔(𝑥) is undefined, and dist𝑞(𝑧, 𝑥𝑛)+1 = dist𝑞(𝑧, 𝑥), this 
is not a safe symmetry, which contradicts that 𝑞 is symmetry-free. Hence, 𝑅𝑛
must be an inverse role 𝑠− for some role name 𝑠. This means that if ℎ(𝑥𝑛+1) =
𝑐𝑎,𝑖,𝑟,𝐴 for some 𝑎, 𝑖, and 𝐴, then ℎ(𝑥𝑛) = 𝑐𝑎,𝑖⊕1,𝑠,𝐵.
Consider how ℎ maps the path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) into 𝒞3

𝒜,𝒪. There must 
be an 𝑖 such that ℎ(𝑥𝑖) = 𝑎 and ℎ(𝑥𝑖+1) = 𝑐𝑎,0,𝑅𝑖,𝐴 for some 𝐴 and 𝑎 ∈ ind(𝒜) and 
𝑔(𝑥𝑗) is undefined for every 𝑗 > 𝑖 + 1. By definition of 𝒞3

𝒜,𝒪 it thus must be the 
case that there is some 𝑗 > 𝑖 such that 𝑅𝑗 is a role and 𝑅𝑗+1 = 𝑅−

𝑗 . This makes 
𝑅𝑗(𝑥𝑗, 𝑥𝑗+1), 𝑅𝑗+1(𝑥𝑗+1, 𝑥𝑗+2) a symmetry in 𝑞. We argue that this symmetry is 
not safe, leading to a contradiction. First, since 𝑔(𝑥𝑗+1) is undefined, 𝑥𝑗+1 is 
not an answer variable, no atom occurs on a cycle and there is no atom 𝑠(𝑧̂, 𝑧̂)
for some 𝑧̂ ∈ {𝑥, 𝑦1, 𝑦2}. Then, the path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑗(𝑥𝑗, 𝑥𝑗+1) witnesses that 
dist𝑞(𝑧, 𝑥𝑗+1) ≠ ∞ and that dist𝑞(𝑧, 𝑥𝑗) < dist𝑞(𝑧, 𝑥𝑗+1). Therefore, there cannot 
be a symmetry in 𝑞′.

Using these observations about 𝑞′, we conclude that 𝑞′ is a disjoint union of 
directed trees such that if 𝑔(𝑥) is defined for a variable 𝑥 in 𝑞′, then 𝑥 is the root of a 
directed tree. We next extend 𝑔 to the entirety of 𝑞 by traversing the directed trees 
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in 𝑞′ in a top-down fashion. The initial piece of 𝑔 constructed so far is such that for 
all variables 𝑥, ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 implies that 𝑔(𝑥) is a proper trace of the form 𝑡𝑟𝑀 with 
𝐴 ∈ 𝑀 or a 𝑏 ∈ ind(𝒜) with 𝒜, 𝒪 ⊧ 𝐴(𝑏). We shall maintain this invariant during 
the extension of 𝑔. To extend 𝑔 to all variables of 𝑞, repeatedly and exhaustively 
choose atoms 𝑟(𝑥, 𝑦) ∈ 𝑞′ with 𝑔(𝑥) defined and 𝑔(𝑦) undefined. By the construction 
of 𝑔 so far, ℎ(𝑦) ∉ ind(𝒜) and thus ℎ(𝑦) has the form 𝑐𝑎,𝑖,𝑟,𝐴. If 𝑔(𝑥) ∈ ind(𝒜), then 
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑔(𝑥)) for some set 𝑀 with 𝐴 ∈ 𝑀. If then there is a 𝑏 ∈ ind(𝒜)
with 𝑟(𝑔(𝑥), 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏), set 𝑔(𝑦) = 𝑏. Otherwise, there is a trace 
𝑔(𝑥)𝑟𝑀 ∈ Δ𝒰𝒜,𝒪. Set 𝑔(𝑦) = 𝑔(𝑥)𝑟𝑀. If 𝑔(𝑥) is a proper trace, map 𝑔(𝑦) to a trace 
𝑔(𝑥)𝑟𝑀 that exists by Lemma 5.27.

It remains to verify that 𝑔 is a homomorphism. If ℎ(𝑥) ∈ ind(𝒜), then it follows 
immediately from the definition of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪 that (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒞
3
𝒜,𝒪 implies 

(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝒜,𝒪. If ℎ(𝑥) ∉ ind(𝒜), we need to additionally invoke Lemma 5.27, 
applied to ℎ(𝑥) = 𝑐𝑎,𝑖,𝑟,𝐴 and to 𝑔(𝑥) = 𝑡𝑟𝑀. Therefore, 𝑔 satisfies all binary atoms 
in 𝑞′ and thus in 𝑞. All unary atoms are satisfied, too, because of the invariant 
mentioned above and by definition of 𝒞3

𝒜,𝒪 and 𝒰𝒜,𝒪.

Generalization Sequences of Unrestricted CQs

With 𝒞3
𝒜,𝒪 we have defined a suitable finite CQcsf-universal model to update a 

hypothesis 𝑞𝐻 with a counterexample (𝒜, 𝑎) under an ℰℒ𝑟 ontology. Constructing the 
direct product 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪 allows us to obtain a new hypothesis 𝑞′𝐻 that generalizes 

𝑞𝐻 and further approaches the target query 𝑞𝑇. In Chapter 4, we used generalization 
sequences to argue that a sequence of such hypotheses must arrive at 𝑞𝑇 after a 
polynomial number of steps, even under ℰℒℐℋℱ⊥ ontologies. Unfortunately, 
Theorem 4.35 does not hold for CQcsf queries that are not rooted, as Example 4.36 
demonstrates. For the purposes of this chapter, however, it suffices for sequences of 
hypotheses to be polynomially bounded under ℰℒ𝑟 ontologies. We show that this 
is the case.

In Chapter 4 a central ingredient for achieving polynomial time learning was 
Lemma 4.20 which connects (𝑞𝑇, 𝒪)-minimality to the image of homomorphisms. If 
𝑞𝑇 is not rooted, then Lemma 4.20 no longer holds.

Example 5.29. Consider the Boolean CQs 𝑞𝑇() ← 𝐴(𝑥), and 𝑞() ← 𝐵(𝑦) as well as 
the ontology 𝒪 = {𝐵 ⊑ ∃𝑟.𝐴}. Then 𝑞 ⊆𝒪 𝑞𝑇 and 𝑞 is (𝑞𝑇, 𝒪)-minimal, but 𝑦 ∈ var(𝑞)
is not in the image of any homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪.

Fortunately, under ℰℒ𝑟 ontologies, a weaker version of Lemma 4.20 holds even for 
unrestricted CQs, that is, also for CQs that are not rooted. This version suffices to 
bound the length of sequences of (𝑞𝑇, 𝒪)-minimal queries. Let 𝒪 be an ℰℒ𝑟 ontology 
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in normal form, 𝑝, 𝑞 CQs and ℎ a homomorphism from 𝑝 to 𝒰𝑞,𝒪. We define a 
function ℎ∗ from var(𝑝) to var(𝑞) by setting ℎ∗(𝑦) = 𝑥 for all 𝑦 ∈ var(𝑝) if ℎ(𝑦) is a trace 
that starts with 𝑥 ∈ var(𝑞).

Lemma 5.30. Let 𝒪 be an ℰℒ𝑟 ontology in normal form, 𝑝(𝑦) and 𝑞(𝑥) CQs such that 𝑞
is (𝑝, 𝒪)-minimal. If ℎ is a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦) = 𝑥, then var(𝑞) ⊆
img(ℎ∗).

 Proof. The proof is similar to the proof of Lemma 4.20.Let ℎ be a homomorphism 
as required and assume for the sake of showing a contradiction that there is an 
𝑥 ∈ var(𝑞) such that there is no 𝑦 ∈ var(𝑝) with ℎ∗(𝑦) = 𝑥. Let 𝑞′ = 𝑞−𝒪𝑥. We show that 
ℎ is also a homomorphism from 𝑝 to 𝒰𝑞′,𝒪 with ℎ(𝑦) = 𝑥, witnessing 𝑞′ ⊆𝒪 𝑝 which 
contradicts that 𝑞 is (𝑝, 𝒪)-minimality.

First, note that by definition of ℎ∗ and choice of 𝑥, there is no variable 𝑦 ∈ var(𝑝)
that is mapped by ℎ to a trace starting with 𝑥 in 𝒰𝑞,𝒪. Let 𝑥′𝑅𝑀 be a trace of 
length one in 𝒰𝑞,𝒪 with 𝑥′ ≠ 𝑥. By construction of 𝒰𝑞,𝒪 and normal form of 𝒪, the 
existence of 𝑥′𝑅𝑀 implies that there is a concept name 𝐴 such that 𝒜𝑞, 𝒪 ⊧ 𝐴(𝑥′)
and 𝒪 ⊧ 𝐴 ⊑ ∃𝑅.⊤. By construction of 𝑞′ it follows that 𝒜𝑞′, 𝒪 ⊧ 𝐴(𝑥′) and hence, 
𝑥′𝑅𝑀 is also a trace in 𝒰𝑞′,𝒪. Therefore, all traces in 𝒰𝑞,𝒪 that do not start with 𝑥′
also occur in 𝒰𝑞′,𝒪 and ℎ is a well-defined function from 𝑝 to 𝒰𝑞′,𝒪.

Let 𝐴(𝑦) be a concept atom in 𝑝. Since ℎ(𝑦) ∈ 𝐴𝒰𝑞,𝒪 and ℎ(𝑦) is not a trace starting 
with 𝑥, the construction of 𝑞′ implies that ℎ(𝑦) ∈ 𝐴𝒰𝑞′,𝒪. Let 𝑟(𝑦, 𝑦′) be a role atom in 
𝑝. Since ℎ(𝑦) and ℎ(𝑦′) both are not traces starting with 𝑥, (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞,𝒪 implies 
that (ℎ(𝑦), ℎ(𝑦′)) ∈ 𝑟𝒰𝑞′,𝒪. Therefore, ℎ is a homomorphism as required.

From Lemma 5.30, we also directly obtain an equivalent of Lemma 4.21 for 
disconnected queries that will be useful later.

Lemma 5.31. Let 𝒪 be an ℰℒ𝑟 ontology in normal form and 𝑞(𝑥0) a CQ that is (𝑞, 𝒪)-
minimal. For all homomorphisms ℎ from 𝑞 to 𝒰𝑞,𝒪 with ℎ(𝑥0) = 𝑥0, var(𝑞) = img(ℎ∗).

Using Lemma 5.30 we can now show that under ℰℒ𝑟 ontologies, even the length 
of generalization sequences of unrestricted CQs is bounded by a polynomial.

Theorem 5.32. Let 𝑞𝑇 be a CQ (that is possibly not rooted) and 𝒪 an ℰℒ𝑟 ontology in 
normal form, and let 𝑞1, 𝑞2, … be a generalization sequence towards 𝑞𝑇 under 𝒪. If all 𝑞𝑖 are 
(𝑞𝑇, 𝒪)-minimal, then the sequence has length at most 𝑝(|var(𝑞𝑇)| + |sig(𝒪)| + |sig(𝑞1)|) for 
some fixed polynomial 𝑝.

 Proof. This proof is similar to the one of Theorem 4.35, but does additional steps to 
handle queries that are not rooted.
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First, let 𝑞𝑖(𝑥𝑖) be any element of the sequence. Since 𝑞𝑖 ⊆𝒪 𝑞𝑇, there is a ho­
momorphism ℎ from 𝑞𝑇 to 𝒰𝑞𝑖,𝒪 with ℎ(𝑥) = 𝑥𝑖. Lemma 5.30 then implies that 
var(𝑞𝑖) ⊆ img(ℎ∗). As |img(ℎ∗)| ≤ |var(𝑞𝑇)|, it follows that |var(𝑞𝑖)| ≤ |var(𝑞𝑇)|.

Since for all 𝑖, 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 by definition of generalization sequences, we fix homo­
morphisms ℎ𝑖 from 𝑞𝑖+1 to 𝒰𝑞𝑖,𝒪 with ℎ(𝑥𝑖+1) = 𝑥𝑖.

Assume that for some 𝑞𝑖, there is an 𝑥 ∈ var(𝑞𝑖) with 𝑥 ∉ img(ℎ∗𝑖 ) and let ℎ′𝑖  be the 
extension of ℎ𝑖 to a homomorphism from 𝒰𝑞𝑖+1,𝒪 to 𝒰𝑞𝑖,𝒪 with ℎ′𝑖 (𝑥𝑖+1) = 𝑥𝑖 which 
exists by Lemma 3.8. Analogously to the proof of Theorem 4.35, we construct a 
homomorphism ℎ″𝑖  from 𝒰𝑞𝑖+1,𝒪 to 𝒰𝑞

−𝒪𝑥
𝑖 ,𝒪 with ℎ″𝑖 (𝑥𝑖+1) = 𝑥𝑖 and compose it with a 

homomorphism from 𝑞𝑇 to 𝒰𝑞𝑖+1,𝒪 to obtain a contradiction to (𝑞𝑇, 𝒪)-minimality of 
𝑞𝑖.

Therefore, var(𝑞𝑖) ⊆ img(ℎ∗𝑖 ) and |var(𝑞𝑖)| ≤ |var(𝑞𝑖+1)| for all 𝑖. We thus focus on 
subsequences 𝑞ℓ, … , 𝑞𝑘 such that |var(𝑞ℓ)| = ⋯ = |var(𝑞𝑘)| in order to show that the 
length of the entire generalization sequence is bounded. Note that for all 𝑖 with 
ℓ ≤ 𝑖 < 𝑘, the mapping ℎ∗𝑖  is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖). With 𝑉𝑖 we 
denote the set of all existential variables 𝑥 ∈ var(𝑞𝑖) which do not occur in a role 
atom in 𝑞𝑖, and define 𝑈𝑖 = var(𝑞𝑖) ⧵ 𝑉𝑖. Let us further denote with 𝑞𝑥 the restriction 
𝑞|{𝑥} of a query 𝑞 to a single variable 𝑥 ∈ var(𝑞). Using these sets, 𝑞𝑖 can be written as

𝑞𝑖(𝑥𝑖) ← 𝑞𝑖|𝑈𝑖 ∧ �
𝑥∈𝑉𝑖

𝑞𝑥𝑖 .

By definition, each 𝑞𝑥𝑖 , 𝑥 ∈ 𝑉𝑖 is a query without answer variables, as all answer 
variables are in 𝑈𝑖.

Claim 1. 𝑥 ∈ 𝑈𝑖+1 implies ℎ∗𝑖 (𝑥) ∈ 𝑈𝑖.

 Proof of Claim 1. Let 𝑥 ∈ 𝑈𝑖+1. If 𝑥 is an answer variable, then ℎ𝑖(𝑥) = ℎ∗𝑖 (𝑥) is an 
answer variable and thus in 𝑈𝑖. Suppose now that there is a role atom 𝑅(𝑥, 𝑦) in 𝑞𝑖+1
and consider the pair (ℎ𝑖(𝑥), ℎ𝑖(𝑦)) ∈ 𝑅𝒰𝑞𝑖,𝒪 which exists since ℎ𝑖 is a homomorphism. 
Since ℎ∗𝑖  is a bijection, either 𝑦 = 𝑥 or ℎ∗𝑖 (𝑦) ≠ ℎ∗𝑖 (𝑥).

• In the first case, we obtain 𝑅(𝑧, 𝑧) ∈ 𝒰𝑞𝑖,𝒪 for 𝑧 = ℎ𝑖(𝑥) = ℎ𝑖(𝑦). The definition 
of 𝒰𝑞𝑖,𝒪 yields 𝑧 ∈ var(𝑞𝑖), 𝑅(𝑧, 𝑧) occurs in 𝑞𝑖, and ℎ∗𝑖 (𝑥) = ℎ𝑖(𝑥) ∈ 𝑈𝑖.

• In the second case, we obtain ℎ∗𝑖 (𝑥) = ℎ𝑖(𝑥) ∈ var(𝑞𝑖), ℎ∗𝑖 (𝑦) = ℎ𝑖(𝑦) ∈ var(𝑞𝑖) using 
the definition of ℎ∗𝑖 , and 𝑅(ℎ𝑖(𝑥), ℎ𝑖(𝑦)) occurs in 𝑞𝑖. Hence, ℎ∗𝑖 (𝑥) ∈ 𝑈𝑖.

This completes the proof of Claim 1.

Claim 1 together with ℎ∗𝑖  being a bijection implies |𝑈𝑖+1| ≤ |𝑈𝑖| for every 𝑖 ∈ {ℓ, … , 𝑘}. 
We now consider subsequences 𝑞𝑚, … , 𝑞𝑛 of 𝑞ℓ, … , 𝑞𝑘 with |𝑈𝑚| = ⋯ = |𝑈𝑛| and thus 
|𝑉𝑚| = ⋯ = |𝑉𝑛|. Since |𝑈𝑖| ≤ |var(𝑞𝑇)|, for all 𝑖, it suffices to show that the length of 
such a sequence is bounded by a polynomial in |var(𝑞𝑇)| and |sig(𝒪)|.
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Claim 2. For every 𝑖 ∈ {𝑚, … , 𝑛 − 1},

1. ℎ∗𝑖  is a bijection between 𝑉𝑖+1 and 𝑉𝑖, and

2. ℎ𝑖 is a bijection between 𝑈𝑖+1 and 𝑈𝑖.

 Proof of Claim 2. Point 1 is a consequence of Claim 1 as well as the facts that |𝑉𝑖| =
|𝑉𝑖+1| and ℎ∗𝑖  is a bijection between var(𝑞𝑖+1) and var(𝑞𝑖).

For showing Point 2, assume for contradiction that there is some 𝑥 ∈ 𝑈𝑖 such 
that for every 𝑦 ∈ 𝑈𝑖+1, 𝑥 ≠ ℎ𝑖(𝑦). Then, since ℎ∗𝑖  is a bijection, there must be some 
𝑦 ∈ var(𝑞𝑖+1) such that ℎ∗𝑖 (𝑦) = 𝑥 and ℎ𝑖(𝑦) is strictly within the subtree rooted at 𝑥 in 
𝒰𝑞𝑖,𝒪, and this 𝑦 is unique. We consider the following cases.

If 𝑦 ∈ 𝑉𝑖+1, then 𝑥 ∈ 𝑉𝑖 by the first point, a contradiction. If 𝑦 is an answer variable, 
then ℎ𝑖(𝑦) is an answer variable, not a proper trace within the subtree rooted at 𝑥, a 
contradiction. If 𝑦 ∈ 𝑈𝑖+1 and 𝑦 is not an answer variable, there must be an atom 
𝑅(𝑦, 𝑧) ∈ 𝑞𝑖+1. Since ℎ𝑖(𝑦) is strictly below 𝑥, this leads to a contradiction as follows. 
If 𝑧 ≠ 𝑦, then ℎ∗𝑖 (𝑧) = ℎ∗𝑖 (𝑦) contradicts the fact that ℎ∗𝑖  is a bijection. If, on the other 
hand, 𝑧 = 𝑦, then ℎ𝑖 is not a homomorphism since there is no self-loop 𝑅(ℎ𝑖(𝑦), ℎ𝑖(𝑦))
in 𝒰𝑞𝑖,𝒪, by definition of universal models. This completes the proof of Claim 2.

Sanctioned by the first point in Claim 2, in what follows we assume for the sake 
of readability that ℎ∗𝑖 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑉𝑖+1 and 𝑖 ∈ {𝑚, … , 𝑛}. Hence, 𝑉𝑚 = ⋯ = 𝑉𝑛. 
Now, observe that since 𝑞𝑖+1 ⊈𝒪 𝑞𝑖, for all 𝑖 ∈ {𝑚, … , 𝑛 − 1} one of the following must 
be the case:

1. the inverse of ℎ𝑖 is not a homomorphism from 𝒰𝑞𝑖,𝒪|𝑈𝑖 to 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1;

2. there is some 𝑥 ∈ 𝑉𝑖+1 such that 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 .

Indeed, if neither Point 1 nor Point 2 is satisfied then 𝑞𝑖 ≡𝒪 𝑞𝑖+1, in contradiction to 
the definition of generalization sequences. It thus remains to bound the number of 
times each of these points can be satisfied along 𝑞𝑚, … , 𝑞𝑛. For a finite interpretation 
ℐ we mean the number of occurrences of concept and role names to refer to

�
𝐴∈NC

|𝐴ℐ| + �
𝑟∈NR

|𝑟ℐ|.

The following two claims bound Point 1 and Point 2, respectively.

Claim 3. The number of 𝑖 ∈ {𝑚, … , 𝑛}, such that the inverse of ℎ𝑖 is not a homomor­
phism from 𝒰𝑞𝑖,𝒪|𝑈𝑖 to 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1, is at most 2 ⋅ |var(𝑞𝑇)|2 ⋅ (|sig(𝒪)| + |sig(𝑞1)|).

 Proof of Claim 3. Let 𝑖 be as in the claim. By Point 2 of Claim 2, ℎ𝑖 is a bijective 
homomorphism from 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1 to 𝒰𝑞𝑖,𝒪|𝑈𝑖. Hence, the number 𝑛𝑖+1 of occurrences 
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of concept and role names in 𝒰𝑞𝑖+1,𝒪|𝑈𝑖+1 is at most the number 𝑛𝑖 of occurrences of 
concept and role names in 𝒰𝑞𝑖,𝒪|𝑈𝑖. As the inverse of ℎ𝑖 is not a homomorphism, we 
have 𝑛𝑖+1 < 𝑛𝑖. Since the number of occurrences of concept and role names in 𝒰𝑞𝑖,𝒪
is bounded by

(|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|2 + (|sig(𝒪)| + |sig(𝑞1)|) ⋅ |var(𝑞𝑇)|,

the claim follows. This completes the proof of Claim 3.

Claim 4. Let 𝑥 ∈ 𝑉𝑚. The number of 𝑖 ∈ {𝑚, … , 𝑛 − 1} such that 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖  is at most 
(|sig(𝒪)| + |sig(𝑞1)|)

2.

 Proof of Claim 4. Let 𝑖 ∈ {𝑚, … , 𝑛 − 1} with 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 . We distinguish two cases.

(A) ℎ𝑖(𝑥) = 𝑥.

Since ℎ𝑖 is a homomorphism, the number 𝑛𝑖+1 of occurrences of concept and 
role names 𝒰𝑥

𝑞𝑖+1,𝒪 is at most the number 𝑛𝑖 of occurrences of concept and role 
names in 𝒰𝑥

𝑞𝑖,𝒪. From 𝑞𝑥𝑖+1 ⊈𝒪 𝑞𝑥𝑖 , it follows that 𝑛𝑖+1 < 𝑛𝑖.

(B) ℎ𝑖(𝑥) ≠ 𝑥, that is, ℎ𝑖(𝑥) is strictly within the subtree below 𝑥.

By definition of the universal model and since 𝒪 is an ℰℒ𝑟 ontology in normal 
form, there is an atom 𝐴(𝑥) in 𝑞𝑥𝑖  such that there is a homomorphism from 𝑞𝑥𝑖+1
to 𝒰{𝐴(𝑎)},𝒪. We claim that 𝐴(𝑥) is not an atom in any query 𝑞𝑥𝑗  with 𝑖 < 𝑗 ≤ 𝑛−1. 
Indeed, if 𝐴(𝑥) occurs in 𝑞𝑥𝑗  for such 𝑗, then 𝑞𝑥𝑗 ⊆𝒪 𝑞𝑥𝑖+1. The homomorphisms 
ℎ𝑖, … , ℎ𝑗 witness that 𝑞𝑥𝑖 ⊆𝒪 𝑞𝑥𝑖+1 ⊆𝒪 ⋯ ⊆𝒪 𝑞𝑥𝑗 , and thus all these queries are 
actually equivalent, in contradiction to the choice of 𝑖.

Observe that Point (A) can only happen |sig(𝒪)| + |sig(𝑞1)| times, without Point (B) 
happening in between. Moreover, Point (B) can only happen |sig(𝒪)| times overall. 
This completes the proof of Claim 4.

Since |𝑉𝑚| ≤ |var(𝑞𝑇)|, we obtain from Claims 3 and 4 that the length of the 
sequence 𝑞𝑚, … , 𝑞𝑛 is bounded by a polynomial in |var(𝑞𝑇)|, |sig(𝒪)|, and |sig(𝑞1)|.

As seen in Example 4.36 and the proof of Theorem 5.32, Boolean components of 
queries that are mapped into proper traces of the universal model have the potential 
to cause long generalization sequences. Fortunately, the universal model of ℰℒ𝑟

ontologies is simple enough such that even sequences of CQs that are not rooted 
must approach 𝑞𝑇 after a polynomial number of steps.
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Extracting Chordal and Symmetry-free CQs

It remains to describe how a new hypothesis can be extracted from 𝒞𝑞𝐻,𝒪 × 𝒞𝒜,𝒪, 
that belongs to the desired query class. In Section 4.5, we defined the subroutine 
extractELIQ to obtain a new ELIQ hypothesis from an arbitrary CQ 𝑞 with 𝑞 ⊆𝒪 𝑞𝑇
using membership queries. For learning ELIQsf or CQcsf queries, extractELIQ does 
not suffice, as the result of extractELIQ may contain non-safe symmetries, and chordal 
cycles are removed. We thus need a new subroutine that obtains a hypothesis from 
ELIQsf or CQcsf by properly handling symmetries, chordal cycles and queries of 
higher arity.

As we will see, handling non-unary CQs is not trivial. The subroutine that we 
define in this section will only handle CQs of fixed (but arbitrary) arity. We write 
CQcsf

𝑤  with 𝑤 ≥ 0 to refer to the class of CQcsf queries with exactly 𝑤 answer variables. 
For every class 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf

𝑤 ∣ 𝑤 ≥ 0}, we define a subroutine 
extract𝒬. It takes as input the ontology 𝒪 and a CQ 𝑞(𝑥) of the right arity such that 
𝑞 ⊆𝒪 𝑞𝑇 and produces a query 𝑝(𝑦) ∈ 𝒬 such that 𝑞 ⊆𝒪 𝑝 ⊆𝒪 𝑞𝑇 and 𝑝 is (𝑞𝑇, 𝒪)-
minimal. To describe the workings of extract𝒬, we define the notion of a forbidden 
cycle, depending on the query class 𝒬. If 𝒬 ∈ {ELQ,ELIQsf}, then every cycle is 
forbidden. If 𝒬 = CQcsf

𝑤  for some 𝑤 ≥ 0, then every chordless cycle of length at least 
four that contains at least one existential variable is forbidden.

The subroutine extract𝒬 starts by setting 𝑝(𝑦) = minimize𝒪(𝑞) and then exhaus­
tively applies the following operations.

Expand cycle. Choose a forbidden cycle 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) in 𝑝, and introduce 
fresh variables 𝑥′1, … , 𝑥′𝑛. Then

1. remove all atoms of the form 𝑅(𝑥𝑛, 𝑥1),
2. add the atom 𝐴(𝑥′𝑖 ) for all 𝐴(𝑥𝑖) ∈ 𝑝 and 1 ≤ 𝑖 ≤ 𝑛,
3. add 𝑅(𝑥′𝑖 , 𝑦) for all 𝑅(𝑥𝑖, 𝑦) ∈ 𝑝 with 1 ≤ 𝑖 ≤ 𝑛 and 𝑦 ∈ var(𝑝) ⧵ {𝑥1, … , 𝑥𝑛},
4. add 𝑅(𝑥′𝑖 , 𝑥′𝑗 ) for all 𝑅(𝑥𝑖, 𝑥𝑗) ∈ 𝑝 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and {𝑖, 𝑗} ≠ {1, 𝑛},
5. add 𝑅(𝑥𝑛, 𝑥′1) and 𝑅(𝑥′𝑛, 𝑥1) for all 𝑅(𝑥𝑛, 𝑥1) ∈ 𝑝.

Let 𝑌 be the set of tuples obtained from 𝑦 = (𝑦1, … , 𝑦𝑤) by replacing any 
number of components 𝑦𝑗 with 𝑦′𝑗 . Use membership queries to identify a 
𝑦′ ∈ 𝑌 such that 𝒜𝑝, 𝒪 ⊧ 𝑞𝑇(𝑦′). Use this tuple 𝑦′ as the new answer variables 
of 𝑝. Apply minimize𝒪 to the result.

Split symmetry. Choose a symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑝(𝑦) that is not safe. Introduce 
a fresh variable 𝑥′, add atoms 𝐴(𝑥′) for all 𝐴(𝑥) ∈ 𝑝 and 𝑆(𝑦, 𝑥′) for all atoms 
𝑆(𝑦, 𝑥) ∈ 𝑝 with 𝑆(𝑦, 𝑥) ≠ 𝑟(𝑦1, 𝑥). Remove the atom 𝑟(𝑦2, 𝑥). Apply minimize𝒪
to the result.
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Figure 5.7: An application of Expand cycle. The chosen cycle is marked in green.
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Figure 5.8: An application of Split symmetry. The chosen symmetry is marked in 
green.

Note that the running time of Expand cycle and the number of membership queries 
it performs depend exponentially on the arity of 𝑞𝑇. Expand cycle is not the same 
operation as Double cycle from Section 4.5, as Expand cycle needs to be more careful 
to preserve matches from CQcsf queries and handle non-unary queries. We refer to 
the fresh variables 𝑥′1, … , 𝑥′𝑛 introduced by Expand cycle as copies of 𝑥1, … , 𝑥𝑛.

Example 5.33. Consider the CQ 𝑝1 displayed in Figure 5.7 and assume 𝒬 = ELIQsf. 
It contains the cycle 𝑠(𝑥1, 𝑥2), 𝑟(𝑥2, 𝑥3), 𝑡(𝑥3, 𝑥1), which is forbidden for ELIQsf queries. 
Applying Expand cycle to this cycle results in the CQ 𝑝2 displayed in Figure 5.7, 
to which minimize𝒪 is then applied. Compared to the operation Double cycle in 
Example 4.38, variables that are not on the cycle are not duplicated. This makes 
some roles that were functional in 𝑝1 no longer functional in 𝑝2.

The exhaustive application of the second operation Split symmetry eliminates all 
non-safe symmetries, and thus produces a symmetry-free query.

Example 5.34. The Boolean CQ 𝑝1 displayed in Figure 5.8 contains a non-safe 
symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥). To eliminate it, Split symmetry first produces the CQ 
𝑝2 displayed in Figure 5.8 and then applies minimize𝒪. Note that 𝑝2 contains a 
new non-safe symmetry, namely 𝑠(𝑥, 𝑦3), 𝑠(𝑥′, 𝑦3). We later show that although new 
symmetries can be created, Split symmetry can only be applied a polynomial number 
of times.
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Before we show that extract𝒬 runs in polynomial time and that it indeed produces 
a query from 𝒬, we first analyze the two operations that extract𝒬 applies. We begin 
with Expand cycle.

Lemma 5.35. Let 𝑝 be a CQ and 𝑝′ the result of applying Expand cycle to 𝑝, but before 
minimization. Then,

1. 𝑝′, 𝑥 ⪯ℰℒ 𝑝, 𝑥 and 𝑝, 𝑥 ⪯ℰℒ 𝑝′, 𝑥 for all 𝑥 ∈ var(𝑝), and

2. 𝑝′, 𝑥′ ⪯ℰℒ 𝑝, 𝑥 and 𝑝, 𝑥 ⪯ℰℒ 𝑝′, 𝑥′ for all variables 𝑥′ that are copies of 𝑥.

 Proof. This can be shown using the simulation

𝑆 = {(𝑥, 𝑥) ∈ var(𝑝)2} ∪ {(𝑥, 𝑥′) ∈ var(𝑝) × var(𝑝′) ∣ 𝑥′ is a copy of 𝑥}

from 𝑝 to 𝑝′ and its inverse 𝑆− which is a simulation from 𝑝′ to 𝑝.

Lemma 5.36. Let 𝑞𝑇 ∈ 𝒬, 𝑞(𝑥) be a (𝑞𝑇, 𝒪)-minimal CQ and 𝑝(𝑦) the result of applying
Expand cycle to 𝑞, but before minimization. Then

1. 𝑞 ⊆𝒪 𝑝,

2. 𝑝 ⊈𝒪 𝑞, and

3. if 𝑞 ⊆𝒪 𝑞𝑇, then 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Proving the first two points is very similar to the proof of Lemma 4.41.
For showing Point 1, we define the natural mapping ℎ from var(𝑝) to var(𝑞) by 

setting ℎ(𝑥) = 𝑥 for all original variables 𝑥 and ℎ(𝑥′) = 𝑥 for all newly introduced 
copies 𝑥′ of variables 𝑥. By construction of 𝑝, ℎ is a homomorphism from 𝑝 to 𝑞 with 
ℎ(𝑦) = 𝑥. It is also a homomorphism from 𝑝 to 𝒰𝑞,𝒪 and therefore 𝑞 ⊆𝒪 𝑝.

In order to show Point 2, assume to the contrary that 𝑝 ⊆𝒪 𝑞. Then, there is a 
homomorphism 𝑔 from 𝑞 to 𝒰𝑝,𝒪 with 𝑔(𝑥) = 𝑦. Composing 𝑔 with the extension 
ℎ+ of ℎ to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪, which exists by Lemma 3.8, yields 
a homomorphism �𝑔 from 𝑞 to 𝒰𝑞,𝒪 with �𝑔(𝑥) = 𝑥. From Lemma 5.31 and (𝑞, 𝒪)-
minimality of 𝑞 it follows that �𝑔∗ must be injective, which implies that �𝑔 must be 
injective.

Let 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1) be the cycle that was expanded in the construction of 
𝑝 and consider the set Γ of all sets of variables that form a cycle of length 𝑛 in 𝒰𝑝𝑖,𝒪. 
For example, {𝑦1, … , 𝑦𝑛} ∈ Γ.

Let {𝑥1, … , 𝑥𝑛} be any element of Γ. We show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ. If for some 
𝑥𝑖, �𝑔(𝑥𝑖) is a proper trace in 𝒰𝑞,𝒪, then �𝑔∗ is not injective, a contradiction. Since 
�𝑔 is a homomorphism, there is an atom 𝑅(�𝑔(𝑥𝑖), �𝑔(𝑥𝑖+1)) ∈ 𝑞 if there is an atom 
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𝑅(𝑥𝑖, 𝑥𝑖+1) ∈ 𝑞. Thus, in order to show that {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)} ∈ Γ, it suffices to show 
that �𝑔(𝑥1), … , �𝑔(𝑥𝑛) are all pairwise different. Assume the contrary. Then there are 
𝑥𝑗 and 𝑥𝑘 with 𝑥𝑗 ≠ 𝑥𝑘 and �𝑔(𝑥𝑗) = �𝑔(𝑥𝑘), implying that �𝑔 is not injective. This in turn 
implies that �𝑔∗ is not injective, a contradiction.

Hence, we can define a function 𝑓∶ Γ → Γ by setting

𝑓({𝑥1, … , 𝑥𝑛}) = {�𝑔(𝑥1), … , �𝑔(𝑥𝑛)}

for all {𝑥1, … , 𝑥𝑛} ∈ Γ. Assume that there are sets 𝛾, 𝛾′ ∈ Γ with 𝛾 ≠ 𝛾′ and 𝑓(𝛾) =
𝑓(𝛾′). Since 𝛾 ≠ 𝛾′ and |𝛾| = |𝛾′|, there must be a variable 𝑥 ∈ 𝛾 with 𝑥 ∉ 𝛾′. Since 
𝑓(𝛾) = 𝑓(𝛾′), there is a variable 𝑥′ ∈ 𝛾′ with �𝑔(𝑥) = �𝑔(𝑥′), and clearly 𝑥′ ≠ 𝑥, a 
contradiction. Therefore, 𝑓 is a bijection from Γ to Γ.

Since Γ is finite, it follows that there must be a 𝑗 ≥ 1 such that 𝑓𝑗({𝑦1, … , 𝑦𝑛}) =
{𝑦1, … , 𝑦𝑛}. By definition of 𝑓, this implies that {�𝑔𝑗(𝑦1), … , �𝑔𝑗(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. Recall 
that �𝑔 is the composition of the homomorphism 𝑔 from 𝑞 to 𝒰𝑝,𝒪 and the homomor­
phism ℎ+ from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪. Since (𝑞𝑇, 𝒪)-minimality of 𝑞 implies that �𝑔 is injective 
by Lemma 4.21, 𝑔 must also be injective. Thus, composing �𝑔𝑗−1 and 𝑔 yields an 
injective homomorphism 𝑔′ that maps the cycle {𝑦1, … , 𝑦𝑛} in 𝑞 to some subset of 
the expanded cycle {𝑦1, 𝑦′1, … , 𝑦𝑛, 𝑦′𝑛} in 𝒰𝑝,𝒪. We distinguish cases.

First, consider the case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦1, … , 𝑦𝑛}. By the construction 
of 𝑝 from 𝑞, the restriction of 𝒰𝑝′𝑖 ,𝒪 to {𝑦1, … , 𝑦𝑛} contains one less role than the 
restriction of 𝒰𝑝𝑖,𝒪 to {𝑦1, … , 𝑦𝑛}, implying that 𝑔′ cannot be an injective homomor­
phism, leading to a contradiction. The case where {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} = {𝑦′1, … , 𝑦′𝑛} is 
analogous.

The remaining case is that {𝑔′(𝑦1), … , 𝑔′(𝑦𝑛)} contains both variables of the form 𝑦𝑗
and 𝑦′𝑗 . Then, there must be two different atoms in the cycle 𝑅1(𝑦1, 𝑦2), … , 𝑅𝑛(𝑦𝑛, 𝑦1)
that are mapped by 𝑔′ to the role atoms 𝑟(𝑥, 𝑦′), 𝑟(𝑥′, 𝑦) that were added by Expand 
cycle to connect the disjoint copy of 𝑞. However, since ℎ(𝑥′) = ℎ(𝑥) and ℎ(𝑦′) = ℎ(𝑦), 
this implies that the composition of 𝑔′ and ℎ+ is a non-injective homomorphism 
from 𝑞 to 𝒰𝑞,𝒪, again contradicting (𝑞𝑇, 𝒪)-minimality of 𝑞.

To show Point 3, let 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥1) ∈ 𝑞 be the cycle that was expanded 
during construction of 𝑝 from 𝑞(𝑥), and let ℎ be a homomorphism from 𝑞𝑇(𝑥0) to 𝒰𝑞,𝒪
with ℎ(𝑥0) = 𝑥. We construct a homomorphism 𝑔 from 𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥′ for 
some 𝑥′ ∈ 𝑌. For this, we partition var(𝑞𝑇) into sets 𝑀0, 𝑀1, 𝑀2 such that:

• 𝑥 ∈ 𝑀0 if ℎ(𝑥) ∈ {𝑥1, … , 𝑥𝑛}, that is, ℎ(𝑥) lies on the expanded cycle;

• 𝑥 ∈ 𝑀1 if ℎ(𝑥) ∉ var(𝑞), that is, ℎ(𝑥) is a proper trace in 𝒰𝑞,𝒪 generated by 
existential quantification;

• all other variables are in 𝑀2.
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We start by setting
𝑔(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝑀2.

To define 𝑔(𝑥) for the variables in 𝑥 ∈ 𝑀0, we first construct an auxiliary query 
𝑞′𝑇, that takes the form of a disjoint union of not necessarily directed trees with 
multi-edges and self-loops1. If 𝒬 ∈ {ELQ,ELIQsf}, then 𝑞′𝑇 is simply 𝑞𝑇. If 𝒬 = CQcsf

𝑤 , 
then 𝑞′𝑇 is obtained by starting with the restriction of 𝑞𝑇 to the variables in 𝑀0 and 
then exhaustively choosing and identifying variables 𝑥, 𝑥′ such that

1. there is a cycle 𝑅0(𝑦0, 𝑦1), 𝑅1(𝑦1, 𝑦2), 𝑅3(𝑦2, 𝑦0) with {𝑥, 𝑥′} ⊆ {𝑦0, 𝑦1, 𝑦2} ⊆ 𝑀0
and,

2. ℎ(𝑥) = ℎ(𝑥′).

Note that this process may also identify answer variables. The result of identifying 
an answer variable and an existential variable is an answer variable.

Next, we observe that since 𝑞𝑇 is chordal, all CQs 𝑞𝑇 = 𝑝1, … , 𝑝𝑘 = 𝑞′𝑇 encountered 
during the construction of 𝑞′𝑇 are chordal as well. We show this by induction on 
the index 𝑖 of the CQ 𝑝𝑖. In the induction start, it follows directly that 𝑝1 is chordal, 
since 𝑞𝑇 is chordal. In the induction step, assume that 𝑝𝑖 contains a forbidden cycle 
𝐶 = 𝑆1(𝑧1, 𝑧2), … , 𝑆𝑛(𝑧𝑛, 𝑧1) of length at least four containing at least one existential 
variable. Then 𝑝𝑖−1 contains 𝐶 or a cycle 𝐶′ that can be obtained from 𝐶 by replacing 
some edge 𝑆𝑗(𝑧𝑗, 𝑧𝑗+1) with two edges 𝑆𝑗,1(𝑧𝑗, 𝑢), 𝑆𝑗,2(𝑢, 𝑧𝑗+1) because 𝑢 and 𝑧𝑗+1 were 
identified when constructing 𝑝𝑖. In the first case, 𝐶 has a chord in 𝑝𝑖−1 and thus also 
in 𝑝𝑖. In the second case, 𝐶′ contains at least one existential variable since 𝐶 does 
and consequently has a chord in 𝑝𝑖−1. If this chord is not between 𝑧𝑗 and 𝑧𝑗+1, then 
𝐶 contains a chord in 𝑝. If the chord is between 𝑧𝑗 and 𝑧𝑗+1, then we are in the first 
case.

We now show that 𝑞′𝑇 takes the form of a disjoint union of not necessarily directed 
trees with multi-edges and self loops. Assume to the contrary that 𝑞′𝑇 contains 
a cycle 𝐶 of length exceeding 2. If there is an existential variable 𝑥 on 𝐶, then 𝑞′𝑇
being chordal implies that 𝑥 occurs on a cycle of length 3, in contradiction to the 
construction of 𝑞′𝑇. Now assume that there is no existential variable on 𝐶. As the 
image of 𝐶 under ℎ is a cycle in 𝒰𝑞,𝒪 and the cycle chosen by the Expand cycle step 
is chordless, the image of 𝐶 under ℎ must contain all variables {𝑥1, … , 𝑥𝑛}. Since all 
variables on 𝐶 are answer variables, this means that all variables in 𝑀0 are from 𝑥, 
in contradiction to the fact that {𝑥1, … , 𝑥𝑛} contains at least one existential variable.

This finishes the construction of 𝑞′𝑇. For defining 𝑔(𝑥) for the variables 𝑥 ∈ var(𝑞′𝑇), 
we start at some arbitrary variable in each tree in 𝑞′𝑇 and then follow the tree 

1Or alternatively: has treewidth 1.
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structure, switching between the variables 𝑥1, … , 𝑥𝑛 and their copies 𝑥′1, … , 𝑥′𝑛 as 
necessary. Next, we make this precise.

For each connected component of 𝑞′𝑇, choose an arbitrary variable 𝑧 from that 
component and set 𝑔(𝑧) = ℎ(𝑧). Then, exhaustively apply the following rule: if 𝑞′𝑇
contains an atom 𝑅(𝑥, 𝑦) with 𝑔(𝑦) defined and 𝑔(𝑥) undefined, set

• 𝑔(𝑥) = ℎ(𝑥) if 𝑔(𝑦) = 𝑥𝑖 and either ℎ(𝑥) = 𝑥𝑖+1 and 𝑖 < 𝑛 or ℎ(𝑥) = 𝑥𝑖−1 and 𝑖 > 0;

• 𝑔(𝑥) = ℎ(𝑥)′ if 𝑔(𝑦) = 𝑥′𝑖  and either ℎ(𝑥) = 𝑥𝑖+1 and 𝑖 < 𝑛 or ℎ(𝑥) = 𝑥𝑖−1 and 𝑖 > 0;

• 𝑔(𝑥) = 𝑥′1 if 𝑔(𝑦) = 𝑥𝑛 and ℎ(𝑥) = 𝑥1;

• 𝑔(𝑥) = 𝑥1 if 𝑔(𝑦) = 𝑥′𝑛 and ℎ(𝑥) = 𝑥1;

• 𝑔(𝑥) = 𝑥′𝑛 if 𝑔(𝑦) = 𝑥1 and ℎ(𝑥) = 𝑥𝑛;

• 𝑔(𝑥) = 𝑥𝑛 if 𝑔(𝑦) = 𝑥′1 and ℎ(𝑥) = 𝑥𝑛.

It can be verified that by construction of 𝑝 in all cases 𝑅(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑝. Next, 
we extend 𝑔 to all variables in 𝑀0 by setting 𝑔(𝑦) = 𝑔(𝑥) if 𝑦 was identified with 
𝑥 ∈ var(𝑞′𝑇) during the construction of 𝑞′𝑇 (note that this implies ℎ(𝑦) = ℎ(𝑥)).

It remains to define 𝑔(𝑥) for the variables 𝑥 ∈ 𝑀1. By definition of 𝑀1, ℎ(𝑥) is a 
trace 𝑦𝑤 with 𝑦 ∈ var(𝑞) and 𝑤 ≠ 𝜀, that is, 𝑥 is mapped in 𝒰𝑞,𝒪 to a proper trace 
that starts with 𝑦. Now do the following:

• if there is a path in 𝑞𝑇 from some variable 𝑧 ∈ 𝑀0 to 𝑥, then choose a 𝑧 such 
that the path is shortest (thus, ℎ(𝑧) = 𝑦 and 𝑔(𝑧) has already been defined) 
and set 𝑔(𝑥) = 𝑔(𝑧)𝑤;

• otherwise, set 𝑔(𝑥) = ℎ(𝑥).

This is well-defined, since

1. for each 𝑦 ∈ var(𝑞), the subtrees below 𝑦 in 𝒰𝑞,𝒪 and in 𝒰𝑝,𝒪 are identical,

2. for 1 ≤ 𝑖 ≤ 𝑛, the subtree below 𝑥𝑖 in 𝒰𝑞,𝒪 and the subtree below 𝑥′𝑖  in 𝒰𝑝,𝒪
are identical,

due to Lemma 5.35.
This completes the definition of 𝑔. By definition of 𝑔, it follows that 𝑔(𝑥) ∈

{ℎ(𝑥), ℎ(𝑥)′} for all 𝑥 ∈ 𝑀0 and 𝑔(𝑥0) ∈ 𝑌 as announced. Set 𝑦 = 𝑔(𝑥0). To prove that 
𝑝(𝑦) ⊆𝒪 𝑞𝑇(𝑥0) it remains to show that 𝑔 is a homomorphism from 𝑞𝑇 to 𝒰𝑝,𝒪.

First, let 𝐴(𝑥) be a concept atom in 𝑞𝑇. Then ℎ(𝑥) ∈ 𝐴𝒰𝑞,𝒪. By Lemma 5.35 and the 
definition of 𝒰𝑝,𝒪, it then follows that 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪.

Now let 𝑅(𝑧1, 𝑧2) be a role atom in 𝑞𝑇. We distinguish cases according to 𝑧1, 𝑧2
belonging to 𝑀0, 𝑀1, 𝑀2:
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• If 𝑧1, 𝑧2 ∈ 𝑀0, then 𝑞′𝑇 contains an atom 𝑅(𝑧′1, 𝑧′2) such that each 𝑧𝑖 was identified 
with 𝑧′𝑖  during the construction of 𝑞′𝑇. If 𝑧′1 ≠ 𝑧′2, then 𝑅(𝑔(𝑧′1), 𝑔(𝑧′2)) ∈ 𝑝, as 
argued in the definition of 𝑔 for variables from 𝑞′𝑇. If 𝑧′1 = 𝑧′2, the same is true 
due to the construction of 𝑝. In both cases, 𝑔(𝑧𝑖) = 𝑔(𝑧′𝑖 ) for 𝑖 ∈ {1, 2}. Thus, 
(𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪, as required.

• If 𝑧1, 𝑧2 ∈ 𝑀1, then ℎ(𝑧1) = 𝑦𝑣 and ℎ(𝑧2) = 𝑦𝑤 for some 𝑦 ∈ var(𝑞) and some 
non-empty sequences 𝑣, 𝑤, and (ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪. By definition of 𝑔, we 
have 𝑔(𝑧1) = �𝑦𝑣 and 𝑔(𝑧2) = �𝑦𝑤 for some �𝑦 ∈ {𝑦, 𝑦′}. By Lemma 5.35, the 
subtree below �𝑦 in 𝒰𝑝,𝒪 is identical to the subtree below 𝑦 in 𝒰𝑞,𝒪. This 
implies (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1, 𝑧2 ∈ 𝑀2, then 𝑔(𝑧1) = ℎ(𝑧1), 𝑔(𝑧2) = ℎ(𝑧2), and 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑞 because ℎ
is a homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪 and ℎ(𝑧1), ℎ(𝑧2) ∈ var(𝑞). Since, addition­
ally, ℎ(𝑧1), ℎ(𝑧2) ∉ {𝑥1, … , 𝑥𝑛}, 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑝 and thus (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀0 and 𝑧2 ∈ 𝑀1, then ℎ(𝑧1) ∈ {𝑥1, … , 𝑥𝑛} and ℎ(𝑧2) takes the form 
ℎ(𝑧1)𝑟𝑀. Moreover, 𝑔(𝑧1) ∈ {ℎ(𝑧1), ℎ(𝑧1)′} and 𝑔(𝑧2) = 𝑔(𝑧1)𝑟𝑀. It thus follows 
from Lemma 5.35 that (ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑅𝒰𝑞,𝒪 and from the construction of 
universal models that (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀0 and 𝑧2 ∈ 𝑀2, then ℎ(𝑧1) ∈ {𝑥1, … , 𝑥𝑛} and ℎ(𝑧2) ∈ var(𝑞) ⧵ {𝑥1, … , 𝑥𝑛}. 
Moreover, 𝑔(𝑧1) ∈ {ℎ(𝑧1), ℎ(𝑧1)′} and 𝑔(𝑧2) = ℎ(𝑧2). It follows from (ℎ(𝑧1), ℎ(𝑧2)) ∈
𝑅𝒰𝑞,𝒪 that 𝑅(ℎ(𝑧1), ℎ(𝑧2)) ∈ 𝑞. By construction of 𝑝, we thus have 𝑅(𝑔(𝑧1), 𝑔(𝑧2)) ∈
𝑝 and (𝑔(𝑧1), 𝑔(𝑧2)) ∈ 𝑅𝒰𝑝,𝒪.

• If 𝑧1 ∈ 𝑀1, 𝑧2 ∈ 𝑀2, then ℎ(𝑧2) ∈ var(𝑞) ⧵ {𝑥1, … , 𝑥𝑛}, ℎ(𝑧1) takes the form 
ℎ(𝑧2)𝑟𝑀 and 𝑅 = 𝑟−. Moreover, 𝑔(𝑧𝑖) = ℎ(𝑧𝑖) for 𝑖 ∈ {1, 2} and it remains to use 
Lemma 5.35 as in previous cases.

We continue with the properties of Split symmetry.

Lemma 5.37. Let 𝑞(𝑥) be a (𝑞𝑇, 𝒪)-minimal CQ and 𝑝(𝑦) the result of applying Split 
symmetry to 𝑞, but before minimization. Then

1. 𝑞 ⊆𝒪 𝑝,

2. 𝑝 ⊈𝒪 𝑞, and

3. if 𝑞 ⊆𝒪 𝑞𝑇, then 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Let 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) be the non-safe symmetry that is split during the applica­
tion of Split symmetry. In order to show Point 1, we define a homomorphism ℎ from 
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𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑦) = 𝑥. Set ℎ(𝑧) = 𝑧 for all 𝑧 ∈ var(𝑞) and ℎ(𝑥′) = 𝑥. By construction 
of 𝑝, ℎ is a homomorphism, as required.

To show Point 2, assume for contradiction that 𝑝 ⊆𝒪 𝑞 and let 𝑔 be a homomor­
phism from 𝑞 to 𝒰𝑝,𝒪 with 𝑔(𝑥) = 𝑦. Let ℎ+ be the extension of the homomorphism 
ℎ to a homomorphism from 𝒰𝑝,𝒪 to 𝒰𝑞,𝒪 with ℎ+(𝑦) = 𝑥, which exists by Lemma 3.8. 
The composition �𝑔 of 𝑔 and ℎ+ is then a homomorphism from 𝑞 to 𝒰𝑞,𝒪 with �𝑔(𝑥) = 𝑥. 
By Lemma 5.31, �𝑔∗ must be injective, which implies that �𝑔 is injective. Therefore, 
every symmetry 𝑟′(𝑧1, 𝑧), 𝑟′(𝑧2, 𝑧) in 𝑞 must be mapped by �𝑔 to some symmetry in 𝑞, 
such that no two different symmetries are mapped to the same symmetry. Finiteness 
of 𝑞 then implies that there must be a symmetry 𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞 with �𝑔(𝑧) = 𝑥, 
�𝑔(𝑧1) = 𝑦1 and �𝑔(𝑧2) = 𝑦2. But this implies 𝑔(𝑧) = 𝑥 ∈ var(𝑝) or 𝑔(𝑧) = 𝑥′ ∈ var(𝑝). 
In the first case, (𝑔(𝑧2), 𝑔(𝑧)) ∉ 𝑟𝒰𝑝,𝒪 by construction of 𝑝, contradicting that 𝑔 is a 
homomorphism. In the second case, (𝑔(𝑧1), 𝑔(𝑧)) ∉ 𝑟𝒰𝑝,𝒪 by construction of 𝑝, again 
contradicting that 𝑔 is a homomorphism. Hence, 𝑝 ⊈𝒪 𝑞.

For Point 3, assume for contradiction that 𝑞 ⊆𝒪 𝑞𝑇 and 𝑝 ⊈𝒪 𝑞𝑇. Let ℎ be a 
homomorphism from 𝑞𝑇 to 𝒰𝑞,𝒪 with ℎ(𝑥0) = 𝑥. Since 𝑝 ⊈𝒪 𝑞𝑇, there must be atoms 
𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞𝑇 with ℎ(𝑧1) = 𝑦1, ℎ(𝑧2) = 𝑦2 and ℎ(𝑧) = 𝑥. These atoms must 
form a safe symmetry, since 𝑞𝑇 is symmetry-free. The atoms 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑞, 
however, must form a non-safe symmetry, as Split symmetry chose this symmetry. 
Consider the reason for 𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧) ∈ 𝑞𝑇 being a safe symmetry. If 𝑧 is an answer 
variable, then 𝑥 must also be an answer variable, meaning that 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is 
safe, a contradiction. If 𝑟(𝑧1, 𝑧) or 𝑟(𝑧2, 𝑧) occur on a cycle, then, by chordality of 𝑞𝑇, 
the same atom also occurs on a cycle of length 3. Since ℎ is a homomorphism, this 
implies that either 𝑟(𝑦1, 𝑥) or 𝑟(𝑦2, 𝑥) also occur on a cycle, or that there is an atom 
𝑠(𝑦1, 𝑦1), 𝑠(𝑥, 𝑥) or 𝑠(𝑦2, 𝑦2). In all cases, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is safe, again contradicting 
non-safety. If there is an atom 𝑠(𝑧1, 𝑧1), 𝑠(𝑧, 𝑧), or 𝑠(𝑧2, 𝑧2), the same atom must exist 
in 𝑞 since ℎ is a homomorphism, again contradicting that 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is not safe.

If no atom of the symmetry occurs on a cycle and 𝑥0 consists of a single answer 
variable �𝑥, and additionally dist(�𝑥, 𝑧) ≠ ∞ and dist(�𝑥, 𝑧) + 1 = dist(�𝑥, 𝑧1) = dist(�𝑥, 𝑧2), 
then there is a simple path 𝑅1(𝑥1, 𝑥2), … , 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑞𝑇 with 𝑥1 = �𝑥 and 𝑥𝑛+1 =
𝑧 and 𝑅𝑛(𝑥𝑛, 𝑥𝑛+1) ∉ {𝑟(𝑧1, 𝑧), 𝑟(𝑧2, 𝑧)}. Let the length of this path be 𝑛. Since ℎ
is a homomorphism, the image of this path in 𝑞 must also be a path (but not 
necessarily a simple path) of length 𝑚 < 𝑛. If for 𝑖 ∈ {1, 2} there is a simple path 
of length < 𝑚 from ℎ(�𝑥) to 𝑦𝑖 in 𝑞, then the atom 𝑟(𝑦𝑖, 𝑥) occurs on a cycle in 𝑞, and 
the symmetry 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) is safe, a contradiction. If there is no such simple 
path, then 𝑟(𝑦1, 𝑧), 𝑟(𝑦2, 𝑧) is safe since dist(ℎ(�𝑥), 𝑥) + 1 = dist(ℎ(�𝑥), 𝑦1) = dist(ℎ(�𝑥), 𝑦2), 
a contradiction.

Lemmas 5.36 and 5.37 tell us that the sequence of queries produced by extract𝒬
forms a generalization sequence towards 𝑞𝑇. It remains to apply Theorem 5.32 to 
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5 Learning with Membership and Equivalence Queries

Algorithm 5.3: Learning algorithm for ELQs / ELIQsf / CQcsf
𝑤  under ℰℒ𝑟 ontologies

For 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0} and 𝑞𝑇 ∈ 𝒬.

Input A signature Σ and an ℰℒ𝑟 ontology 𝒪 in normal form.
Output A 𝑞𝐻 ∈ 𝒬 such that 𝑞𝐻 ≡𝒪 𝑞𝑇. 

𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪)
𝑞𝐻 ≔ extract𝒬(𝒪, 𝑞0𝐻)
while the equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎) do
 𝑞′𝐻(𝑥 ⊗ 𝑎) ≔ 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪

 𝑞𝐻 ≔ extract𝒬(𝒪, 𝑞′𝐻)
end while
return 𝑞𝐻

obtain a bound on the number of applications of Expand cycle and Split symmetry.

Lemma 5.38. Let 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0}, 𝒪 be an ℰℒ𝑟 ontology in normal 

form and 𝑞 a CQ such that 𝑞 ⊆𝒪 𝑞𝑇. Then, the subroutine extract𝒬(𝒪, 𝑞) terminates in time 
polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖ and returns a query 𝑝 ∈ 𝒬 that is (𝑞𝑇, 𝒪)-minimal and 
satisfies 𝑞 ⊆𝒪 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Let 𝑝1, 𝑝2, …  be the sequence of queries produced by applying the operations 
Expand cycle and Split symmetry. By Lemma 5.36 and Lemma 5.37, 𝑝1, 𝑝2, … is a 
generalization sequence towards 𝑞𝑇 under 𝒪. As the operations Expand cycle and 
Split symmetry both ensure (𝑞𝑇, 𝒪)-minimality of their result, every 𝑝𝑖 is (𝑞𝑇, 𝒪)-
minimal. Hence, Theorem 5.32 implies a bound on the length of this sequence 
that is polynomial in ‖𝒪‖ + ‖𝑞‖ + ‖𝑞𝑇‖. Neither Expand cycle nor Split symmetry
are applicable to the last query 𝑝𝑛 of this sequence. Therefore, 𝑝𝑛 cannot contain 
forbidden cycles and must be symmetry-free.

The Learning Algorithm

We now have all the necessary ingredients to formulate a learning algorithm for 
CQcsf queries under ℰℒ𝑟 ontologies: a CQcsf-universal model that we can use in 
products and a subroutine that extracts (𝑞𝑇, 𝒪)-minimal queries from the right query 
class using membership queries. The full algorithm is displayed as Algorithm 5.3. 
Since ℰℒ𝑟 ontologies do not contain disjointness or functionality constraints, the 
initial CQ can simply be

𝑞0𝐻(𝑥0, … , 𝑥0) ← �
𝐴∈Σ∩NC

𝐴(𝑥0) ∧ �
𝑟∈Σ∩NR

𝑟(𝑥0, 𝑥0).
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5.3 Learning under ℰℒ𝑟 Ontologies

Note that the restriction to ontologies in normal form is not essential as Lemma 4.8 
holds for ELQs under ℰℒ𝑟 ontologies, and can be extended to ELIQsf and CQcsf

queries.
We show that Algorithm 5.3 is a polynomial time learning algorithm. As in 

the similar proofs before, we show that the sequence 𝑞1, 𝑞2, … of assignments to 
𝑞𝐻 is a generalization sequence towards 𝑞𝑇 under 𝒪. Polynomial running time of 
Algorithm 5.3 then follows from the (𝑞𝑇, 𝒪)-minimality of all 𝑞𝑖 and Theorem 5.32, 
which yields the following main result of this section.

Theorem 5.39. Let 𝒬 ∈ {ELQ,ELIQsf} ∪ {CQcsf
𝑤 ∣ 𝑤 ≥ 0}. 𝒬 queries are polynomial time 

learnable under ℰℒ𝑟 ontologies using both equivalence and membership queries.

 Proof. Let 𝑞1, 𝑞2, … be the sequence of assignments to 𝑞𝐻 during a run of Algo­
rithm 5.3. We show that this sequence is a generalization sequence towards 𝑞𝑇
under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖. We show this by induction on 𝑖. Since 
𝑞0𝐻 ⊆𝒪 𝑞𝑇 and 𝑞1 = extract𝒬(𝑞0𝐻), this holds for 𝑖 = 1 by Lemma 5.38. In the induction 
step, assume that 𝑞𝑖 ⊆𝒪 𝑞𝑇. Then, by Lemma 5.28, 𝑞𝑇(𝑥0) → 𝒞3

𝑞𝑖,𝒪, 𝑥𝑖. Additionally, 
the counterexample (𝒜, 𝑎) returned from the equivalence query must be such that 
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎). Lemma 5.28 then implies that 𝑞𝑇(𝑥0) → 𝒞3

𝒜,𝒪, 𝑎. Hence, 𝑞𝑇(𝑥0) →
𝒞3
𝑞𝐻,𝒪 × 𝒞3

𝒜,𝒪, 𝑥 ⊗ 𝑎 by the properties of products. It follows that 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and 
therefore 𝑞𝑖+1 ⊆𝒪 𝑞𝑇 by Lemma 5.38.

Next, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 for all 𝑖. Recall that since 𝑞𝑖 ⊆𝒪 𝑞𝑇, 
the counterexample (𝒜, 𝑎) returned from the equivalence query must be such that 
𝒜, 𝒪 ⊧̸ 𝑞𝑖(𝑎). Since 𝑞′𝐻(𝑥′) = 𝒞3

𝑞𝑖,𝒪 × 𝒞3
𝒜,𝒪 with 𝑥′ = 𝑥 ⊗ 𝑎, it follows that 𝑞′𝐻(𝑥′) →

𝒞3
𝑞𝑖,𝒪, 𝑥𝑖 and 𝑞′𝐻(𝑥′) → 𝒞3

𝒜,𝒪, 𝑎 by properties of products. Using the homomorphism 
from the universal model to the compact model, we also obtain that 𝒰𝑞′𝐻,𝒪, 𝑥′ →
𝒞3
𝑞𝑖,𝒪, 𝑥𝑖 and 𝒰𝑞′𝐻,𝒪, 𝑥′ → 𝒞3

𝒜,𝒪, 𝑎. Since 𝑞′𝐻 ⊆𝒪 𝑞𝑖+1 by Lemma 5.38, it follows that 
𝑞𝑖+1(𝑥𝑖+1) → 𝒞3

𝑞𝑖,𝒪, 𝑥𝑖 and 𝑞𝑖+1(𝑥𝑖+1) → 𝒞3
𝒜,𝒪, 𝑎 by Lemma 3.5 and composition of 

homomorphisms. As 𝑞𝑖+1 ∈ 𝒬, it follows by Lemma 5.28 that 𝑞𝑖 ⊆𝒪 𝑞𝑖+1 and 
𝑞𝒜 ⊆𝒪 𝑞𝑖+1. The second query implication then implies that 𝑞𝑖+1 ⊈𝒪 𝑞𝑖 since 𝑞𝒜 ⊈𝒪 𝑞𝑖.

Hence, 𝑞1, 𝑞2, … is a generalization sequence towards 𝑞𝑇 under 𝒪. Since all 𝑞𝑖 are 
(𝑞𝑇, 𝒪)-minimal by Lemma 5.38, we can apply Theorem 5.32 to show that Algo­
rithm 5.3 must terminate after a polynomial number of iterations with a query 
𝑞𝑛 ∈ 𝒬 such that 𝑞𝑛 ≡𝒪 𝑞𝑇.

Note, though, that Algorithm 5.3, or more precisely, the subroutine extract𝒬, uses 
a number of membership queries that is exponential in the arity of the target CQ, 
and we only achieve polynomial time learnability by assuming that the arity is 
fixed. In the next section, we will discuss how we can improve upon this result.
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5.4 Handling Queries of Unbounded Arity

In Section 5.3, we have seen that CQcsf queries of fixed arity are learnable in polyno­
mial time using membership queries and equivalence queries. In this section, we 
consider how Algorithm 5.3 can be modified to show polynomial time learnability 
of CQcsf queries of unbounded arity. Our focus is the extract𝒬 subroutine that may 
pose a number of membership queries to the teacher that is exponential in the arity 
of the target query.

Recall that the purpose of extract𝒬 is to take as input a CQ 𝑞 such that 𝑞 ⊆𝒪 𝑞𝑇
and then use membership queries to produce a query 𝑞′ from the class 𝒬 such that 
𝑞 ⊆𝒪 𝑞′ ⊆𝒪 𝑞𝑇 (see Lemma 5.38). The subroutine is a necessary part of Algorithm 5.3, 
as hypotheses used in equivalence queries must be from the query class 𝒬. The 
following example shows that some difficulties are unavoidable when attempting 
to extract chordal CQs of unbounded arity.

Example 5.40. For the sake of simplicity, suppose we are learning acyclic CQs of 
arity 𝑘 and have arrived at the cyclic CQ

𝑞(𝑥, … , 𝑥) ← 𝑟(𝑥, 𝑥)

such that 𝑞 ⊆∅ 𝑞𝑇 from which we wish to extract an acyclic CQ 𝑞′. If we apply an 
operation like Expand cycle to 𝑞, then we arrive at the atoms 𝑟(𝑥, 𝑥′), 𝑟(𝑥′, 𝑥), but it 
is unclear which occurrences of 𝑥 in the tuple (𝑥, … , 𝑥) of answer variables should 
be replaced with 𝑥′ to ensure that 𝑞′ ⊆∅ 𝑞𝑇. In the worst case, all 2𝑘 possible 
answer variable tuples may need to be considered to discover a specific pattern like 
𝑞𝑇(𝑥1, … , 𝑥1, 𝑥2, … , 𝑥2) ← 𝑟(𝑥1, 𝑥2).

Therefore, we take a different approach. Instead of requiring that the hypothesis 
used in equivalence queries must be from 𝒬, we allow equivalence queries with 
any CQ. Then, we can remove the call to extract𝒬 from Algorithm 5.3 and directly 
use 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪 as a new hypothesis. This, however, makes it difficult to show that 

the new hypothesis is closer to 𝑞𝑇. Since 𝑞𝐻 is then no longer from the class 𝒬 we 
cannot apply Lemma 5.28 to show that the sequence of assignments to 𝑞𝐻 forms 
a generalization sequence towards 𝑞𝑇, as in general 𝑞𝐻 ⊈𝒪 𝒞3

𝑞𝐻,𝒪. This issue can 
be avoided when learning ELQs, as there is an ℰℒ simulation from 𝒞3

𝑞𝐻,𝒪 to 𝒰𝑞𝐻,𝒪
which allows us to apply Lemma 5.26 to show that the new hypothesis is closer 
to 𝑞𝑇. Unfortunately, while Jung, Lutz, and Wolter characterize ELIQsf queries in 
terms of certain simulations [JLW20], no notion of simulation relation for which an 
equivalent version of Lemma 5.26 holds is known for CQcsf queries.

Hence, in order to guarantee that the new learning algorithm terminates after a 
polynomial number of steps, we introduce the new subroutine refine, which replaces 
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the construction of the direct product. Recall that in the loop of Algorithm 5.3, 
the subroutine extract𝒬 takes as input the direct product 𝑞′𝐻 = 𝒞3

𝑞𝐻,𝒪 × 𝒞3
𝒜,𝒪, and 

then expands cycles in 𝑞′𝐻, not distinguishing the ABox part and the existentially 
generated part of the 3-compact models involved. The subroutine refine instead 
carefully unravels the existentially generated part of the two 3-compact models by 
introducing copies of elements and attaching them in a tree-like manner. A full 
such unraveling would eventually result in the infinite direct product 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪, 
but refine interleaves unraveling with calls to the subroutine minimize𝒪 and thus 
obtains a finite initial piece of 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪. Unlike extract𝒬, refine does not need 
to determine new answer variables, as it only creates copies of existential variables. 
Still, the new hypothesis may have different answer variables to the old one due to 
the direct product construction.

This description of refine suffices for target queries from CQcsf that are rooted. In 
the general case, disconnected Boolean components might be present or emerge 
during minimization that are never unraveled by this procedure. To address this, 
refine subsequently applies extract𝒬 to such components, leaving the already unrav­
eled parts untouched. Note that when applied this way, extract𝒬 runs in polynomial 
time, as it is only applied to Boolean subqueries. However, the output of refine is 
not guaranteed to be a CQcsf query, as the initial pieces of 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪 need not 
be chordal.

Now, we describe the refine subroutine in full detail. It takes as input the ontology 
𝒪, the old hypothesis 𝑞𝐻(𝑥) as well as a counterexample (𝒜, 𝑎) and produces a CQ 
𝑞(𝑥 ⊗ 𝑎) that is (𝑞𝑇, 𝒪)-minimal with 𝑞𝐻 ⊆𝒪 𝑞 ⊆𝒪 𝑞𝑇 and 𝒜, 𝒪 ⊧ 𝑞(𝑎). For notational 
convenience, we will view the inputs to refine as two CQs 𝑞1(𝑥1) and 𝑞2(𝑥2), of which 
we know that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for 𝑖 ∈ {1, 2}.

First, refine constructs the direct product 𝒞3
𝑞1,𝒪 × 𝒞3

𝑞2,𝒪, views this as a query 𝑝
with answer variables 𝑥1 ⊗ 𝑥2, and then applies minimize𝒪 to 𝑝. It then incrementally 
unravels 𝑝. All variables of 𝑝 are pairs (𝑐1, 𝑐2). Informally, unraveling replaces 
step-by-step components 𝑐𝑖 that are elements of Δ𝒞3

𝑞𝑖,𝒪 ⧵ var(𝑞𝑖) with corresponding 
elements of Δ𝒰𝑞𝑖,𝒪 ⧵ var(𝑞𝑖). In order to make the formal definition and proofs easier 
to digest, we slightly modify our definition of 𝒰𝒜,𝒪. We now say that 𝑎 ⇝𝑟

𝒜,𝒪 𝑀, if 
𝒜, 𝒪 ⊧ ∃𝑟. ⨅ 𝑀(𝑎) and ignore the condition that there should be no 𝑏 ∈ ind(𝒜) with 
𝑟(𝑎, 𝑏) ∈ 𝒜 and 𝒜, 𝒪 ⊧ ⨅ 𝑀(𝑏). This means that 𝒰𝒜,𝒪 might contain more traces 
under this new definition than under the one we used before. This difference in 
definitions is inessential in the absence of functionality assertions, but makes the 
following proofs easier.

To now make refine formal, we call (𝑐1, 𝑐2) ∈ var(𝑝) unraveled if 𝑐𝑖 ∈ Δ𝒰𝑞𝑖,𝒪 for each 
𝑖 ∈ {1, 2}. Note that (𝑐1, 𝑐2) ∈ var(𝑝) and 𝑐𝑖 ∉ Δ𝒰𝑞𝑖,𝒪 imply that 𝑐𝑖 is of the form 𝑐𝑎,𝑘,𝑠,𝐴. 
The subroutine refine exhaustively applies the following operation to 𝑝:
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(𝑥, 𝑦)
𝑝

(𝑥𝑟{𝐴}, 𝑦𝑟{𝐵})

(𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵)

(𝑐𝑥,2,𝑟,𝐴, 𝑐𝑦,2,𝑟,𝐵)

(𝑐𝑥,3,𝑟,𝐴, 𝑐𝑦,3,𝑟,𝐵)

(𝑐𝑥,4,𝑟,𝐴, 𝑐𝑦,4,𝑟,𝐵)

𝑟

𝑟

𝑟

𝑟 𝑟

𝑟

(𝑥, 𝑦)
𝑝′

(𝑥𝑟{𝐴}, 𝑦𝑟{𝐵})

(𝑥𝑟{𝐴}𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵})

(𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵)

(𝑐𝑥,2,𝑟,𝐴, 𝑐𝑦,2,𝑟,𝐵)

(𝑐𝑥,3,𝑟,𝐴, 𝑐𝑦,3,𝑟,𝐵)

(𝑐𝑥,4,𝑟,𝐴, 𝑐𝑦,4,𝑟,𝐵)

𝑟

𝑟

𝑟

𝑟

𝑟 𝑟

𝑟

Figure 5.9: An application of Unravel.

Unravel. For every atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) ∈ 𝑝 with (𝑐1, 𝑐2) unraveled and (𝑑1, 𝑑2) not 
unraveled, do the following. Remove the atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)). For 𝑗 ∈ {1, 2}, 
set

𝑑′𝑗 =

⎧⎪⎪⎨
⎪⎪⎩

𝑑𝑗 if 𝑑𝑗 ∈ Δ
𝒰𝑞𝑗,𝒪,

𝑐𝑗𝑟𝑀 if 𝑑𝑗 = 𝑐𝑎,𝑘,𝑟,𝐴 for a set 𝑀 such that 𝐴 ∈ 𝑀 and 𝑐𝑗𝑟𝑀 ∈ Δ𝒰𝑞𝑗 ,𝒪.

Compensate the removal by adding the following atoms to 𝑝:
• 𝑟((𝑐1, 𝑐2), (𝑑′1, 𝑑′2));
• 𝐴(𝑑′1, 𝑑′2) for all 𝐴(𝑑1, 𝑑2) ∈ 𝑝;
• 𝑟((𝑑′1, 𝑑′2), (𝑒1, 𝑒2)) for all 𝑟((𝑑1, 𝑑2), (𝑒1, 𝑒2)) ∈ 𝑝.

Apply minimize𝒪 to the result.

Note that there may be multiple choices for the set 𝑀 in the definition of 𝑑′𝑗 . If 
this is the case, Unravel makes an arbitrary choice.

We call (𝑑′1, 𝑑′2) a copy of (𝑑1, 𝑑2). Note that unraveling might introduce several 
copies of the same original variable (𝑑1, 𝑑2) and that (𝑑1, 𝑑2) might or might not be 
present after unraveling, the latter being the case when 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) is the only 
atom that mentions (𝑑1, 𝑑2).

Example 5.41. Consider the query 𝑝 displayed in Figure 5.9 that uses as variables 
elements of 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪 and 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 for 𝑞1(𝑥) ← 𝐴(𝑥), 𝑞2(𝑦) ← 𝐵(𝑦), and 
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𝒪 = {𝐴 ⊑ ∃𝑟.𝐴, 𝐵 ⊑ ∃𝑟.𝐵}. It contains the unraveled variable (𝑥𝑟{𝐴}, 𝑦𝑟{𝐵}) =
(𝑐1, 𝑐2) and the not unraveled variable (𝑐𝑥,1,𝑟,𝐴, 𝑐𝑦,1,𝑟,𝐵) = (𝑑1, 𝑑2), as well as the atom 
𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)). Then, Unravel removes 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) and introduces the new 
variable (𝑑′1, 𝑑′2) = (𝑥𝑟{𝐴}𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵}), resulting in the query 𝑝′.

Due to minimization, at some point all variables in 𝑝 that can be reached from 
some element of 𝑥1 ⊗ 𝑥2 will be unraveled. However, 𝑝 might still contain non-
unraveled variables, ones that cannot be reached from 𝑥1 ⊗ 𝑥2.

Example 5.42. Consider again the ontology 𝒪 and query 𝑝′ from Example 5.41 
displayed in Figure 5.9, together with the Boolean target query

𝑞𝑇() ← 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥2, 𝑥3) ∧ 𝑟(𝑥3, 𝑥4).

An application of the subroutine minimize𝒪 to 𝑝′ might then remove the variables 
(𝑥, 𝑦), (𝑥𝑟{𝐴}, 𝑦𝑟{𝐵}), and (𝑥𝑟{𝐴}𝑎𝑟{𝐴}, 𝑦𝑟{𝐵}𝑟{𝐵}), leaving the cycle consisting of vari­
ables (𝑐𝑥,𝑖,𝑟,𝐴, 𝑐𝑦,𝑖,𝑟,𝐵) for 𝑖 ∈ {1, … , 4} disconnected. This is because the cycle alone 
suffices in 𝑝′ to maintain 𝑝′ ⊆𝒪 𝑞𝑇. Since only not unraveled variables remain then, 
Unravel will no longer be applied.

To deal with this issue, refine applies extract𝒬 to the result of exhaustively applying 
the Unravel operation, with the following modifications:

1. no cycle that involves a variable that is reachable from 𝑥1 ⊗ 𝑥2 is considered 
in the Expand cycle operation. As a consequence, the Expand cycle opera­
tion cannot involve variables in 𝑥1 ⊗ 𝑥2, and thus the exponential number of 
membership queries is avoided;

2. no symmetry that involves a variable that is reachable from 𝑥1⊗𝑥2 is considered 
in the Split symmetry operation.

We now analyze the refine subroutine to verify that it arrives at an initial segment 
of 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 after a polynomial number of steps. Let 𝑝1, 𝑝2, … be the sequence 
of queries produced by applying Unravel with 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪).

Lemma 5.43. Let 𝑖 ≥ 1. Every cycle in 𝑝𝑖 of length at most three consists only of variables 
from var(𝑞1) × var(𝑞2).

 Proof. We prove the lemma by induction on 𝑖. In the induction start, recall that 
𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪). If 𝑝1 contains a cycle 𝑅((𝑥1, 𝑥2), (𝑥1, 𝑥2)) of length 1 

with 𝑥𝑖 ∉ var(𝑞𝑖) for some 𝑖 ∈ {1, 2}, then 𝑅(𝑥𝑖, 𝑥𝑖) must be a cycle of length 1 in 𝒞3
𝑞1,𝒪

with 𝑥𝑖 ∉ var(𝑞𝑖) which cannot exist by Lemma 5.24.
Next, if 𝑝1 contains a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)), 𝑅2((𝑦1, 𝑦2), (𝑥1, 𝑥2)) of length 2, then 

assume without loss of generality that 𝑥1 ∉ var(𝑞1). We distinguish cases. If 𝑥1 = 𝑦1, 
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then 𝑅1(𝑥1, 𝑥1) is a cycle of length 1 in 𝒞3
𝑞1,𝒪, but this is not the case by Lemma 5.24. 

If 𝑥1 ≠ 𝑦1, then 𝑅1(𝑥1, 𝑦1), 𝑅2(𝑦1, 𝑥1) is a cycle of length 2 in 𝒞3
𝑞1,𝒪 which again con­

tradicts Lemma 5.24.
If 𝑝1 contains a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)), 𝑅2((𝑦1, 𝑦2), (𝑧1, 𝑧2)), 𝑅3((𝑧1, 𝑧2), (𝑥1, 𝑥2)) of 

length 3, we can argue similarly that 𝒞3
𝑞1,𝒪 contains a cycle of length 1 or 3 that 

involves a variable not in var(𝑝𝑖), again obtaining a contradiction.
For the induction step, we show that the Unravel operation does not create cycles 

of length 1, 2 or 3. Assume that every cycle in 𝑝𝑖 of length at most three consists of 
only individuals from var(𝑞1) × var(𝑞2), and that there is a cycle 𝑅1((𝑥1, 𝑥2), (𝑦1, 𝑦2)), 
𝑅2((𝑦1, 𝑦2), (𝑧1, 𝑧2)), 𝑅3((𝑧1, 𝑧2), (𝑥1, 𝑥2)) of length 3 in 𝑝𝑖+1. Since minimize𝒪 only re­
moves variables, one of (𝑥1, 𝑥2), (𝑦1, 𝑦2), (𝑧1, 𝑧2) must be a variable (𝑑′1, 𝑑′2) introduced 
in the Unravel operation. Replacing (𝑑′1, 𝑑′2) with its original (𝑑1, 𝑑2) in the cycle 
must result in a cycle in 𝑝𝑖 which contradicts the induction hypothesis. The same 
argument can be applied to cycles of length 1 and 2.

Similar to the Expand cycle operation (Lemma 5.35), the Unravel operation pre­
serves ℰℒ simulations.

Lemma 5.44. For all 𝑖 ≥ 0, let 𝑝′𝑖  be the result of applying Unravel to 𝑝𝑖, but before 
minimization. Then,

1. 𝑝′𝑖 , 𝑥 ⪯ℰℒ 𝑝𝑖, 𝑥 and 𝑝𝑖, 𝑥 ⪯ℰℒ 𝑝′𝑖 , 𝑥 for all 𝑥 ∈ var(𝑝𝑖) ∩ var(𝑝′𝑖 )

2. 𝑝′𝑖 , 𝑥′ ⪯ℰℒ 𝑝𝑖, 𝑥 and 𝑝𝑖, 𝑥 ⪯ℰℒ 𝑝′𝑖 , 𝑥′ for all copies 𝑥′ ∈ var(𝑝′𝑖 ) ⧵ var(𝑝𝑖) of some 
𝑥 ∈ var(𝑝𝑖).

 Proof. Define a relation 𝑆 ⊆ var(𝑝𝑖) × var(𝑝′𝑖 ) by taking:

• (𝑥, 𝑥) ∈ 𝑆 for all 𝑥 ∈ var(𝑝𝑖) ∩ var(𝑝′𝑖 ), and

• (𝑥, 𝑥′) ∈ 𝑆 for all copies 𝑥′ ∈ var(𝑝′𝑖 ) of some element 𝑥 ∈ var(𝑝𝑖).

𝑆 is a simulation from 𝑝𝑖 to 𝑝′𝑖 , and its inverse 𝑆− is a simulation from 𝑝′𝑖  to 𝑝𝑖.

The next lemma is the most intricate to prove in the analysis of Unravel.

Lemma 5.45. For all 𝑖 ≥ 1, 𝑝𝑖 ⊆𝒪 𝑞𝑇.

 Proof. We prove the lemma by induction on 𝑖. The induction start is immediate since 
𝑞𝑇(𝑥0) → 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪, 𝑥1 ⊗ 𝑥2, and there is a homomorphism from 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪
to 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪 that is the identity on 𝑥1 ⊗ 𝑥2. Thus, for 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪), 

𝑝1 ⊆𝒪 𝑞𝑇 by Lemma 4.20.
For the induction step, let 𝑝 be the result of applying Unravel to 𝑝𝑖 but before 

minimization and assume that there is a homomorphism ℎ from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪 with 

144



5.4 Handling Queries of Unbounded Arity

ℎ(𝑥0) = 𝑥1 ⊗ 𝑥2. Let 𝑈 be the set of all variables (𝑑1, 𝑑2) ∈ var(𝑝𝑖) such that some 
atom 𝑟((𝑐1, 𝑐2), (𝑑1, 𝑑2)) was removed by Unravel. Note that if (𝑑1, 𝑑2) ∈ 𝑈, then 
(𝑑1, 𝑑2) ∉ var(𝑞1) × var(𝑞2). In what follows, we construct a homomorphism 𝑔 from 
𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥1 ⊗ 𝑥2. Thus, 𝑝 ⊆𝒪 𝑞𝑇, which is preserved by minimize𝒪, 
meaning that 𝑝𝑖+1 ⊆𝒪 𝑞𝑇, as desired.

For this, first observe that if 𝑅((𝑐1, 𝑐2), (𝑑1, 𝑑2)) is an atom in 𝑝𝑖 with (𝑐1, 𝑐2) unrav­
eled and (𝑑1, 𝑑2) not unraveled, then 𝑅 is a role name, but not an inverse role. For 
a variable 𝑥 in 𝑞𝑇, let us denote with 𝑉𝑥 the set of all atoms 𝑅(𝑥, 𝑦) ∈ 𝑞𝑇 such that 
ℎ(𝑦) ∈ var(𝑝𝑖) and ℎ(𝑦) is unraveled. We observe the following about 𝑉𝑥.

Claim 1. Let 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈. Then, there is a role name 𝑟
such that all atoms in 𝑉𝑥 are of shape 𝑟(𝑦, 𝑥) and one of the following is the case:

i. 𝑉𝑥 is a singleton;

ii. 𝑑1 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥, 𝑞2 contains an atom 𝑟(𝑧′, 𝑑2)
with ℎ(𝑦) = (𝑧, 𝑧′);

iii. 𝑑2 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥, 𝑞1 contains an atom 𝑟(𝑧′, 𝑑1)
with ℎ(𝑦) = (𝑧′, 𝑧);

iv. 𝑑1 has the form 𝑐𝑧1,0,𝑟,𝐴1, 𝑑2 has the form 𝑐𝑧2,0,𝑟,𝐴2, and ℎ(𝑦) = (𝑧1, 𝑧2) for every 
𝑟(𝑦, 𝑥) ∈ 𝑉𝑥.

 Proof of Claim 1. To show the first part, let 𝑅(𝑦1, 𝑥), 𝑆(𝑦2, 𝑥) ∈ 𝑉𝑥. Since ℎ(𝑥) = (𝑑1, 𝑑2)
is not unraveled, but ℎ(𝑦1) and ℎ(𝑦2) are unraveled, 𝑅 and 𝑆 are role names. Moreover, 
(𝑑1, 𝑑2) not being unraveled means that at least one of the 𝑑𝑗 takes the shape 𝑐𝑧,𝑘,𝑟,𝐴
for some role name 𝑟. By definition of 𝒞3

𝑞𝑗,𝒪, for every 𝑠(𝑑, 𝑐𝑎,𝑘,𝑟,𝐴) ∈ 𝒞3
𝑞𝑗,𝒪, we have 

𝑠 = 𝑟. Hence, for every 𝑠((𝑐1, 𝑐2), (𝑑1, 𝑑2)) ∈ 𝑝𝑖 we have 𝑠 = 𝑟 as well. Thus, 𝑅 = 𝑆 = 𝑟
and all atoms in 𝑉𝑥 are based on the same role name 𝑟.

Now for the second part. Assume that Case i does not apply. Then we find 
𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) ∈ 𝑉𝑥 with 𝑦1 ≠ 𝑦2. Since 𝑞𝑇 is symmetry-free, 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) must 
be a safe symmetry. Since ℎ(𝑥) ∈ 𝑈, 𝑥 is not an answer variable. The fact that 
ℎ(𝑦1) is unraveled, but ℎ(𝑥) is not, implies that dist(𝑧, 𝑥) + 1 ≠ dist(𝑧, 𝑦1) for any 
answer variable 𝑧. Additionally, 𝑞𝑇 may contain no atom of the form 𝑠(𝑥, 𝑥), since no 
atom 𝑠(ℎ(𝑥), ℎ(𝑥)) may exist in 𝑝 by Lemma 5.43 and ℎ(𝑥) not being unraveled. The 
remaining possibilities for 𝑟(𝑦1, 𝑥), 𝑟(𝑦2, 𝑥) to be a safe symmetry are: for 𝑗 ∈ {1, 2}, 
the atom 𝑟(𝑦𝑗, 𝑥) occurs on a cycle, or there is an atom 𝑠(𝑦𝑗, 𝑦𝑗) ∈ 𝑞𝑇. Without loss of 
generality, assume 𝑗 = 1. If 𝑠(𝑦1, 𝑦1) ∈ 𝑞𝑇, then it follows that ℎ(𝑦1) = ℎ(𝑦2) = (𝑧1, 𝑧2) ∈
var(𝑞1)×var(𝑞2). If 𝑟(𝑦1, 𝑥) occurs on a cycle 𝐶 in 𝑞𝑇, then by chordality of 𝑞𝑇, it follows 
that 𝐶 has at most length three. Since ℎ is a homomorphism from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪, the 
ℎ-image of 𝐶 in 𝑝𝑖 must contain a cycle of length at most three. By Lemma 5.43, this 
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implies that ℎ(𝑥) is not part of a cycle in the ℎ-image of 𝐶. Consequently, the cycle 𝐶
has to be of the shape

𝑟(𝑦1, 𝑥), 𝑟−(𝑥, 𝑧), 𝑠(𝑦1, 𝑧)

with ℎ(𝑦1) = ℎ(𝑧) = (𝑧1, 𝑧2) ∈ var(𝑞1) × var(𝑞2).
It follows that 𝑖 = 1, since if 𝑖 > 1 all successors of elements of var(𝑞1) × var(𝑞2) are 

unraveled. We distinguish the following cases:

• 𝑑1 ∈ var(𝑞1) and 𝑑2 ∈ var(𝑞2).
This is impossible because (𝑑1, 𝑑2) is not unraveled.

• 𝑑1 has shape 𝑐𝑧1,0,𝑟,𝐴 and 𝑑2 ∈ var(𝑞2).
Then 𝑧1 is the unique 𝑟-predecessor of 𝑑1 in 𝒞3

𝑞1,𝒪 that can appear in the first 
component of an unraveled element. Let 𝑟(𝑦, 𝑥) ∈ 𝑉𝑥. Then ℎ(𝑦) ∈ var(𝑞1) ×
var(𝑞2) because ℎ(𝑦) is unraveled and 𝑖 = 1. Since 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪), 

𝑟(𝑦, 𝑥) ∈ 𝑉𝑥 thus implies that there is an atom 𝑟(𝑧′, 𝑑2) ∈ 𝑞2 such that ℎ(𝑦) =
(𝑧1, 𝑧′). Thus, we are in Case ii.

• 𝑑2 has shape 𝑐𝑧2,0,𝑟,𝐴 and 𝑑1 ∈ var(𝑞1).
We argue as in the previous case, but end up in Case iii.

• 𝑑1 has shape 𝑐𝑧1,0,𝑟,𝐴1 and 𝑑2 has shape 𝑐𝑧2,0,𝑟,𝐴2. By definition of the models 
𝒞3
𝑞𝑖,𝒪 and since in 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪), (𝑧1, 𝑧2) is the unique unraveled 

𝑟-predecessor of (𝑑1, 𝑑2) in 𝑝𝑖 = 𝑝1. Thus, we are in Case iv.

This completes the proof of Claim 1.

Next, with every variable 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) ∈ var(𝑝𝑖), we associate a set 
𝑍𝑥 that consists of all variables 𝑦 ∈ var(𝑞𝑇) such that 𝑞𝑇 contains a simple path 
𝑅1(𝑧1, 𝑧2), … , 𝑅𝑚−1(𝑧𝑚−1, 𝑧𝑚) from 𝑥 to 𝑦 where ℎ(𝑧2), … , ℎ(𝑧𝑚) are all proper traces in 
𝒰𝑝𝑖,𝒪 that start with ℎ(𝑥). We observe the following about the sets 𝑍𝑥.

Claim 2. For all 𝑦 ∈ var(𝑞𝑇) with ℎ(𝑦) ∉ var(𝑝𝑖), there is at most one 𝑥 ∈ var(𝑞𝑇) with 
𝑦 ∈ 𝑍𝑥 and ℎ(𝑥) ∈ 𝑈.

 Proof of Claim 2. Suppose that 𝑦 ∈ var(𝑞𝑇) with ℎ(𝑦) ∉ var(𝑝𝑖) and that there are 
distinct variables 𝑥1, 𝑥2 ∈ var(𝑞𝑇) with 𝑦 ∈ 𝑍𝑥𝑗 and ℎ(𝑥𝑗) ∈ 𝑈 for 𝑗 ∈ {1, 2}. Let

𝜋1 = 𝑅1(𝑧1, 𝑧2), … , 𝑅𝑛(𝑧𝑛−1, 𝑧𝑛) and
𝜋2 = 𝑆1(𝑧′1, 𝑧′2), … , 𝑆𝑚(𝑧′𝑚−1, 𝑧′𝑚)

be paths in 𝑞𝑇 from 𝑥1 to 𝑦 and from 𝑥2 to 𝑦, respectively, such that ℎ(𝑧𝑗) ≠ ℎ(𝑥1) for 
all 𝑗 ∈ {1, … , 𝑛} and ℎ(𝑧′𝑗 ) ≠ ℎ(𝑥2) for all 𝑗 ∈ {1, … , 𝑚}. Note that ℎ is a homomorphism 

146



5.4 Handling Queries of Unbounded Arity

from 𝜋𝑗 to the trace subtree of 𝒰𝑝𝑖,𝒪 rooted at ℎ(𝑥𝑗), for 𝑗 ∈ {1, 2}. Since ℎ(𝑦) is both 
in the subtree below ℎ(𝑥1) and below ℎ(𝑥2), it follows that ℎ(𝑥1) = ℎ(𝑥2).

We analyze the structure of the paths 𝜋1 and 𝜋2. Let us first verify that all 𝑅𝑗
and all 𝑆𝑗 are role names. We do this explicitly only for the 𝑅𝑗. Let ℐ denote the 
subtree of 𝒰𝑝𝑖,𝒪 rooted at ℎ(𝑥1), that is, the restriction of 𝒰𝑝𝑖,𝒪 to all traces that start 
with ℎ(𝑥1), including ℎ(𝑥1) itself. By construction of 𝒰𝑝𝑖,𝒪, ℐ is a directed tree. Then 
𝑅1 must be a role name since (ℎ(𝑥1), ℎ(𝑧1)) ∈ 𝑅ℐ

1 , ℎ(𝑥1) is the root of ℐ, and ℎ(𝑧1) in 
Δℐ. Now, let ℓ be minimal such that 𝑅ℓ is an inverse role 𝑟− and consider the atoms 
𝑅ℓ−1(𝑧ℓ−1, 𝑧ℓ), 𝑟−(𝑧ℓ, 𝑧ℓ+1) in 𝑞𝑇. Since ℎ is a homomorphism and ℐ is a directed tree, 
we know that 𝑅ℓ−1 = 𝑟, and thus there are atoms 𝑟(𝑧ℓ−1, 𝑧ℓ), 𝑟(𝑧ℓ+1, 𝑧ℓ) in 𝑞𝑇.

If 𝑧ℓ−1 ≠ 𝑧ℓ+1, then 𝑞𝑇 contains a symmetry, which must be safe since 𝑞𝑇 is sym­
metry-free. If there is a single answer variable 𝑧̂ of 𝑞𝑇 and dist(𝑧̂, 𝑧ℓ) + 1 = dist(𝑧̂, 𝑧ℓ−1), 
then, since ℎ(𝑧ℓ) is a trace, there must be an atom 𝑟(𝑧ℓ′, 𝑧ℓ) as the last element of 
the path from 𝑧̂ to 𝑧ℓ with 𝑧ℓ′ ≠ 𝑧ℓ−1. Then either ℎ(𝑧ℓ′) ∈ 𝑈 or ℎ(𝑧ℓ′) is a trace, and 
we continue this argument with the symmetry 𝑟(𝑧ℓ′, 𝑧ℓ), 𝑟(𝑧ℓ−1, 𝑧ℓ). Since ℎ(𝑧ℓ) is a 
trace, 𝑧ℓ is not an answer variable and there is no atom 𝑠(𝑧ℓ, 𝑧ℓ). Furthermore, since 
ℎ(𝑧ℓ−1) and ℎ(𝑧ℓ+1) are either traces or elements of 𝑈 (if 𝑧ℓ−1 = 𝑥1), there is no atom 
𝑠(𝑧ℓ−1, 𝑧ℓ+1) or 𝑠(𝑧ℓ−1, 𝑧ℓ+1). Hence, one of the two atoms 𝑟(𝑧ℓ−1, 𝑧ℓ), 𝑟(𝑧ℓ+1, 𝑧ℓ) occurs 
on a cycle 𝐶 in 𝑞𝑇.

Let us assume that this is atom 𝑟(𝑧ℓ−1, 𝑧ℓ), the case of atom 𝑟(𝑧ℓ+1, 𝑧ℓ) is analogous. 
Since 𝑞𝑇 is chordal, we can assume that 𝐶 has length at most three. Since ℎ is a 
homomorphism from 𝑞𝑇 to 𝒰𝑝𝑖,𝒪, the image of 𝐶 contains a cycle 𝐶′ of length at 
most three in 𝒰𝑝𝑖,𝒪. Even if ℎ is not injective, the cycle 𝐶′ must contain ℎ(𝑧ℓ) or 
ℎ(𝑧ℓ−1). However, both possibilities lead to a contradiction. If 𝐶′ contains ℎ(𝑧ℓ), then 
ℎ(𝑧ℓ) ∈ var(𝑞1) × var(𝑞2) by Lemma 5.43, but this is not the case since ℎ(𝑧ℓ) is in ℐ
and different from ℎ(𝑥1). If 𝐶′ contains ℎ(𝑧ℓ−1), then ℎ(𝑧ℓ−1) must be ℎ(𝑥1), and 𝐶′

witnesses that ℎ(𝑥1) ∈ var(𝑞1) × var(𝑞2), in contradiction to ℎ(𝑥1) ∈ 𝑈.
Therefore, 𝑧ℓ−1 = 𝑧ℓ+1 and we can drop the two atoms from the path. At this point, 

we have established that all 𝑅𝑗 and 𝑆𝑗 are role names 𝑟𝑗, 𝑠𝑗. Since ℐ is a directed tree, it 
follows that 𝑚 = 𝑛 and 𝑟𝑗 = 𝑠𝑗 for all 𝑗. Since 𝑧1 ≠ 𝑧′1 and 𝑧𝑛 = 𝑧′𝑚, there is some ℓ > 0
such that 𝑧ℓ = 𝑧′ℓ, 𝑧ℓ−1 ≠ 𝑧′ℓ−1. But then 𝑞𝑇 contains a symmetry 𝑟ℓ(𝑧ℓ−1, 𝑧ℓ), 𝑟ℓ(𝑧′ℓ−1, 𝑧ℓ). 
This leads to a contradiction using the same argument as above. This completes the 
proof of Claim 2.

Using the sets 𝑉𝑥 and 𝑍𝑥, we now define the desired homomorphism 𝑔 in four 
stages.

1. Define 𝑔(𝑥) = ℎ(𝑥) for all 𝑥 ∈ var(𝑞𝑇) such that ℎ(𝑥) ∈ var(𝑝𝑖) ⧵ 𝑈 or ℎ(𝑥) is a 
trace starting with some variable not in 𝑈.
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2. For every 𝑥 ∈ var(𝑞𝑇) with ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈, we distinguish cases according 
to Claim 1:

a) If 𝑉𝑥 = ∅, then define 𝑔(𝑥) = ℎ(𝑥). We argue that this is well-defined, 
that is, ℎ(𝑥) ∈ var(𝑝). Suppose to the contrary that ℎ(𝑥) ∉ var(𝑝). By 
definition of Unravel, this can only be the case if 𝑝𝑖 contains only a single 
assertion that mentions ℎ(𝑥) and this assertion is of shape 𝑟((𝑐1, 𝑐2), ℎ(𝑥))
with (𝑐1, 𝑐2) unraveled. Since 𝑥 has to occur in some atom in 𝑞𝑇 and ℎ is a 
homomorphism, 𝑥 occurs in an atom 𝑟(𝑧, 𝑥) ∈ 𝑞𝑇 such that ℎ(𝑧) = (𝑐1, 𝑐2). 
Hence, 𝑟(𝑧, 𝑥) ∈ 𝑉𝑥 ≠ ∅, a contradiction.

b) If Case i applies and 𝑉𝑥 = {𝑟(𝑦, 𝑥)}, define 𝑔(𝑥) to be the copy (𝑑′1, 𝑑′2) of 
(𝑑1, 𝑑2) introduced by the Unravel operation for 𝑟(ℎ(𝑦), ℎ(𝑥)) ∈ 𝑝𝑖.

c) If 𝑉𝑥 ≠ ∅ and Case ii applies (but Case i does not), then define 𝑔(𝑥) to 
be the copy (𝑧𝑟𝑀, 𝑑2) of (𝑑1, 𝑑2) for a set 𝑀 with 𝐴 ∈ 𝑀 such that 𝑧𝑟𝑀 is a 
trace, where 𝑧, 𝐴 are as in Case ii of Claim 1.

d) If 𝑉𝑥 ≠ ∅ and Case iii applies (but Case i does not), analogously define 
𝑔(𝑥) to be the copy (𝑑1, 𝑧𝑟𝑀).

e) If 𝑉𝑥 ≠ ∅ and Case iv applies (but Case i does not), define 𝑔(𝑥) to be the 
copy (𝑧1𝑟𝑀1, 𝑧2𝑟𝑀2) where 𝑀𝑖 are sets with 𝐴𝑖 ∈ 𝑀𝑖 such that 𝑧1𝑟𝑀1 and 
𝑧2𝑟𝑀2 are traces with 𝑧1, 𝑧2, 𝐴1, 𝐴2 as in Case iv.

3. For every 𝑥 with ℎ(𝑥) ∈ 𝑈 and every 𝑦 ∈ 𝑍𝑥, ℎ(𝑦) is a trace that starts with ℎ(𝑥). 
Define 𝑔(𝑦) to be the same trace, but with the first element ℎ(𝑥) replaced by 
𝑔(𝑥). Using Lemma 5.44, it can be verified that 𝑔(𝑦) is indeed an element in 
𝒰𝑝,𝒪 using the fact that the trace subtrees below 𝑔(𝑥) and ℎ(𝑥) in 𝒰𝑝,𝒪 and 
𝒰𝑝𝑖,𝒪, respectively, are identical.

4. For every (𝑑1, 𝑑2) ∈ 𝑈 and 𝑦 ∈ var(𝑞𝑇) such that ℎ(𝑦) is a trace that starts with 
(𝑑1, 𝑑2) and 𝑦 ∉ 𝑍𝑥 for all 𝑥 with ℎ(𝑥) ∈ 𝑈, choose some copy (𝑑′1, 𝑑′2) of (𝑑1, 𝑑2)
and define 𝑔(𝑦) to be the trace ℎ(𝑦) with the first element (𝑑1, 𝑑2) replaced by 
(𝑑′1, 𝑑′2).

The four stages above define 𝑔(𝑥) for all 𝑥 ∈ var(𝑞𝑇). It remains to verify that 𝑔
is a homomorphism from 𝑞𝑇 to 𝒰𝑝,𝒪 with 𝑔(𝑥0) = 𝑥1 ⊗ 𝑥2. Observe that ℎ(𝑥) ∈
var(𝑞1) × var(𝑞2) for every 𝑥 ∈ 𝑥0 and that 𝑈 ∩ (var(𝑞1) × var(𝑞2)) = ∅. Thus, Stage 1 
of the definition of 𝑔 implies 𝑔(𝑥0) = ℎ(𝑥0).

Now, let 𝐴(𝑥) ∈ 𝑞𝑇 and thus ℎ(𝑥) ∈ 𝐴𝒰𝑝𝑖,𝒪. We distinguish the following cases:

• If 𝑔(𝑥) was defined in Stage 1, then 𝑔(𝑥) = ℎ(𝑥). First, assume that ℎ(𝑥) ∈ var(𝑝𝑖). 
Then 𝑝𝑖, ℎ(𝑥) ⪯ℰℒ 𝑝, 𝑔(𝑥) by Lemma 5.44 and thus 𝒰𝑝𝑖,𝒪, ℎ(𝑥) ⪯ℰℒ 𝒰𝑝,𝒪, 𝑔(𝑥). 
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Hence, 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪 by Lemma 5.26. Now assume that ℎ(𝑥) ∉ var(𝑝𝑖). Then 
ℎ(𝑥) = 𝑔(𝑥) is a trace, and traces in 𝒰𝑝𝑖,𝒪 and 𝒰𝑝,𝒪 that end with the same set 
of concepts 𝑀 satisfy the same concept names.

• If 𝑔(𝑥) was defined in Stage 2, then 𝑔(𝑥) = (𝑑′1, 𝑑′2) is a copy of ℎ(𝑥) = (𝑑1, 𝑑2) or 
𝑔(𝑥) = ℎ(𝑥). By Lemma 5.44, we have 𝑝𝑖, ℎ(𝑥) ⪯ℰℒ 𝑝, 𝑔(𝑥), and thus 𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪

by Lemma 5.26.

• If 𝑔(𝑥) was defined in Stage 3 or 4, then ℎ(𝑥) and 𝑔(𝑥) are both traces that end 
with the same set of concepts 𝑀 and, by construction of universal models, 
thus satisfy the same concept names. Consequently, ℎ(𝑥) ∈ 𝐴𝒰𝑝𝑖,𝒪 implies 
𝑔(𝑥) ∈ 𝐴𝒰𝑝,𝒪.

Finally, let 𝑟(𝑥, 𝑦) ∈ 𝑞𝑇 and thus (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒰𝑝𝑖,𝒪. We distinguish the following 
cases:

• It cannot be that both ℎ(𝑥) and ℎ(𝑦) are elements of 𝑈, by definition of the 
Unravel operation.

• If both ℎ(𝑥) and ℎ(𝑦) are not elements of 𝑈, then both 𝑔(𝑥) and 𝑔(𝑦) were defined 
in the same stage, one of Stage 1, 3, and 4. We can then argue analogously to 
the case of concept atoms that (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

• If ℎ(𝑥) = (𝑑1, 𝑑2) ∈ 𝑈 and ℎ(𝑦) ∉ 𝑈, then we distinguish cases:
– If ℎ(𝑦) ∉ var(𝑝𝑖), then ℎ(𝑦) is a trace of the form (𝑑1, 𝑑2)𝑟𝑀 in 𝒰𝑝𝑖,𝒪. Thus, 

𝑔(𝑦) was defined in Stage 3 as a trace (𝑑′1, 𝑑′2)𝑟𝑀 for 𝑔(𝑥) = (𝑑′1, 𝑑′2). It 
follows that (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

– If ℎ(𝑦) ∈ var(𝑝𝑖) is not unraveled, then by definition of Unravel, it is 
the case that 𝑟((𝑑′1, 𝑑′2), ℎ(𝑦)) ∈ 𝑝 for all copies (𝑑′1, 𝑑′2) of (𝑑1, 𝑑2), and 
𝑟((𝑑1, 𝑑2), ℎ(𝑦)) ∈ 𝑝. We know that 𝑔(𝑥) was defined in Stage 2 and is 
either ℎ(𝑥) or some copy thereof, and ℎ(𝑦) was defined in Stage 1, thus 
𝑔(𝑦) = ℎ(𝑦). Consequently, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

– It cannot be the case that ℎ(𝑦) ∈ var(𝑝𝑖) is unraveled. By Claim 1, 𝑆 is a role 
name for every atom 𝑆(𝑧, 𝑥) ∈ 𝑞𝑇 such that ℎ(𝑧) is unraveled. However, 
this is not the case for the atom 𝑟−(𝑦, 𝑥) ∈ 𝑞𝑇 we started with.

• If ℎ(𝑥) ∉ 𝑈 and ℎ(𝑦) = (𝑑1, 𝑑2) ∈ 𝑈, then ℎ(𝑥) ∈ var(𝑝𝑖) since (ℎ(𝑥), ℎ(𝑦)) ∈ 𝑟𝒰𝑝𝑖,𝒪

and by definition of universal models. We distinguish cases according to 
Claim 1:

– If 𝑉𝑦 = ∅, then 𝑔(𝑦) = ℎ(𝑦), by Stage 2a. Moreover, as ℎ(𝑥) ∈ var(𝑝𝑖) ⧵ 𝑈, 
we have 𝑔(𝑥) = ℎ(𝑥), by Stage 1. Hence, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.
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– If Case i applies and 𝑉𝑦 = {𝑟(𝑥, 𝑦)} with ℎ(𝑥) unraveled, then 𝑔(𝑦) was 
defined in Stage 2b and (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪 by definition of the Unravel
operation.

– If Case ii applies to 𝑉𝑦, then 𝑑1 has the form 𝑐𝑧,0,𝑟,𝐴 and for every 𝑟(𝑦′, 𝑦) ∈
𝑉𝑦, 𝑞2 contains an atom 𝑟(𝑧′, 𝑑2) with ℎ(𝑦′) = (𝑧, 𝑧′). Moreover, 𝑔(𝑦) was 
defined in Stage 2c and 𝑔(𝑦) = (𝑧𝑟𝑀, 𝑑2) for a set 𝑀 with 𝐴 ∈ 𝑀.

∗ If ℎ(𝑥) is unraveled, then ℎ(𝑥) = 𝑔(𝑥) = (𝑧, 𝑧′). By definition of Unravel, 
𝑟((𝑧, 𝑧′), (𝑧𝑟𝑀, 𝑑2)) ∈ 𝑝. Hence, (𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑟𝒰𝑝,𝒪.

∗ If ℎ(𝑥) is not unraveled, then it was defined in Stage 1 and ℎ(𝑥) = 𝑔(𝑥). 
By definition of Unravel, 𝑟(ℎ(𝑥), (𝑧𝑟𝑀, 𝑑2)) ∈ 𝑝.

– If Case iii applies to 𝑉𝑦, the argument is symmetric.

– If Case iv applies to 𝑉𝑦, 𝑑1 has the form 𝑐𝑧1,0,𝑟,𝐴1, 𝑑2 has the form 𝑐𝑧2,0,𝑟,𝐴2, 
ℎ(𝑥) = (𝑧1, 𝑧2), and 𝑔(𝑦) was defined in Stage 2e to be (𝑧1𝑟𝑀1, 𝑧2𝑟𝑀2) for 
sets 𝑀𝑗 with 𝐴𝑗 ∈ 𝑀𝑗. Since ℎ(𝑥) is unraveled, 𝑔(𝑥) was set to ℎ(𝑥) in 
Stage 1, and the definition of Unravel implies 𝑟(𝑔(𝑥), 𝑔(𝑦)) ∈ 𝑝.

We can now use the bound on generalization sequences to show that refine
terminates in polynomial time.

Lemma 5.46. Let 𝑞1(𝑥1) and 𝑞2(𝑥2) be CQs with 𝑞1 ⊆𝒪 𝑞𝑇 and 𝑞2 ⊆𝒪 𝑞𝑇. Then, the 
subroutine refine(𝒪, 𝑞1, 𝑞2) runs in time polynomial in ‖𝑞𝑇‖+‖𝑞1‖+‖𝑞2‖+‖𝒪‖ and returns 
a (𝑞𝑇, 𝒪)-minimal CQ 𝑝 such that 𝑞1 ⊆𝒪 𝑝, 𝑞2 ⊆𝒪 𝑝, and 𝑝 ⊆𝒪 𝑞𝑇.

 Proof. Consider again the sequence 𝑝1, 𝑝2, … produced by applying the Unravel
operation to 𝑝1 = minimize𝒪(𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪). We argue that the length of this sequence 

is bounded by |var(𝑞𝑇)| + 1. Indeed, the following can be shown by induction on 𝑖.

Claim. Let 𝑖 ≥ 1. Then every variable 𝑦 in var(𝑝𝑖) with dist(𝑦, 𝑥) ≤ 𝑖 − 1 for some 
𝑥 ∈ 𝑥1 ⊗ 𝑥2 is unraveled.

Since every 𝑝𝑖 is (𝑞𝑇, 𝒪)-minimal, and therefore |var(𝑝𝑖)| ≤ |var(𝑞𝑇)|, it follows that 
the Unravel operation is no longer applicable to 𝑝|var(𝑞𝑇)|+2.

Next, we observe that the application of extract𝒬 to components of 𝑝 that are 
not connected to any element of 𝑥1 ⊗ 𝑥2 is bounded by the same arguments as 
in Section 5.3. Due to the properties of Expand cycle stated in Lemma 5.36 and 
properties of Split symmetry stated in Lemma 5.37, the sequence of produced queries 
forms a generalization sequence of (𝑞𝑇, 𝒪)-minimal CQs towards 𝑞𝑇. Theorem 5.32 
then implies a polynomial bound on the length of the sequence. Therefore, refine
terminates after polynomially many steps and membership queries.
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Algorithm 5.4: The modified learning algorithm for CQcsf under ℰℒ𝑟 ontologies

Input A signature Σ, an ℰℒ𝑟 ontology 𝒪 in normal form and an arity 𝑘.
Output A 𝑘-ary 𝑞𝐻 ∈ CQcsf such that 𝑞𝐻 ≡𝒪 𝑞𝑇
𝑞0𝐻 ≔ initial-CQ(Σ, 𝒪, 𝑘)
𝑞𝐻 ≔ 𝑞0𝐻
while the CQ-equivalence query “𝑞𝐻 ≡𝒪 𝑞𝑇?” returns a counterexample (𝒜, 𝑎)
do
 𝑞𝐻 ≔ refine(𝒪, 𝑞𝐻, (𝒜, 𝑎))
end while
return 𝑞𝐻

It remains to show that for 𝑝(𝑥) = refine(𝒪, 𝑞1, 𝑞2), 𝑞1 ⊆𝒪 𝑝, 𝑞2 ⊆𝒪 𝑝 and 𝑝 ⊆𝒪 𝑞𝑇. 
The last query implication follows from Lemma 5.45, Lemma 5.36, Lemma 5.37 and 
the fact that minimize𝒪 preserves query implication of 𝑞𝑇.

To show the first query implication, let 𝑝′ be the restriction of 𝑝 to variables that are 
reachable from an element of 𝑥1 ⊗ 𝑥2, and let 𝑝″ be the restriction of 𝑝 to all variables 
that are not reachable. Hence, 𝑝 = 𝑝′∪𝑝″. Since Unravel was applied exhaustively, all 
variables in 𝑝′ are unraveled. Therefore, var(𝑝′) ⊆ Δ𝒰𝑞1,𝒪×𝒰𝑞2,𝒪. Using the definition 
of 𝒞3 and Unravel, it is easy to see that the identity is a homomorphism ℎ′ from 
𝑝 to 𝒰𝑞1,𝒪 × 𝒰𝑞2,𝒪 with ℎ′(𝑥) = 𝑥1 ⊗ 𝑥2. Projection to the left components yields a 
homomorphism that witnesses 𝑞1 ⊆𝒪 𝑝′.

For the second part 𝑝″, note that no variable in 𝑝″ is unraveled. That is, every 
variable is either an element of (Δ𝒞3

𝑞1,𝒪
×𝒞3

𝑞2,𝒪) ⧵ (var(𝑞1) × var(𝑞2)), or a copy of such an 
element introduced by Expand cycle or Split symmetry. The natural mapping ℎ″ that 
maps copies to their originals, is then a homomorphism from 𝑝″ to 𝒞3

𝑞1,𝒪 × 𝒞3
𝑞2,𝒪. 

Projection to the left component yields a homomorphism 𝑔″ from 𝑝″ to 𝒞3
𝑞1,𝒪. Since 

Expand cycle and Split symmetry were applied exhaustively to 𝑝″, 𝑝″ must be chordal 
and symmetry free. It then follows from Lemma 5.28 that 𝑞1 ⊆𝒪 𝑝″.

The second implication can be shown in the same manner.

The modified version of Algorithm 5.3 that uses refine and CQ-equivalence 
queries is displayed as Algorithm 5.4. It is important to note that although Al­
gorithm 5.4 may during its run produce hypotheses 𝑞𝐻 that are not chordal and 
symmetry free, only CQcsf queries will be returned.

Lemma 5.47. Let 𝑞(𝑥1), 𝑝(𝑥2) be CQs. If 𝑝 is chordal and symmetry-free, 𝑞 ≡𝒪 𝑝 and 𝑞 is 
(𝑝, 𝒪)-minimal, then 𝑝 is also chordal and symmetry-free.

 Proof sketch. Let ℎ be a homomorphism from 𝑝 to 𝒰𝑞,𝒪 with ℎ(𝑥2) = 𝑥1 and 𝑔 a 

151



5 Learning with Membership and Equivalence Queries

homomorphism from 𝑞 to 𝒰𝑝,𝒪 with ℎ(𝑥1) = 𝑥2. Note that due to (𝑝, 𝒪)-minimality of 
𝑞, 𝑔 must be injective, as we could otherwise obtain a non-injective homomorphism 
from 𝑞 to 𝒰𝑞,𝒪 by composing 𝑔 with an extension of ℎ. Then, a variant of the proof 
of Point 2 of Lemma 5.36 shows that the composition of 𝑔 and ℎ must map every 
cycle in 𝑞 injectively onto a cycle in 𝑞. Since no chordless cycle of length at least 4
exists in 𝑝, it follows that no such cycle can exist in 𝑞.

A similar argument applies to non-safe symmetries. The composition of 𝑔 and ℎ
must map symmetries to symmetries. A variant of the proof of Lemma 5.37 shows 
that a non-safe symmetry can be mapped to a safe symmetry by the composition of 
𝑔 and ℎ. Since no non-safe symmetries exist in 𝑝, it follows that only safe symmetries 
exist in 𝑞.

It remains to show that Algorithm 5.4 terminates after a polynomial number 
of iterations. Similar to the previous proof for Algorithm 5.3, we argue that the 
sequence of assignments to 𝑞𝐻 forms a generalization sequence of (𝑞𝑇, 𝒪)-minimal 
CQs towards 𝑞𝑇 under 𝒪. The polynomial bound on the length of such sequences 
in Theorem 5.32 then yields the desired bound on the number of iterations.

Theorem 5.48. CQcsf queries are polynomial time learnable under ℰℒ𝑟 ontologies using 
membership queries and CQ-equivalence queries.

 Proof. Let 𝑞1, 𝑞2, … be the sequence of assignments to 𝑞𝐻 during a run of Algo­
rithm 5.4. Lemma 5.46 implies that the refine subroutine runs in polynomial time in 
its inputs and of 𝑞𝑇, and that each 𝑞𝑖 is (𝑞𝑇, 𝒪)-minimal. Therefore, |var(𝑞𝑖)| ≤ |var(𝑞𝑇)|
for all 𝑖 ≥ 0. Hence, it suffices to show that the sequence 𝑞1, 𝑞2, … forms a general­
ization sequence towards 𝑞𝑇 under 𝒪.

First, we show that 𝑞𝑖 ⊆𝒪 𝑞𝑇 for all 𝑖 ≥ 1. We show this by induction on 𝑖. For 𝑖 = 1
this is immediate, since 𝑞1 = 𝑞0𝐻. Now assume that 𝑞𝑖−1 ⊆𝒪 𝑞𝑇. The counterexample 
(𝒜, 𝑎) returned by the equivalence query “𝑞𝑖−1 ≡𝒪 𝑞𝑇” must then be such that 
𝒜, 𝒪 ⊧ 𝑞𝑇(𝑎) and 𝒜, 𝒪 ⊧̸ 𝑞𝑖−1(𝑎). If we view (𝒜, 𝑎) as a CQ 𝑞𝒜, this implies that 
𝑞𝒜 ⊆𝒪 𝑞𝑇 and 𝑞𝒜 ⊈𝒪 𝑞𝑖−1. Hence, 𝑞𝑖 ⊆𝒪 𝑞𝑇 by Lemma 5.46, as required.

Next, we show that 𝑞𝑖−1 ⊆𝒪 𝑞𝑖 and 𝑞𝑖 ⊈𝒪 𝑞𝑖−1 for all 𝑖 ≥ 2. The first point follows 
directly from Lemma 5.46 and the fact that 𝑞𝑖 = refine(𝑞𝑖−1, (𝒜, 𝑎)). The second point 
follows from 𝑞𝒜 ⊈𝒪 𝑞𝑖−1 and 𝑞𝒜 ⊆𝒪 𝑞𝑖.

Therefore, the sequence 𝑞1, 𝑞2, … forms a generalization sequence towards 𝑞𝑇
under 𝒪. Since all 𝑞𝑖 are (𝑞𝑇, 𝒪)-minimal, Theorem 5.32 implies a polynomial bound 
on the length of the sequence. Algorithm 5.4 must terminate after a number of 
iterations that is polynomial in |Σ|, ‖𝒪‖ and ‖𝑞𝑇‖.

Note that in contrast to Algorithm 5.3, Algorithm 5.4 uses CQ-equivalence queries 
and thus requires a more capable teacher. This allows us to learn CQcsf queries of 
any arity in polynomial time.
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𝑎
𝐵1, 𝐵2, 𝐵3 𝐴1, 𝐵2, 𝐵3 𝐵1, 𝐴2, 𝐵3 𝐴1, 𝐴2, 𝐵3 𝐵1, 𝐵2, 𝐴3 𝐴1, 𝐵2, 𝐴3

⋯𝑟 𝑟 𝑟 𝑟 𝑟 𝑟

Figure 5.10: The initial segment of the universal model 𝒰𝒜3,𝒪3 of the ℰℒℐ ontology 
𝒪3 and the ABox 𝒜3, which contains a 3-bit binary counter.

5.5 Learning under ℰℒℐ ontologies

In the previous sections, we have looked at polynomial time learnability of queries 
under ℰℒ𝑟 ontologies. ℰℒ𝑟 allows for polynomial time reasoning, but its expres­
siveness is limited in several ways. One of these limitations is that inverse roles 
can only be used as part of range restrictions, that is concept inclusions of the form 
∃𝑟−.⊤ ⊑ 𝐴, where 𝑟 is a role name and 𝐴 is a concept name. In this section, we 
consider learnability of queries under ontologies written in ℰℒℐ, that allows the 
unrestricted use of inverse roles. For example, ∃𝑟−.𝐴 ⊑ ∃𝑠−.𝐵 is an ℰℒℐ concept 
inclusion that cannot be expressed in ℰℒ𝑟.

The polynomial time learnability results in Section 5.3 and Section 5.4 rely on 
two crucial properties of ℰℒ𝑟: First, that there exist polynomial size CQcsf-universal 
models of ℰℒ𝑟 ontologies that can be computed in polynomial time, and second, that 
whether 𝒜, 𝒪 ⊧ 𝐴(𝑎) can be decided in polynomial time. Both of these properties 
no longer hold for ℰℒℐ ontologies. Indeed, it is known that the standard reasoning 
problems for ℰℒℐ are ExpTime-complete [BBL08] and that there are ℰℒℐ ontologies 
for which no polynomial size ELQ-universal models exist.

Example 5.49. For some 𝑛 ≥ 1, let 𝒪𝑛 be the ℰℒℐ ontology from Example 4.36 that 
contains the following concept inclusions for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and for all 𝑗 with 
1 ≤ 𝑗 < 𝑖:

𝐵𝑖 ⊑ ∃𝑟.⊤
∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐵𝑖) ⊑ 𝐴𝑖 ∃𝑟−.(𝐴1 ⊓ ⋯ ⊓ 𝐴𝑖−1 ⊓ 𝐴1) ⊑ 𝐵𝑖

∃𝑟−.𝐵𝑖 ⊓ 𝐵𝑗 ⊑ 𝐵𝑖 ∃𝑟−.𝐴𝑖 ⊓ 𝐵𝑗 ⊑ 𝐴𝑖

Together with the ABox 𝒜𝑛 = {𝐵1(𝑎), … , 𝐵𝑛(𝑎)}, these concept inclusion generate an 
𝑟-path of length 2𝑛 in 𝒰𝒜𝑛,𝒪𝑛, which is displayed in Figure 5.10 for 𝑛 = 3. On this 
path, the concept names 𝐴𝑖, 𝐵𝑖 act as a binary counter, with the first element after 
𝑎 on this path being labeled with 𝐴1, 𝐵2, … , 𝐵𝑛 and the 2𝑛th element on this path 
being labeled with 𝐴1, 𝐴2, … , 𝐴𝑛. The number of different concept name labels on 
this path is 2𝑛, indicating that no model of polynomial size can be ELQ-universal.

As an additional obstacle, the fitting problem for ELIQs under ℰℒℐ ontologies is 
known to be undecidable [Fun+19].
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These properties of ℰℒℐ indicate that we cannot expect the learning approach for 
ℰℒ𝑟 ontologies to work for ℰℒℐ ontologies. Indeed, already the essential minimize𝒪
subroutine does not work in polynomial time under ℰℒℐ ontologies. Hence, we can 
only hope to achieve polynomial query learning under ℰℒℐ ontologies. However, 
we show that even permitting CQ-equivalence queries does not suffice to enable 
polynomial query learning under ℰℒℐ ontologies. This already holds for the ELQs. 
Like the lower bound proofs in Chapter 4, we show this using an Angluin-style 
argument, arguing that the learner cannot obtain enough information to reliably 
identify the target query.

Theorem 5.50. Every class of CQs that contains all ELQs is not polynomial query learnable 
under ℰℒℐ ontologies with membership queries and CQ-equivalence queries.

 Proof. We use ℰℒℐ ontologies 𝒪𝑛 for 𝑛 ≥ 1, containing the following concept 
inclusions: 

⊤ ⊑ ∃𝑟.⊤ ⊓ ∃𝑠.⊤
𝐿𝑖 ⊑ ∃𝑟.𝐿𝑖+1 ⊓ ∃𝑠.𝐿𝑖+1 for 0 ≤ 𝑖 < 𝑛
𝐿𝑖 ⊑ ∃𝑟.𝐿𝑖+1 for 𝑛 ≤ 𝑖 < 2𝑛

𝐿2𝑛 ⊑ 𝐴
∃𝜎.𝐿𝑖+1 ⊑ 𝐿𝑖 for 𝜎 ∈ {𝑟, 𝑠} and 0 ≤ 𝑖 < 2𝑛

𝐾𝑖 ⊑ ∃𝜎.(𝐾𝑖+1 ⊓ 𝑉𝜎
𝑖+1) for 𝜎 ∈ {𝑟, 𝑠} and 0 ≤ 𝑖 < 𝑛

𝐾𝑖 ⊓ 𝑊𝜎
𝑖−𝑛+1 ⊑ ∃𝑟.𝐾𝑖+1 for 𝜎 ∈ {𝑟, 𝑠} and 𝑛 ≤ 𝑖 < 2𝑛

∃𝜎−.(𝐾𝑗 ⊓ 𝑉𝜎′
𝑖 ) ⊑ 𝑉𝜎′

𝑖 for 𝜎, 𝜎′ ∈ {𝑟, 𝑠}, 1 ≤ 𝑖 ≤ 𝑛,
and 𝑖 ≤ 𝑗 ≤ 2𝑛

𝐾2𝑛 ⊓ 𝑉𝜎
𝑖 ⊓ 𝑊𝜎

𝑖 ⊑ 𝐴 for 𝜎 ∈ {𝑟, 𝑠}  and 1 ≤ 𝑖 ≤ 𝑛
∃𝜎.𝑊𝜎′

𝑖 ⊑ 𝑊𝜎′
𝑖 for 𝜎 ∈ {𝑟, 𝑠, 𝑟−, 𝑠−},

𝜎′ ∈ {𝑟, 𝑠}, and 1 ≤ 𝑖 ≤ 𝑛
𝑊𝑟

𝑖 ⊓ 𝑊𝑠
𝑖 ⊑ 𝐿0 for 1 ≤ 𝑖 ≤ 𝑛

∃𝜎.𝐾𝑖+1 ⊑ 𝐾𝑖 for 𝜎 ∈ {𝑟, 𝑠}  and 0 ≤ 𝑖 < 2𝑛
∃𝜎−.⊤ ⊑ 𝑈𝜎

1 for 𝜎 ∈ {𝑟, 𝑠}
∃𝜎−.𝑈𝜎′

𝑖 ⊑ 𝑈𝜎′
𝑖+1 for 𝜎, 𝜎′ ∈ {𝑟, 𝑠}  and 1 ≤ 𝑖 < 2𝑛

𝑈𝑟
𝑖 ⊓ 𝑈𝑠

𝑖 ⊑ 𝐷 for 1 ≤ 𝑖 ≤ 2𝑛
𝐾𝑖 ⊓ 𝐴 ⊑ 𝐷 for 0 ≤ 𝑖 < 2𝑛
𝐿𝑖 ⊓ 𝐴 ⊑ 𝐷 for 0 ≤ 𝑖 < 2𝑛
𝐿𝑖 ⊓ 𝐿𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖 < 𝑗 ≤ 2𝑛
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Figure 5.11: The interpretations 𝐿0-tree (left) and 𝐾0-tree (right) for 𝑛 = 2 and 
𝒲 = {1, 2}.

𝐾𝑖 ⊓ 𝐾𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖 < 𝑗 ≤ 2𝑛
𝐿𝑖 ⊓ 𝐾𝑗 ⊑ 𝐷 for 𝑛 ≤ 𝑖, 𝑗 ≤ 2𝑛

∃𝜎.𝐷 ⊑ 𝐷 for 𝜎 ∈ {𝑟, 𝑠, 𝑟−, 𝑠−}
𝐷 ⊑ 𝐿0

where 𝑟 = 𝑠 and 𝑠 = 𝑟. The size of the used signature Σ𝑛 is polynomial in 𝑛. Every 
𝒪𝑛 is associated with a set 𝐻𝑛 of 2𝑛 potential target queries of the form

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

with 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠}.
Assume to the contrary of what is to be shown that ELQs are polynomial query 

learnable under ℰℒℐ ontologies when unrestricted CQs can be used in equivalence 
queries. Then, there exists a learning algorithm and a polynomial 𝑝 such that 
at any time, the sum of the sizes of the inputs to membership and equivalence 
queries made so far is bounded by 𝑝(𝑛Σ, 𝑛𝒪, 𝑛𝑞𝑇, 𝑛𝒜), where 𝑛Σ is the size of the used 
signature, 𝑛𝒪 the size of the used ontology, 𝑛𝑞𝑇 the size of the target query and 𝑛𝒜
the size of the largest counterexample seen so far.

We choose 𝑛 such that 2𝑛 > 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓3(𝑛)) + 1 where 𝑓1, 𝑓2, 𝑓3 are 
polynomials such that for every 𝑛 ≥ 1, |Σ𝑛| ≤ 𝑓1(𝑛), ‖𝒪𝑛‖ ≤ 𝑓2(𝑛), ‖𝑞‖ ≤ 𝑓3(𝑛) for all 
𝑞 ∈ 𝐻𝑛 and 𝑓4 bounds from above the size of all counterexamples returned by the 
teacher that we craft below. Consider then 𝒪𝑛 and 𝐻𝑛 as defined above. We let the 
teacher maintain a set of hypotheses 𝐻, starting with 𝐻 = 𝐻𝑛 and then proceeding 
to subsets thereof, such that at no point the learner can distinguish between any of 
the candidate targets in 𝐻.
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More precisely, consider a membership query with the data example (𝒜, 𝑎0). The 
teacher responds as follows:

1. if 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), then answer yes;

2. if 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and there are 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} with 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖
𝑖 (𝑎0) for 

1 ≤ 𝑖 ≤ 𝑛, then answer yes and remove the ELQ

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

from 𝐻, if present;

3. otherwise, answer no and remove all 𝑞 with 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0) from 𝐻.

Higher up rules have higher priority, for example, Case 2 is applied only if Case 1 
does not apply. To understand this strategy, consider the consequences of the 
concept name 𝐿0 and the concept name 𝐾0 under 𝒪𝑛 displayed in Figure 5.11 for 
𝑛 = 2. We formally describe them later. It is not difficult to verify that the answers 
are correct regarding the hypothesis set 𝐻 that remains after the answer is given.

Now consider an equivalence query with CQ 𝑞𝐻(𝑥0). The teacher responds as 
follows:

1. if {𝐿0(𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0), then return {𝐿0(𝑎0)} as positive counterexample;

2. if {⊤(𝑎0), 𝐿0(𝑎1)}, 𝒪𝑛 ⊧ 𝑞𝐻(𝑎0), then return {⊤(𝑎0), 𝐿0(𝑎1)} as a negative coun­
terexample;

3. if there are 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} such that

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0),

then choose such 𝜎1, … , 𝜎𝑛, return {𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)} as a positive 

counterexample, and remove the ELQ

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ ⋯ ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

from 𝐻 (if present).

Again, higher up rules have higher priority and the answers are always correct 
with respect to the updated set 𝐻. For Case 3, note that the counterexample 𝒜 =
{𝐾0(𝑎0), 𝑊𝜎1

1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)} is such that 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0) for all ELQs

𝑞(𝑥0) ← 𝜎′
1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎′

𝑛(𝑥𝑛−1, 𝑥𝑛) ∧ 𝑟(𝑥𝑛, 𝑥𝑛+1) ∧ … ∧ 𝑟(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛)

with 𝜎′
1, … , 𝜎′

𝑛 ∈ {𝑟, 𝑠} except 𝜎′
1 ⋯ 𝜎′

𝑛 = 𝜎1 ⋯ 𝜎𝑛.

156



5.5 Learning under ℰℒℐ ontologies

We argue that Cases 1 to 3 are exhaustive. If 𝒜𝑞𝐻, 𝒪𝑛 ⊧ 𝐿0(𝑥0), then

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0)

for any 𝜎1, … , 𝜎𝑛, ∈ {𝑟, 𝑠} and thus Case 3 is applicable.
For the case 𝒜𝑞𝐻, 𝒪𝑛 ⊧̸ 𝐿0(𝑥0), assume that Cases 1 and 2 do not apply. Let 𝑞′𝐻

be the restriction of 𝑞𝐻 to variables that are reachable from 𝑥0 and let 𝑞″𝐻 be the 
restriction of 𝑞𝐻 to the variables that are not reachable.

Non-applicability of Case 1 implies that there is a homomorphism ℎ from 𝑞𝐻 to 
𝒰{𝐿0(𝑎0)},𝒪𝑛 with ℎ(𝑥0) = 𝑎0. Consequently, 𝑞𝐻 can only contain the symbols 𝑟, 𝑠, 𝐴 as 
well as the concept names 𝐿𝑖 and 𝑈𝜎

𝑖 .
If there is no variable 𝑥 ∈ var(𝑞′𝐻) such that 𝐴(𝑥) ∈ 𝑞′𝐻, then ℎ is also a homomor­

phism from 𝑞′𝐻 to 𝒰{⊤(𝑎0)},𝒪𝑛 due to the first concept inclusion in 𝒪𝑛. Taking the 
union of ℎ with a homomorphism from 𝑞″𝐻 to 𝒰{𝐿0(𝑎1)},𝒪𝑛 yields a homomorphism 
𝑔 from 𝑞𝐻 to 𝒰{⊤(𝑎0),𝐿0(𝑎1)},𝒪𝑛 with 𝑔(𝑥0) = 𝑎0. This contradicts that Case 2 does not 
apply. Therefore, there must be a variable 𝑥 ∈ var(𝑞′𝐻) such that 𝐴(𝑥) ∈ 𝑞𝐻. Since 
{𝐿0(𝑎0)}, 𝒪𝑛 ⊧ 𝑞𝐻(𝑥0), 𝑥 must be reachable from 𝑥0 on an 𝑟/𝑠-path of length exactly 2𝑛
whose last 𝑛 components are all 𝑟. Let the first 𝑛 components be 𝜎1, … , 𝜎𝑛. Then

{𝐾0(𝑎0), 𝑊𝜎1
1 (𝑎0), … , 𝑊𝜎𝑛𝑛 (𝑎0)}, 𝒪𝑛 ⊧̸ 𝑞𝐻(𝑎0)

and thus Case 3 applies.

We next show the following, which is the most important consequence of the 
design of 𝒪𝑛.

Claim. If (𝒜, 𝑎0) is given as a membership query and Cases 1 and 2 of membership 
queries do not apply, then

‖𝒜‖ ≥ |{𝑞 ∈ 𝐻𝑛 ∣ 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0)}|.

 Proof of the Claim. We may assume without loss of generality that 𝒜 is connected. 
Since Cases 1 and 2 of membership queries do not apply, we observe the following 
properties:

(a) 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0).

(b) there are no 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠} such that 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖
𝑖 (𝑎0) for 

1 ≤ 𝑖 ≤ 𝑛.

By construction of 𝒪𝑛, these properties imply the following properties for all 𝑖 with 
0 ≤ 𝑖 ≤ 2𝑛:

(c) 𝒜 contains no 𝑟/𝑠-path of length 𝑖 from 𝑎0 to some 𝑎 with 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎). In 
fact, the existence of such a path implies 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), contradicting (a).
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(d) 𝒜 contains no 𝑟/𝑠-path of length 𝑖 from 𝑎0 to some 𝑎 with 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎) and 
assertions 𝑊𝜎1

1 (𝑎1), … , 𝑊𝜎𝑛𝑛 (𝑎𝑛) with 𝜎1, … , 𝜎𝑛 ∈ {𝑟, 𝑠}. In fact, the existence of 
such a path and such assertions implies 𝒜, 𝒪𝑛 ⊧ 𝐾0(𝑎0) and 𝒜, 𝒪𝑛 ⊧ 𝑊𝜎𝑖

𝑖 (𝑎0)
for 1 ≤ 𝑖 ≤ 𝑛, contradicting (b).

(e) 𝒜 contains no 𝑟/𝑠-paths 𝑝1, 𝑝2 of length 𝑖 that end at the same individual and 
such that 𝑝1 starts with an 𝑟-edge while 𝑝2 starts with an 𝑠-edge. In fact, the 
existence of such paths and the connectedness of 𝒜 implies 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎0), 
and thus 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0), contradicting (a).

We now sketch the construction of a model ℐ of 𝒜 and 𝒪𝑛. Let

𝒲 = {𝑖 ∈ {1, … , 𝑛} ∣ 𝑊𝜎
𝑖 (𝑎) ∈ 𝒜, 𝜎 ∈ {𝑟, 𝑠}, 𝑎 ∈ ind(𝒜)}.

The following interpretations are used as building blocks for ℐ:

• an 𝐿𝑖-path, for 𝑛 ≤ 𝑖 ≤ 2𝑛, is an 𝑟-path of length 2𝑛 − 𝑖 that makes 𝐿𝑖+𝑗 true at 
the node at distance 𝑗 ∈ {0, … , 𝑛 − 𝑖} from the start of the path and that makes 
true 𝐴 at the end of the path;

• a 𝐾𝑖-path, for 𝑛 ≤ 𝑖 ≤ 2𝑛, is defined as follows; let ℓ be maximal such that 
{(𝑖 − 𝑛) + 0, … , (𝑖 − 𝑛) + ℓ} ⊆ 𝒲; then a 𝐾𝑖-path is an 𝑟-path of length ℓ that 
makes 𝐾𝑖+𝑗 true at the node at distance 𝑗 ∈ {0, … , ℓ} from the start of the path 
and that makes true 𝐴 at the node at distance 2𝑛 − 𝑖 (if it exists); in addition, 
the start of the path might make true any of the concept names 𝑉𝜎

𝑗 , 𝜎 ∈ {𝑟, 𝑠}
and 1 ≤ 𝑗 ≤ 𝑛, which are then all also made true by all other nodes on the 
path;

• an 𝐿𝑖-tree, for 0 ≤ 𝑖 < 𝑛, is a binary 𝑟/𝑠-tree of depth 𝑛 − 𝑖 that makes 𝐿𝑖+𝑗 true 
at every node on level 𝑗 ∈ {0, … , 𝑛 − 𝑖}; in addition, every node on level 𝑛 − 𝑖 is 
the start of an 𝐿𝑛-path;

• a 𝐾𝑖-tree, for 0 ≤ 𝑖 < 𝑛, is a binary 𝑟/𝑠-tree of depth 𝑛 − 𝑖 that makes true 𝐾𝑖+𝑗
at every node on level 𝑗 ∈ {0, … , 𝑛 − 1} and 𝑉𝜎

𝑖+𝑗 at every node on level at least 
𝑗 that is a 𝜎-successor of its parent; in addition, every node on level 𝑛 − 𝑖 is 
the start of a 𝐾𝑛-path; moreover, the root might make true any of the concept 
names 𝑉𝜎

𝑗 , 𝜎 ∈ {𝑟, 𝑠} and 1 ≤ 𝑗 ≤ 𝑖, which are then all also made true by all 
other nodes in the tree.

In all of the above, any node that has an incoming 𝑟/𝑠-path of length 𝑖 ∈ {1, … , 2𝑛} that 
starts with 𝜎 ∈ {𝑟, 𝑠} is additionally labeled with the concept name 𝑈𝜎

𝑖 . Moreover, 
the beginning of the path/root of the tree may be labeled with concept names of 
the form 𝑈𝜎

𝑖 . Then, any node on depth 𝑖 + 𝑗 with 𝑖 + 𝑗 ≤ 2𝑛 is labeled with 𝑈𝜎
𝑖+𝑗.
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Figure 5.11 visualizes these building blocks The concept names 𝑈𝜎
𝑖  and 𝑊𝜎

𝑖  are 
left out and mentioned just once, respectively. Note that the 𝐾0-tree is missing a 
concept name 𝐴 at the 𝐾2-path specified by 𝑊𝑟

1, 𝑊𝑠
2.

Now, we construct ℐ by starting with 𝒜 and doing the following:

1. exhaustively apply all concept inclusions in 𝒪𝑛 that have a concept name on 
the right-hand side;

2. if 𝑎 ∈ 𝐿ℐ
𝑖 , 0 ≤ 𝑖 < 𝑛, then attach at 𝑎 an 𝐿𝑖-tree;

3. if 𝑎 ∈ 𝐾ℐ
𝑖 , 0 ≤ 𝑖 < 𝑛, then attach at 𝑎 a 𝐾𝑖-tree;

4. if 𝑎 ∈ 𝐿ℐ
𝑖 , 𝑛 ≤ 𝑖 ≤ 2𝑛, then attach at 𝑎 an 𝐿𝑖-path;

5. if 𝑎 ∈ 𝐾ℐ
𝑖 , 𝑛 ≤ 𝑖 ≤ 2𝑛, then attach at 𝑎 a 𝐾𝑖-path;

6. at every 𝑎 ∈ Δℐ, attach an infinite tree in which every node has two successors, 
one for each role name 𝑟, 𝑠, and in which no concept names are made true;

7. if 𝑊𝜎
𝑖 (𝑎) ∈ 𝒜 for some 𝑎, then make 𝑊𝜎

𝑖  true everywhere in ℐ.

By going over the concept inclusions in 𝒪𝑛 and using Properties (a) and (b), it can 
be verified that ℐ is indeed a model of 𝒪𝑛. In particular, the inclusions 𝑊𝑟

𝑖 ⊓𝑊𝑠
𝑖 ⊑ 𝐿0

are satisfied since there is no 𝑑 ∈ Δℐ with 𝑑 ∈ (𝑊𝑟
𝑖 ⊓𝑊𝑠

𝑖 ); if there was such a 𝑑, then by 
construction of ℐ there would be assertions 𝑊𝑟

𝑖 (𝑎) and 𝑊𝑠
𝑖 (𝑏) in 𝒜, in contradiction to 

the connectedness of 𝒜 and 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0). For the concept inclusions 𝑈𝑟
𝑖 ⊓𝑈𝑠

𝑖 ⊑ 𝐿0, 
we argue that there is no 𝑑 ∈ Δℐ with 𝑑 ∈ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖 )
ℐ. To see this, note that there are 

no 𝑈𝑟
𝑖 (𝑎), 𝑈𝑠

𝑖 (𝑎) ∈ 𝒜 for any 𝑎 as otherwise 𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0). Now consider Step 1 of 
the construction of ℐ and assume that it adds some 𝑎 ∈ ind(𝒜) to (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖 )
ℐ. But 

this means that 𝒜, 𝒪𝑛 ⊧ 𝑈𝑟
𝑖 (𝑎) and 𝒜, 𝒪𝑛 ⊧ 𝑈𝑠

𝑖 (𝑎), in contradiction to 𝒜, 𝒪𝑛 ⊧̸ 𝐿0(𝑎0), 
due to connectedness of 𝒜. Given that there is no 𝑑 ∈ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖 )
ℐ for any 𝑖 after 

Step 1, it is readily checked that the elements 𝑑 added in Steps 2–6 also satisfy 
𝑑 ∉ (𝑈𝑟

𝑖 ⊓ 𝑈𝑠
𝑖 )
ℐ.

We now use ℐ to prove the claim. Let 𝐻′ be the set of all 𝑞 ∈ 𝐻𝑛 with 𝒜, 𝒪𝑛 ⊧
𝑞(𝑎0). With each 𝑞 ∈ 𝐻′, we associate an 𝑎𝑞 ∈ ind(𝒜) as follows. Let 𝑞 be the CQ 
𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎2𝑛(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛). Then ℐ contains a path from 𝑎0
to some element 𝑑𝑞 ∈ 𝐴ℐ that is labeled 𝜎1 ⋯ 𝜎2𝑛. If 𝑑𝑞 ∈ ind(𝒜), then 𝑎𝑞 = 𝑑𝑞. 
Otherwise, 𝑑𝑞 is in a path or tree attached to some 𝑎 ∈ ind(𝒜). Set 𝑎𝑞 = 𝑎. To show 
that ‖𝒜‖ ≥ |{𝑞 ∈ 𝐻𝑛 ∣ 𝒜, 𝒪𝑛 ⊧ 𝑞(𝑎0)}| as required, it suffices to prove that 𝑎𝑞 ≠ 𝑎𝑞′
whenever 𝑞 ≠ 𝑞′. Thus, let 𝑞, 𝑞′ ∈ 𝐻′ with 𝑞 ≠ 𝑞′,

𝑞(𝑥0) ← 𝜎1(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝜎2𝑛(𝑥2𝑛−1, 𝑥2𝑛) ∧ 𝐴(𝑥2𝑛),
𝑞′(𝑥′0) ← 𝜎′

1(𝑥′0, 𝑥′1) ∧ ⋯ ∧ 𝜎′
2𝑛(𝑥′2𝑛−1, 𝑥′2𝑛) ∧ 𝐴(𝑥′2𝑛).
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Assume to the contrary of what is to be shown that 𝑎𝑞 = 𝑎𝑞′. We distinguish four 
cases:

• 𝑑𝑞 = 𝑎𝑞, 𝑑𝑞′ = 𝑎𝑞′.

Then there is a path from 𝑎0 to 𝑎𝑞 in ℐ labeled 𝜎1 ⋯ 𝜎2𝑛 and a path from 𝑎0 to 
𝑎𝑞′ labeled 𝜎′

1 ⋯ 𝜎′
2𝑛. By construction of ℐ, these paths must already exist in 

𝒜. From 𝑞 ≠ 𝑞′, we thus obtain a contradiction to Property (e).

• 𝑑𝑞 = 𝑎𝑞, 𝑑𝑞′ ≠ 𝑎𝑞′.

By construction of ℐ, 𝑑𝑞′ ≠ 𝑎𝑞′ implies that 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎𝑞) or 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎𝑞)
for some 𝑖 with 0 ≤ 𝑖 ≤ 2𝑛. Moreover, 𝑑𝑞 = 𝑎𝑞 implies 𝒜, 𝒪𝑛 ⊧ 𝐴(𝑎𝑞). Thus, 
𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎𝑞). By the connectedness of 𝒜, we obtain 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎0), thus 
𝒜, 𝒪𝑛 ⊧ 𝐿0(𝑎0) in contradiction to Property (c).

• 𝑑𝑞 ≠ 𝑎𝑞, 𝑑𝑞′ = 𝑎𝑞′.

Symmetric to previous case.

• 𝑑𝑞 ≠ 𝑎𝑞, 𝑑𝑞′ ≠ 𝑎𝑞′.

We first show that 𝑑𝑞 and 𝑑𝑞′ are not in an 𝐿𝑖-tree, for 0 ≤ 𝑖 < 𝑛. Assume to 
the contrary that 𝑑𝑞 is (the case of 𝑑𝑞′ is symmetric). Then it occurs on level 
2𝑛 − 𝑖 in the tree, since 𝑑𝑞 ∈ 𝐴ℐ. Since an 𝐿𝑖-tree was attached to 𝑎𝑞, we must 
have 𝒜, 𝒪𝑛 ⊧ 𝐿𝑖(𝑎𝑞). Moreover, there is an 𝑟/𝑠-path in ℐ from 𝑎0 to 𝑎𝑞 of length 
𝑖, the prefix of 𝜎1 ⋯ 𝜎2𝑛 of this length. By construction of ℐ, this path must 
already be in 𝒜. This is in contradiction to Property (c).

We next show that 𝑑𝑞 and 𝑑𝑞′ are not in a 𝐾𝑖-tree, 0 ≤ 𝑖 < 𝑛. Assume to the con­
trary that 𝑑𝑞 is (the case of 𝑑𝑞′ is symmetric). Then it occurs on level 2𝑛−𝑖 in the 
tree, since 𝑑𝑞 ∈ 𝐴ℐ. By definition of such trees (and the attached paths), this 
implies that 𝒲 = {1, … , 𝑛} and thus 𝒜 contains assertions 𝑊𝜎″1

1 (𝑎1), … , 𝑊𝜎″𝑛𝑛 (𝑎𝑛). 
We must further have 𝒜, 𝒪𝑛 ⊧ 𝐾𝑖(𝑎𝑞) and there is an 𝑟/𝑠-path in ℐ, thus in 𝒜
from 𝑎0 to 𝑎𝑞 of length 𝑖. This is in contradiction to Property (d).

Thus, 𝑑𝑞 and 𝑑′𝑞 are both in an 𝐿𝑖-path or in a 𝐾𝑖-path, 𝑛 ≤ 𝑖 ≤ 2𝑛. If they 
are in different such paths, then 𝒜, 𝒪𝑛 ⊧ 𝐷(𝑎𝑞), which is in contradiction to 
Property (c) as 𝒜 is connected. Thus, they must be in the same 𝐿𝑖-path or 
in the same 𝐾𝑖-path. Since each such path contains a single element 𝑑 with 
𝑑 ∈ 𝐴ℐ, we obtain 𝑑𝑞 = 𝑑′𝑞. From 𝑞 ≠ 𝑞′, it thus follows that there are two 
different paths of length 𝑖 in ℐ from 𝑎0 to 𝑎𝑞, the prefixes of this length of 
𝜎1 ⋯ 𝜎2𝑛 and of 𝜎′

1 ⋯ 𝜎′
2𝑛. This is in contradiction to Property (e).

This finishes the proof of the claim.
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We can use the claim to show the following invariant:

(∗) at every point, the sum 𝑚 of the sizes of the inputs to membership and equiv­
alence queries made so far is not smaller than the number of candidates that 
were removed from 𝐻.

Note that the teacher removes candidate queries from 𝐻 only in Cases 2 and 3 of 
membership queries (Page 156) and Cases 3 and 6 of equivalence queries (Page 156). 
In all cases except Case 3 of membership queries, only one candidate is removed 
from 𝐻. The claim implies that the number of removed candidates in Case 3 of 
membership queries is bounded from above by the size of the query posed.

It then follows that there is a polynomial 𝑓4 such that the size of all counterexam­
ples returned by the oracle is at most 𝑓4(𝑛). The overall sum of the sizes of posed 
membership and equivalence queries is bounded by 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓4(𝑛)). 
Hence, we can conclude from (∗) that at most 𝑝(𝑓1(𝑛), 𝑓2(𝑛), 𝑓3(𝑛), 𝑓4(𝑛)) candidate 
concepts have been removed from 𝐻𝑛. By the choice of 𝑛, at least two candidate con­
cepts remain in 𝐻 after the algorithm finishes. Thus, the learner cannot distinguish 
between them, and we have derived a contradiction.

Theorem 5.50 also precludes the possibility of polynomial time learning under 
ℰℒℐ ontologies with an ℰℒℐ reasoning oracle.

5.6 Queries with Disjunctions

All query classes we have considered so far are subclasses of CQs and can therefore 
only express conjunction of atoms. In many practical scenarios, it is also desirable 
to write queries using disjunctions, for example when querying a database for all 
things that are a dog or a cat. In this chapter, we briefly consider the learnability of 
queries that use disjunctions. One way to use disjunctions in queries are unions of 
conjunctive queries (UCQs). A UCQ is an expression of the form

𝑞(𝑥) ← 𝑞1(𝑥) ∨ ⋯ ∨ 𝑞𝑛(𝑥)

where 𝑞1, … , 𝑞𝑛 are CQs of the same arity. A tuple 𝑑 is an answer to a UCQ 𝑞 in an 
interpretation ℐ, written ℐ ⊧ 𝑞(𝑑) if there is an 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 such that ℐ ⊧ 𝑞𝑖(𝑑). 
This allows us to express disjunctions like

𝑞(𝑥) ← Dog(𝑥) ∨ Cat(𝑥).

Ten Cate, Dalmau, and Kolaitis show that UCQs are polynomial time learnable 
using membership and equivalence queries [tCDK13] under the empty ontology, 
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in fact, using a variant of Algorithm 5.1. Therefore, the question arises whether 
our result concerning the polynomial time learnability of subclasses of CQs under 
ontologies can be transferred to UCQs. We conjecture that this is the case and that 
Algorithm 5.2 and Algorithm 5.3 can be extended analogously to learn unions of
ELIQs, or unions of  CQcsf queries, respectively. This new algorithm would maintain 
a union of CQcsf queries as a hypothesis, and would use counterexamples and 
membership queries to update single CQcsf queries in this union, or to add new 
elements to the union. We leave a proof of this for future work.

A known property of UCQs is that, since disjunctions appear nested below 
conjunctions, some queries cannot be represented succinctly. For example, if we 
want to query for all things that are (𝐴1 or 𝐴2) and (𝐴3 or 𝐴4), we can only formulate 
this as the UCQ

𝑞(𝑥) ← (𝐴1(𝑥) ∧ 𝐴3(𝑥)) ∨ (𝐴1(𝑥) ∧ 𝐴4(𝑥)) ∨ (𝐴2(𝑥) ∧ 𝐴3(𝑥)) ∨ (𝐴2(𝑥) ∧ 𝐴4(𝑥)).

UCQs can therefore be exponentially larger than queries written in a query language 
that can freely nest disjunctions and conjunctions.

One way to define such a query language is to use ℰℒ𝒰 concept queries, that is 
ℰℒ concepts extended with disjunctions. An ℰℒ𝒰 concept is formed according to 
the syntax rule

𝐶, 𝐷 ∶∶= ⊤ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐷 ∣ 𝐶 ⊔ 𝐷 ∣ ∃𝑟.𝐶

where 𝐴 ranges over NC and 𝑟 over NR. The semantics of ⊤, ⊥, ⊓ and ∃ is defined 
exactly as in Section 3.1. We extend the interpretation function ⋅ℐ for ⊔ by setting

(𝐶 ⊔ 𝐷)ℐ = 𝐶ℐ ∪ 𝐷ℐ.

ℰℒ𝒰 queries allow us to express the above query more succinctly as the concept

(𝐴1 ⊔ 𝐴2) ⊓ (𝐴3 ⊔ 𝐴4).

Unfortunately, this succinct representation makes learning ℰℒ𝒰 queries with 
membership queries and equivalence queries hard, which we show next. So far, 
in Section 4.1 and Section 5.5, we have used the basic combinatorial technique 
introduced by Angluin [Ang88b] to show lower bounds for exact learning. It is 
unclear if or how this technique can be applied to ℰℒ𝒰 queries. Instead, we will 
rely on the hardness of learning monotone Boolean (propositional) formulas, that is 
Boolean formulas that do not use negation, only conjunction and disjunction.

Learning of Boolean formulas is one of the major fields where the exact learning 
framework has been applied. Many fragments of Boolean formulas have been 
shown to be polynomial time learnable, like 𝑘-term DNFs [Ang88b] or Horn for­
mulas [AFP92]. However, the class of all Boolean formula has been shown to not 

162



5.6 Queries with Disjunctions

be polynomial time learnable with equivalence and membership queries, as long as 
certain cryptographic assumptions hold [AK95]. These assumptions are that one of 
the following problems cannot be solved in polynomial time: (1) testing quadratic 
residues modulo a composite, (2) inverting RSA encryption, (3) factoring Blum 
integers. See [KV89] for more details and a description of these problems. These 
assumptions all imply that P ≠ NP.

This lower bound already holds for monotone Boolean formulas.

Theorem 5.51 ([Dal99]). Monotone Boolean formulas are not polynomial time learnable 
with membership queries and equivalence queries under cryptographic assumptions.

Since ℰℒ𝒰 queries, like monotone Boolean formulas, only use conjunction and 
disjunction (but are unable to express Boolean negation), this directly allows us to 
show that ℰℒ𝒰 queries are not polynomial time learnable even in the case without 
an ontology via a trivial direct reduction.

Theorem 5.52. ℰℒ𝒰 queries are not polynomial time learnable under the cryptographic 
assumptions.

 Proof. Assume to the contrary that there is a learning algorithm A that can learn 
ℰℒ𝒰 queries under the empty ontology in polynomial time using equivalence and 
membership queries.

We use A to formulate a polynomial time learning algorithm A′ for monotone 
Boolean formulas. The new algorithm proceeds as follows.

• When started to learn a monotone Boolean formula over the propositional 
variables 𝑥1, … , 𝑥𝑛, A′ in turn starts A with the signature {𝐴1, … , 𝐴𝑛}, where 
𝐴1, … , 𝐴𝑛 are concept names.

• When A poses a membership query with the example (𝒜, 𝑎), A′ constructs 
the variable assignment 𝑉𝒜 with 𝑉𝒜(𝑥𝑖) = 1 if and only if 𝒜, ∅ ⊧ 𝐴𝑖(𝑎) for 
all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, and poses a membership query with 𝑉𝒜. A′ returns the 
result of this membership query to A.

• When A poses an equivalence query with the ℰℒ𝒰 query 𝑞𝐻, A′ computes 
the monotone Boolean formula 𝜑𝐻 using the following inductive translation 
𝑓 of ℰℒ𝒰 concepts:

𝑓(𝐴𝑖) = 𝑥𝑖
𝑓(𝐶 ⊓ 𝐷) = 𝑓(𝐶) ∧ 𝑓(𝐷)
𝑓(𝐶 ⊔ 𝐷) = 𝑓(𝐶) ∨ 𝑓(𝐷)

and setting 𝜑𝐻 = 𝑓(𝑞𝐻). The algorithm A′ then poses an equivalence query 
with 𝜑𝐻. If A′ receives a valuation 𝑉 as counterexample, it constructs an ABox 
𝒜𝑉 = {𝐴𝑖(𝑎) ∣ 𝑉(𝑥𝑖) = 1} and returns (𝒜𝑉, 𝑎) as counterexample to A.
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• When A terminates and returns an ℰℒ𝒰 query 𝑞𝐻, it returns 𝑓(𝑞𝐻) using the 
same translation as above.

Since 𝑉 ⊧ 𝜑 if and only if 𝒜𝑉, ∅ ⊧ 𝑓(𝜑), the answers given to membership queries 
and equivalence queries are correct. Hence, A′ returns in polynomial time a mono­
tone Boolean formula that is equivalent to the target formula, contradicting Theo­
rem 5.51.

This observation justifies our focus on learning conjunctive queries. It is an inter­
esting question, whether other results on the polynomial time learnability of classes 
of Boolean formulas can give rise to larger polynomial time learnable query classes.

5.7 Discussion

In this chapter, we have investigated the learnability of queries under ontologies 
using both membership queries and equivalence queries. Unsurprisingly, the addi­
tion of equivalence queries makes learning algorithms more powerful compared 
to the algorithms we considered in Chapter 4. The result can be summarized as 
follows.

• ELIQs are polynomial time learnable under ontologies written in DL-Liteℱ−horn
(Theorem 5.17);

• ELQ, ELIQsf, and CQcsf queries are polynomial time learnable under ℰℒ𝑟

ontologies if their arity is fixed (Theorem 5.39) and polynomial time learnable 
for unbounded arity if CQ-equivalence queries are permitted (Theorem 5.48);

• ELQ, ELIQ, and CQ queries are not polynomial query learnable under ℰℒℐ
ontologies, even if CQ-equivalence queries are permitted (Theorem 5.50);

• ℰℒ𝒰 queries are not polynomial time learnable under cryptographic assump­
tion (Theorem 5.52).

Recall that the results about ELQs, ELIQs and ELIQsf queries also apply to ℰℒ
concepts, ℰℒℐ concepts and symmetry-free ℰℒℐ concepts, respectively.

The main issue we discussed in this chapter is how learning algorithms can 
update hypotheses with counterexamples obtained from equivalence queries to 
approach the target query. In Section 5.2 we used guided generalizations for this 
and products of compact models in Section 5.3. Combined with subroutines to 
minimize queries and to extract queries from the desired query class, this allows 
the learning algorithms to approach the target query in polynomially many steps. 
Next, we discuss how the results in this chapter might be generalized.
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Using Counterexamples. Upon inspection of the conditions of generalization 
sequences (Definition 4.33) and the proof that the hypotheses of the learning 
algorithm form a generalization sequence, we can note that the only requirement 
for the new hypothesis 𝑞′𝐻 is that 𝑞𝐻 ⊆𝒪 𝑞′𝐻 ⊆𝒪 𝑞𝑇 and 𝑞′𝐻 ⊈𝒪 𝑞𝐻. In other words, 
it suffices that 𝑞′𝐻 is an element of the frontier of 𝑞𝐻. In some sense, the LGGs 
(Definition 5.6), guided generalizations (Definition 5.9), and the product of compact 
models used in Section 5.3 enforce more properties than are necessary for the 
learning algorithm to make progress towards 𝑞𝑇. Of course, as noted in Chapter 4, 
the frontier of a hypothesis 𝑞𝐻 under ontologies is often infinite or of exponential 
size and thus cannot be enumerated to search for 𝑞′𝐻. However, the counterexample 
returned by an equivalence query can provide us with more information, and may 
allow us to restrict the search to a small portion of the frontier. A more principled 
way to obtain learning algorithms could thus be based on counterexample-guided 
frontiers, that may be of polynomial size, in cases where the general frontier is 
prohibitively large.

Learning under ℰℒlhs. As discussed in Section 5.1, ideally one would want to use 
the product 𝒰𝑞𝐻,𝒪 × 𝒰𝒜,𝒪 to update a hypothesis with a counterexample. This is 
of course not possible, if the universal models are infinite or of exponential size. 
For ℰℒlhs ontologies, that is ontologies where all concept inclusions have the shape 
𝐶 ⊑ 𝐴 where 𝐶 is an ℰℒ concept and 𝐴 a concept name, it is always the case that 
𝒰𝑞,𝒪 is of polynomial size. By slightly modifying Algorithm 5.1, we can therefore 
easily show that CQs are polynomial time learnable under ℰℒlhs ontologies.

Functionality Constraints. Reasoning in ℰℒℱ, that is ℰℒ extended with function­
ality constraints, is ExpTime-complete [BBL05]. Hence, polynomial time learning 
of, for example, ELQs under ℰℒℱ ontologies seems out of reach. Additionally, there 
are no ELQ-universal models of ℰℒℱ ontologies that are of polynomial size, as 
demonstrated by Example 5.49, which can be expressed using ℰℒℱ ontologies. We 
conjecture that the ℰℒℐ ontologies used in the proof of Theorem 5.50 can be formu­
lated in ℰℒℱ, and be used to show that ELQs are not polynomial query learnable 
under ℰℒℱ ontologies. To show this, note that the roles 𝑠 and 𝑟 are functional in all 
used interpretations, and therefore each concept inclusion of the form ∃𝜎−.𝐴 ⊑ 𝐵, 
can be expressed in ℰℒℱ as

𝐴 ⊑ ∃𝜎.𝐵, func(𝜎).

Role Inclusions. ℰℒℋ ontologies, that is ℰℒ ontologies that additionally contain 
role inclusions, also possess ELQ-universal models of polynomial size. We can 
therefore use the same techniques as in Section 5.3 to show that ELQs are polynomial 
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time learnable under ℰℒℋ ontologies. The situation becomes more difficult if we 
consider (symmetry-free) ELIQs, as the ELIQ 𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑠(𝑥2, 𝑥1) does not 
contain a symmetry, but still has spurious matches in compact models under the 
ontology 𝒪 = {𝑠 ⊑ 𝑟}. Hence, a new definition of being symmetry-free is needed that 
takes into account the role inclusions in the ontology. We conjecture that sufficiently 
symmetry-free ELIQs and chordal CQs can also be learned in polynomial time 
under ℰℒℋ ontologies.

CQs with Longer Cycles. The query class CQcsf allows only cycles of length at 
most 3 in a query before requiring a chord. It is an interesting question whether this 
can be generalized to longer cycles. The main issue is the construction of 𝒞3

𝒜,𝒪 and 
Lemma 5.24, which states that the anonymous part of 𝒞3

𝒜,𝒪 only contains cycles of 
length four or longer. It seems possible to construct compact models where every 
cycle has length at least 𝑘, and thus to allow cycles of length < 𝑘 in the query. One 
way to approach this is using graphs of high girth in the construction of a compact 
model, which are of polynomial size if 𝑘 is fixed [Ott06], but their size in general 
depends exponentially on 𝑘.

Restricting Examples to Concepts. If we are interested in learning ℰℒ concepts, it 
might make sense to use concept examples instead of data examples, or equivalently 
to restrict data examples to be rooted and tree-shaped. In this setting, the learner 
aims to identify a target concept 𝐶𝑇. For an equivalence, query the learner produces 
a hypothesis concept 𝐶𝐻, and the teacher responds with a counterexample 𝐷 such 
that 𝒪 ⊧ 𝐷 ⊑ 𝐶𝐻 and 𝒪 ⊧̸ 𝐷 ⊑ 𝐶𝑇 or 𝒪 ⊧̸ 𝐷 ⊑ 𝐶𝐻 and 𝒪 ⊧ 𝐷 ⊑ 𝐶𝑇. This restriction 
gives the teacher fewer options to choose counterexamples, and therefore the same 
ideas as in Section 5.1 to update a hypothesis with a counterexample still apply. For 
a membership query, the learner produces a concept 𝐷, and the teacher responds 
with yes if 𝒪 ⊧ 𝐷 ⊑ 𝐶𝐻. As discussed in Section 4.7, this makes it impossible to use 
minimization as part of a subroutine like extract𝒬. Thus, it seems unlikely that a 
similar approach as the one in Algorithm 5.3 could be used to learn concepts under 
ontologies from concept examples.

What happens when 𝑞𝑇 is not from 𝒬? For practical scenarios, it is a natural 
question to consider how Algorithm 5.3 behaves if 𝑞𝑇 ∉ 𝒬. It is easy to see that in 
this case the subroutine extract𝒬 must get stuck at some point, since the application 
of Expand cycle or Split symmetry will result in a query 𝑝 with 𝑝 ⊈𝒪 𝑞𝑇. This situation 
can easily be detected using membership queries. However, the point at which it 
gets stuck reveals only limited information about 𝑞𝑇. Algorithm 5.3 is therefore not 
useful to apply in this scenario.
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Open Questions. Many interesting questions concerning learning with mem­
bership queries and equivalence queries remain open. The central ones are the 
following.

• Are (non-symmetry-free) ELIQs or CQs polynomial time learnable under ℰℒ𝑟

ontologies? Are there other ways to update hypotheses with counterexamples 
than using compact models?

• Are CQs polynomial time learnable under DL-Litehorn or DL-Litecore ontolo­
gies?

Due to the difficulties discussed in this chapter, answering these questions positively 
or negatively will require new techniques and new constructions. If the answer to 
these questions are negative, then it is unclear how to approach it. The techniques 
we used to show Theorem 5.50 and Theorem 5.52 are candidates, but showing exact 
learning lower bounds for both query types is difficult.

In the next chapter, we consider the learnability of queries using only equivalence 
queries and the PAC learnability of queries.
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Chapter 6

Learning from Examples

In Chapters 4 and 5, we have discussed the learnability of queries with only mem­
bership queries and with both membership queries and equivalence queries, re­
spectively. It remains to answer if membership queries are really necessary for our 
results in Chapter 5 or if learning, for example, of ELQs under ℰℒ𝑟 ontologies is also 
possible using only equivalence queries. We approach this question by considering 
PAC learnability of queries. Recall that, per Theorem 3.14, for query classes that 
fulfill a certain property, polynomial time learnability with equivalence queries 
implies polynomial time PAC learnability. Hence, if we show that polynomial time 
PAC learning of a certain query class that fulfills this property is not possible, then 
we can conclude that this query class cannot be learned in polynomial time with 
only equivalence queries.

An advantage of PAC learning algorithms over exact learning algorithms is that, 
in practical scenarios, a collection of labeled examples is easier to obtain than a 
capable teacher that can answer equivalence queries. In the second half of this 
chapter, we describe an implementation of a PAC learning algorithm, and perform 
experiments on real data.

Structure of This Chapter

We begin in Section 6.1 by showing that, if RP ≠ NP, there are no polynomial time 
PAC learning algorithms for many classes of CQs under the empty ontology. Most 
importantly, this applies to the classes of ELQ, ELIQs, and symmetry-free ELIQs, 
and thus complements the results in Chapter 5: both membership queries and 
equivalence queries are necessary to learn one of these query classes in polynomial 
time.

In Section 6.2 we thus turn away from polynomial time PAC learning, and instead 
consider sample-efficient PAC learning. We show that sample-efficient PAC learning 
algorithms exist for every query class and every ontology language, due to the 
bounded VC-dimension of query classes under ontologies.

Subsequently, we show in Section 6.3 that not every fitting algorithm is a sample-
efficient PAC learning algorithm. Indeed, we show that algorithms that produce 
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one of three logically interesting kinds of fitting queries are not sample-efficient.
Then, in Section 6.4 we describe the implementation of one sample-efficient PAC 

learning algorithm for ELQs under ℰℒℋ𝑟 ontologies, that uses a SAT solver to 
compute fitting ELQs. We call this implementation SAT-based PAC ℰℒ Concept 
Learner or SPELL. We then compare SPELL to the existing ELQ learning system 
ELTL (ℰℒ tree learner) on various benchmarks in Section 6.5.

We conclude with discussing the results of this chapter in Section 6.6.

Related Publications

Section 6.1 is based on [tCat+24], but fixes a problem in the proof of Theorem 6.7. 
Section 6.3 presents results from the research note [tCat+23a]. Sections 6.2, 6.4 
and 6.5 are based on [tCat+23c].

6.1 PAC Learning of Queries in Polynomial Time

We begin by showing that every class of CQs that contains all path CQs is not 
polynomial time PAC learnable. A path CQ is a unary CQ of the form

𝑞(𝑥1) ← 𝑟(𝑥1, 𝑥2) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝐴(𝑥𝑗1) ∧ ⋯ ∧ 𝐴(𝑥𝑗𝑚)

where 𝑟 is a role name, 𝐴 is a concept name and 1 ≤ 𝑗𝑖 ≤ 𝑛 for all 1 ≤ 𝑖 ≤ 𝑚.
We begin with reviewing the connection between PAC learning and the fitting 

problem. It is well known that in many learning settings, polynomial time PAC 
learning implies that the corresponding fitting problem can be solved in polynomial 
time, see for example [AB92, Theorem 6.2.1] or [PV88]. Many formulations of this 
connection do not state two implicit properties of their respective learning setting. 
Unfortunately, these properties do not necessarily hold in the setting of learning 
queries under ontologies. In what follows, we state this connection precisely.

For this, we restrict our attention to certain sets of labeled examples. If 𝐹 is a 
set of data examples, then 𝐹 × {+, −} is the set of all labeled data examples created 
from 𝐹, and 2𝐹×{+,−} is the set of all sets of labeled data examples. For some 𝐹, let 
𝑀 ⊆ 2𝐹×{+,−} be a set of finite sets of labeled examples. The fitting problem for a 
query class 𝒬 and an ontology language ℒ on 𝑀 is defined similarly to the usual 
fitting problem (Definition 3.9) with the only modifiation being that the input set 
of labeled examples 𝐸 must be from 𝑀.

Let 𝒬 be a query class, ℒ an ontology language and 𝑀 a set of finite sets of labeled 
examples. We say that 𝒬 has the polynomial size fitting property under ℒ ontologies 
on 𝑀, if for every ℒ ontology 𝒪 and every 𝐸 ∈ 𝑀, the existence of a fitting query 
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for 𝐸 under 𝒪 implies the existence of a fitting query whose size is bounded by a 
polynomial of ‖𝐸‖ and ‖𝒪‖.

Recall that RP is the complexity class of all problems for which a probabilistic 
polynomial time Turing machine exists that answers no if the correct answer is no, 
and yes with probability ≥ 0.5 if the correct answer is yes. It is known that P ⊆
RP ⊆ NP and RP ⊆ BPP ⊆ P/poly. Since RP = NP thus implies that NP ⊆ P/poly, 
which in turn implies via the Karp-Lipton theorem that the polynomial hierarchy 
collapses to the second level [AB09], it is generally believed that RP ≠ NP. Also 
note that RP ≠ NP implies that P ≠ NP.

We show the following.

Lemma 6.1. Let 𝒬 be a query class, ℒ an ontology language and 𝑀 a set of finite sets 
of labeled examples such that 𝒬 queries can be answered in polynomial time under ℒ
ontologies on examples that occur in 𝑀, and 𝒬 has the polynomial size fitting property 
under ℒ ontologies on 𝑀.

If 𝒬 is polynomial time PAC learnable under ℒ, then the fitting problem for 𝒬 and ℒ on 
𝑀 is in RP.

 Proof. Assume that there is a (possibly randomized) polynomial time PAC learning 
algorithm 𝐀 for 𝒬 and ℒ with associated sample size 𝑚 as in Definition 3.13. We use 
it to solve the fitting problem for 𝒬 and ℒ in randomized polynomial time. Assume 
that a set 𝐸 ∈ 𝑀 of 𝑘 labeled examples, an ℒ ontology 𝒪 and a signature Σ are given 
as input. Let 𝑛𝑞𝑇 = 𝑝(‖𝐸‖, ‖𝒪‖), where 𝑝 is the polynomial witnessing the fact that 𝒬
has the polynomial-size fitting property under ℒ. Let 𝐷 be the distribution over 
𝐸 that assigns each example in 𝐸 probability 1/𝑘, and let 𝑛𝒜 be the maximum size 
of an example in 𝐸. Pick 𝛿 < 0.5 and 𝜖 < 1/𝑘. We generate a new polynomial-sized 
collection of labeled examples 𝐸′ by drawing 𝑚( 1𝛿 , 1𝜖 , |Σ|, ‖𝒪‖, 𝑛𝑞𝑇, 𝑛𝒜) samples from 
distribution 𝐷, and start 𝐀 with inputs Σ, 𝒪 and 𝐸′.

Since 𝐀 is a polynomial time algorithm, there is a polynomial of |Σ|, ‖𝒪‖, and 
‖𝐸′‖ that bounds the running time of 𝐀. Run 𝐀 for that many steps. If 𝐀 terminates 
within this time, check if its output fits 𝐸 under 𝒪. If so, we answer yes. Otherwise, 
if the output does not fit or if 𝐀 does not terminate, we answer no.

This means that, if there is no fitting query, the output will be no. If, on the other 
hand, there is a fitting query, then there is one of size at most 𝑛, and hence, with 
probability 1 − 𝛿, the algorithm 𝐀 will output a query with error less than 𝜖 under 𝒪
within the time bound. This, in fact, implies that the error is 0 because if the query 
misclassifies an example to which 𝐷 assigns non-zero probability, then it will have 
error at least 1/𝑘. Hence, with probability 1 − 𝛿 > 0.5 the algorithm outputs yes.

Note that both polynomial time query answering and the polynomial fitting 
property are needed, in order for the described algorithm to run in polynomial 
time.
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Unfortunately, CQs, ELIQs, ELQs, and even path CQs do not have the polynomial 
fitting property on arbitrary 𝑀, as mentioned in Section 3.2.

Example 6.2. Consider examples (𝒜𝑛, 𝑎1) that consist of a directed cycle of length 𝑛
where the last individual is labeled with 𝐴, that is

𝒜𝑛 = {𝑟(𝑎1, 𝑎2), … , 𝑟(𝑎𝑛, 𝑎1), 𝐴(𝑎𝑛)},

and the example ({𝑟(𝑏, 𝑏)}, 𝑏) that is an unlabeled cycle of length 1. Let 𝑝1, … , 𝑝𝑚 be 
numbers that are coprime. Then, the smallest path CQ that fits the examples

𝐸 = {(𝒜𝑝𝑖, 𝑎1, +) ∣ 1 ≤ 𝑖 ≤ 𝑚} ∪ {({𝑟(𝑏, 𝑏)}, 𝑏, −)}

under the empty ontology has size at least ∏1≤𝑖≤𝑚 𝑝𝑖, but ‖𝐸‖ is polynomial in 
∑

1≤𝑖≤𝑚 𝑝𝑖.

Therefore, we need to employ a more involved argument to show that these 
classes are not polynomial time PAC learnable. We say that a CQ or ABox is forest-
shaped if it is a disjoint union of tree-shaped CQs or ABoxes, respectively. Recall 
that tree-shaped means that the underlying graph forms a directed tree. To show 
non-polynomial time PAC learnability, we restrict the space of the examples we 
consider to only tree-shaped examples.

Lemma 6.3. Let Σ be a signature that contains only one role name and any number of 
concept names. Given a unary CQ 𝑞 over Σ,

1. we can test in polynomial time whether there exists a tree-shaped example (𝒜, 𝑎) such 
that 𝒜, ∅ ⊧ 𝑞(𝑎);

2. if the answer to the above question is positive, then we can construct in polynomial 
time a forest-shaped CQ 𝑞′ over Σ such that for all tree-shaped examples (𝒜, 𝑎), 
𝒜, ∅ ⊧ 𝑞(𝑎) if and only if 𝒜, ∅ ⊧ 𝑞′(𝑎).

 Proof. It suffices to show that we can construct tree-shaped CQs from connected 
CQs. The general case then follows by component-wise analysis. Therefore, let 𝑞 be 
a connected CQ. Additionally, let 𝑟 be the role name in Σ.

Let ∼ be the smallest equivalence relation over the variables of 𝑞 such that, when­
ever 𝑟(𝑢, 𝑣) and 𝑟(𝑢′, 𝑣′) are conjuncts of 𝑞 and 𝑣 ∼ 𝑣′ then also 𝑢 ∼ 𝑢′. Let 𝑞′ be the 
quotient of 𝑞 with regard to ∼, that is, 𝑞′ is obtained from 𝑞 by choosing a represen­
tative of each ∼-equivalence class, and replacing every occurrence of a variable 𝑥
by the representative of the ∼-equivalence class of 𝑥. It is easy to see that, for all 
tree-shaped examples (𝒜, 𝑎), 𝒜, ∅ ⊧ 𝑞(𝑎) if and only if 𝒜, ∅ ⊧ 𝑞′(𝑎).

If 𝑞′ contains a directed cycle, then 𝒜, ∅ ⊧̸ 𝑞′(𝑎) for all tree-shaped examples 
(𝒜, 𝑎). Hence, in this case, we are done.
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If 𝑞′ does not contain a directed cycle, there must exist a variable 𝑦 for which 𝑞′
does not contain any conjunct of the form 𝑟(𝑥, 𝑦). Furthermore, any simple path 
from 𝑦 to any other variable 𝑧 must consist entirely of forward edges. Otherwise, 
the path would be of the form

𝑟(𝑦, 𝑥1), … , 𝑟(𝑥𝑖−1, 𝑥𝑖), 𝑟−(𝑥𝑖, 𝑥𝑖+1), … , 𝑟(𝑥𝑗, 𝑧)

and 𝑥𝑖−1 and 𝑥𝑖+1 would have been identified when we constructed 𝑞′. It follows that 
𝑞′ is tree-shaped. Furthermore, let (𝒜𝑞′, 𝑎𝑞′) be the canonical example of 𝑞′. Then, 
clearly, 𝒜𝑞′, ∅ ⊧ 𝑞′(𝑎𝑞′).

Because of Lemma 6.3, we can evaluate unary (potentially cyclic) CQs that only 
use one role name over tree-shaped examples in polynomial time. Let (𝒜, 𝑎) be a 
tree-shaped example and 𝑞 a unary CQ. First, construct a forest-shaped unary CQ 𝑞′
according to Lemma 6.3 in polynomial time and then decide whether 𝒜, ∅ ⊧ 𝑞′(𝑎), 
which is possible in polynomial time [Yan81]. We therefore say that for every 
unary class of CQs 𝒬 over Σ, 𝒬 queries can be answered in polynomial time over 
tree-shaped examples. Note that his does not contradict that deciding the existence 
of homomorphisms to acyclic interpretations is still NP-complete [HNZ96], as the 
needed interpretations are not directed trees and thus are not tree-shaped according 
to our definition. We use this fact for showing that there is a class of tree-shaped 
examples for which the fitting problem is NP-hard and for which CQs have the 
polynomial fitting property.

To obtain these tree-shaped examples, we use a reduction from the satisfiability 
problem for 3CNF formulas, building on reductions given by Kietz [Kie93] and 
Haussler [Hau89]. Let 𝜑 = 𝜑1 ∧ ⋯ ∧ 𝜑𝑘 be a 3CNF formula over the propositional 
variables {𝑋1, … , 𝑋𝑚}. We denote by 𝐿 = {𝑋𝑖, ¬𝑋𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} the set of all literals 
over {𝑋1, … , 𝑋𝑚}. With every literal 𝑙 ∈ 𝐿, we associate a natural number 𝑗𝑙 as follows. 
Set 𝑗𝑙 = 2𝑖 if 𝑙 is of the form 𝑋𝑖 and 𝑗𝑙 = 2𝑖 − 1 if 𝑙 is of the form ¬𝑋𝑖. Now, define an 
ABox 𝒜𝜑 to contain the following assertions:

• 𝑟(𝑎𝑖, 𝑝𝑖,1) and 𝑟(𝑎𝑖, 𝑛𝑖,1) for 1 ≤ 𝑖 ≤ 𝑚,

• 𝑟(𝑝𝑖,𝑗, 𝑝𝑖,𝑗+1) and 𝑟(𝑛𝑖,𝑗, 𝑛𝑖,𝑗+1) for 1 ≤ 𝑖 ≤ 𝑚 and 𝑗 < 2𝑚,

• 𝐴(𝑝𝑖,𝑗𝑙) for every literal 𝑙 ∈ 𝐿 ⧵ {¬𝑋𝑖},

• 𝐴(𝑛𝑖,𝑗𝑙) for every literal 𝑙 ∈ 𝐿 ⧵ {𝑋𝑖},

• 𝑟(𝑏, 𝑏𝑖,1) for 1 ≤ 𝑖 ≤ 𝑘,

• 𝑟(𝑏𝑖,𝑗, 𝑏𝑖,𝑗+1) for 1 ≤ 𝑖 ≤ 𝑘 and 𝑗 < 2𝑚,

• 𝐴(𝑏𝑖,𝑗𝑙) for every 𝑙 ∈ 𝐿 and 𝑖 ≤ 𝑘 with 𝑙 not occurring in the clause 𝜑𝑖.
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Figure 6.1: The ABox 𝒜𝜑 for the formula 𝜑 = 𝑋1 ∧ 𝑋2 ∧ (¬𝑋1 ∨ 𝑋2).

Then set
𝐸𝜑 = {(𝒜𝜑, 𝑎𝑖, +) ∣ 1 ≤ 𝑖 ≤ 𝑚} ∪ {(𝒜𝜑, 𝑏, −)}.

Example 6.4. Consider the 3CNF formula 𝜑 = 𝑋1 ∧ 𝑋2 ∧ (¬𝑋1 ∨ 𝑋2) over the 
propositional variables {𝑋1, … , 𝑋𝑚}. The ABox 𝒜𝜑 is displayed in Figure 6.1, where 
each edge represents an 𝑟 assertion. Note that since 𝜑 is satisfiable, there is a path 
CQ that fits the labeled examples 𝐸𝜑 = {(𝒜𝜑, 𝑎1, +), (𝒜𝜑, 𝑎2, +), (𝒜𝜑, 𝑏, −)}, namely

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝑟(𝑥1, 𝑥2) ∧ 𝑟(𝑥2, 𝑥3) ∧ 𝑟(𝑥3, 𝑥4) ∧ 𝐴(𝑥2) ∧ 𝐴(𝑥4).

Lemma 6.5.  For all 3CNF formulas 𝜑 over {𝑋1, … , 𝑋𝑚}:

1. From a satisfying assignment for 𝜑, one can construct a path CQ that fits 𝐸𝜑 in 
polynomial time.

2. Conversely, if there is a CQ that fits 𝐸𝜑, then 𝜑 has a satisfying assignment.

In particular, whenever there is a CQ that fits 𝐸𝜑, then there is a fitting path CQ of size 
polynomial in 𝑚.

 Proof. We begin with Point 1. Let 𝑣 be a satisfying assignment for 𝜑. Let

𝑞(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑟(𝑥2𝑚−1, 𝑥2𝑚) ∧ �
𝑙∈𝐿 such that 𝑣⊧𝑙

𝐴(𝑥𝑗𝑙).

Using the construction of 𝒜𝜑 it can be verified that 𝒜𝜑, ∅ ⊧ 𝑞(𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑚 and 
𝒜𝜑, ∅ ⊧̸ 𝑞(𝑏).

We continue with Point 2. Let 𝑞(𝑥) be a unary CQ that fits 𝐸𝜑. By Lemma 6.3, we 
may assume that 𝑞 is forest-shaped. Furthermore, we may assume without loss of 
generality that 𝑞 is connected. If 𝑥 has an 𝑟-predecessor in 𝑞, then 𝑞 does not fit the 
positive examples of 𝐸𝜑. Hence, 𝑥 is the root of the tree in 𝑞.
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6.1 PAC Learning of Queries in Polynomial Time

Since 𝑞(𝑥) fits the negative example (𝒜𝜑, 𝑏), 𝒜𝜑, ∅ ⊧̸ 𝑞(𝑏). This means that either 
(i) 𝑞 contains an atom of the form 𝐴(𝑥), or (ii) there is an 𝑟-successor 𝑦 of 𝑥, such 
that 𝑞𝑦(𝑦) does not admit a homomorphism to (𝒜𝜑, 𝑏𝑖,1) for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. 
Using the definition of 𝒜𝜑, we can see that (i) cannot happen because it implies 
that 𝑞 does not fit the positive examples in 𝐸𝜑. Therefore, case (ii) must apply. Let 
𝑦 be the 𝑟-successor in question.

We know that 𝒜𝜑, ∅ ⊧̸ 𝑞𝑦(𝑏𝑖,1) for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. Furthermore, since 𝑞 fits the 
positive examples in 𝐸𝜑, for each 𝑖, either 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑝𝑖,1) or 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑛𝑖,1). Now, 
let 𝐿𝑦 be the set

{𝑙 ∈ 𝐿 ∣ 𝐴(𝑧) ∈ 𝑞𝑦 with dist𝑞(𝑦, 𝑧) + 1 = 𝑗𝑙}.

Since 𝑞 fits the positive examples, 𝐿𝑦 does not contain both 𝑋𝑖 and ¬𝑋𝑖 for any 
𝑖. Suppose, for the sake of a contradiction, that 𝜑 has a clause 𝜑𝑖, such that no 
literal occurring in 𝜑𝑖 belongs to 𝐿𝑦. Then, 𝒜𝜑, ∅ ⊧ 𝑞𝑦(𝑏𝑖,1), as witnessed by the 
homomorphism that maps each variable 𝑧 to 𝑏𝑖,𝑘 where 𝑘 = dist𝑞(𝑦, 𝑧) + 1. However, 
we know that 𝒜𝜑, ∅ ⊧̸ 𝑞𝑦(𝑏𝑖,1), a contradiction. Hence, 𝐿𝑦 contains a literal from 
every clause of 𝜑, and every assignment that is consistent with 𝐿𝑦 satisfies 𝜑.

From Lemma 6.5, together with the NP-hardness of 3CNF satisfiability, we im­
mediately obtain the following.

Lemma 6.6. Let 𝒬 be any class of unary CQs that contains all path CQs, and let ℒ be any 
ontology language. The fitting problem for 𝒬 and ℒ on 𝑀 = {𝐸𝜑 ∣ 𝜑 is a 3CNF formula}
is NP-hard.

Now, we can apply Lemma 6.1.

Theorem 6.7. Let 𝒬 be any class of unary CQs that contains all path CQs over a fixed 
signature with at least one role name and one concept name. Then,

1. 𝒬 is not polynomial time PAC learnable under any ontology language, and

2. 𝒬 queries are not polynomial time learnable using only CQ-equivalence queries,

unless RP = NP.

 Proof. Assume that 𝒬 is polynomial PAC learnable under the empty ontology lan­
guage. Let 𝑀 = {𝐸𝜑 ∣ 𝜑 is a 3CNF formula}. Then, by Lemma 6.3, 𝒬 queries can 
be answered in polynomial time on the examples that occur in 𝑀, since all ex­
amples are tree-shaped. Additionally, it follows from Lemma 6.5 that 𝒬 has the 
polynomial fitting property on 𝑀. Therefore, the fitting problem for 𝒬 on 𝑀 is in 
RP by Lemma 6.1. Since the fitting problem for 𝒬 on 𝑀 is NP-hard by Lemma 6.5, 
it follows that RP = NP.

For Point 2, recall that an exact learning algorithm that uses only equivalence 
queries can be used to construct a PAC learning algorithm by Theorem 3.14.
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Note that ELQs, ELIQs and CQs contain all path CQs. Moreover, Point 2 of 
Theorem 6.7 can be strengthened to “ unless P = NP” if shown directly and not via 
the connection to PAC learning. See [FJL21a, Theorem 2].

In Chapters 4 and 5 we have seen that ELQs, ELIQs and CQs are polynomial 
time learnable under the empty ontology if the learning algorithm can use both 
membership queries and equivalence queries (Theorem 4.42, Theorem 5.39, Propo­
sition 5.3). Now, Theorem 6.7 implies that membership queries are indeed necessary 
for polynomial time learning and cannot be omitted. Furthermore, the results in 
Section 4.1 imply that it is also not possible to avoid equivalence queries.

Motivated by these results, we turn our focus to sample-efficient PAC learning 
algorithms, that do not need to run in polynomial time.

6.2 Sample-Efficient PAC Learning of Queries

As there exists no polynomial time PAC learning algorithm for ELQs by Theorem 6.7, 
we aim to determine if there are sample-efficient PAC learning algorithms for ELQs. 
Recall that, per Definition 3.13, a PAC learning algorithm is sample-efficient, if 
its sample size 𝑚 is a polynomial of 1𝜖 , 1𝛿 , the size of the signature |Σ|, the size of 
the ontology ‖𝒪‖, the size of the target query ‖𝑞𝑇‖, and the maximal size of the 
examples.

In this section, we show that every fitting algorithm that produces small hypotheses
is a sample-efficient PAC learning algorithm. Intuitively, this makes sense for the 
reason that fitting algorithms that can output hypotheses of unrestricted size can 
include information about every labeled example in their hypothesis. The hypothe­
ses can therefore just memorize the labels in the sample, and do not necessarily 
generalize to unseen examples. In contrast, fitting algorithms that output hypothe­
ses of small size need to compress the information available in the sample, and 
therefore need to find commonalities of the examples and generalize to unseen 
examples. Indeed, restricting the size of the output hypothesis to grow sublin­
early with the sample size suffices for fitting algorithms to be sample-efficient PAC 
learning algorithms.

The connection between fitting algorithms that produce small hypotheses and 
sample-efficient PAC learning algorithms is well known, see for example [Blu+89] 
or [SB14]. We follow Blumer et al. [Blu+89] and formalize this connection for our 
setting in terms of Occam algorithms and the Vapnik-Chervonenkis dimension 
(VC-dimension).
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Occam Algorithms and the VC-Dimension

In our learning setting, the VC-dimension measures the expressive power of a 
query class. Let 𝒪 be an ontology and 𝒬 a query class. We say that 𝒬 shatters a set 
of data examples 𝑆 under 𝒪 if for every subset 𝑆′ ⊆ 𝑆, there is a 𝑞 ∈ 𝒬 such that 
𝑆′ = {(𝒜, 𝑎) ∈ 𝑆 ∣ 𝒜, 𝒪 ⊧ 𝑞(𝑎)}. The VC-dimension of 𝒬 under 𝒪 is the cardinality of 
the largest set of examples 𝑆 that is shattered by 𝒬 under 𝒪. Note that if 𝒬 is a finite 
query class, then the largest set 𝒬 can shatter has cardinality |𝑆| = log|𝒬|, as 𝒬 needs 
to contain a query for all 2|𝑆| subsets of 𝑆. Additionally, the presence of non-empty 
ontologies does not increase the VC-dimension of a query class, as concept inclusions 
only increase the number of queries that are equivalent.

Definition 6.8 (Occam algorithm). Let ℒ be an ontology language, 𝒬 a class of 
queries, and 𝐀 a fitting algorithm for 𝒬 and ℒ. For an ℒ ontology 𝒪, a finite 
signature Σ, and 𝑛𝑞𝑇, 𝑚 ≥ 1, the effective hypothesis space 𝐻𝐀(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) of 𝐀 is the 
set of all outputs that 𝐀 makes when started on 𝒪 and a collection of 𝑚 examples 𝐸
over Σ that are labeled according to 𝑞𝑇 under 𝒪 for some 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇.

The fitting algorithm 𝐀 is an Occam algorithm if there exists a polynomial 𝑝 and a 
constant 𝛼 with 0 ≤ 𝛼 < 1 such that for all ℒ ontologies 𝒪, finite signatures Σ, and 
𝑛𝑞𝑇, 𝑚 ≥ 1, the VC-dimension of 𝐻𝐀(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) under 𝒪 is bounded from above 
by 𝑝(𝑛𝑞𝑇, |Σ|) ⋅ 𝑚𝛼.

Theorem 3.2.1 of [Blu+89] implies the following, where log denotes the binary 
logarithm.

Lemma 6.9. If 𝐀 is an Occam algorithm with the VC-dimension of effective hypothesis 
spaces bounded by 𝑝(𝑛𝑞𝑇, |Σ|) ⋅ 𝑚𝛼, then 𝐀 is a PAC learning algorithm with sample size
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There are differences between the setting in this thesis and the setup of Blumer 
et al. We comment on why Lemma 6.9 follows from Theorem 3.2.1 of [Blu+89]: 
Blumer et al. study the learning of concept classes, which are defined as a set 𝒞 of 
concepts 𝐶 ⊆ 𝑋 where 𝑋 is a fixed set of examples. Consequently, their definition of 
PAC algorithms refers to concept classes and, in contrast to Definition 3.13, does 
neither mention ontologies nor signatures. However, when fixing an ℒ ontology 𝒪
and signature Σ, we obtain an associated concept class 𝒞𝒪,Σ by taking 𝑋 to be the 
set of all data examples over Σ and each query 𝑞 ∈ 𝒬Σ as the concept that consists of 
all data examples that are positive examples for 𝑞 under 𝒪. Moreover, by fixing 𝒪
and Σ, any fitting algorithm 𝐀 for 𝒬 and ℒ turns into a learning algorithm for 𝒞𝒪,Σ
in the sense of Blumer et al. Here, fixing means that we promise to only run 𝐀 on 

177
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input ontology 𝒪 and collections of labeled examples 𝐸 that are labeled according 
to some 𝑞𝑇 ∈ 𝒬Σ under 𝒪.

In contrast to Definition 6.8, the definition of Occam algorithms of Blumer et al. 
refers to effective hypothesis spaces 𝐻𝐀(𝑠, 𝑚) and requires that their VC-dimension 
is bounded by 𝑝(𝑠) ⋅ 𝑚𝛼, where ‖𝒪‖ and |Σ| are considered constants. If 𝐀 is an 
Occam algorithm in the sense of Definition 6.8, then 𝐀 with 𝒪 and Σ fixed is an 
Occam algorithm as defined by Blumer et al. The Theorem 3.2.1 of Blumer et al. 
then implies that 𝐀 with 𝒪 and Σ fixed is a PAC learning algorithm for 𝒞𝒪,Σ with the 
bound stated in Lemma 6.9. Then, every fitting algorithm 𝐀 that is a PAC learning 
algorithm when restricted to 𝒪 and Σ, for any specific 𝒪 and Σ and with the same 
function 𝑚 describing the sample size, is a PAC learning algorithm for ℒ and 𝒬.

There are two more small differences between our setup and the one of Blumer 
et al. First, one of the preconditions of Theorem 3.2.1 is that an Occam algorithm 
runs in polynomial time, but an analysis of the proof shows that this assumption is 
not used. Second, the sample size 𝑚 in the definition of PAC algorithms of Blumer 
et al. does not depend on the size of the examples. Definition 3.13 is a standard 
variation which does not impair the application of Theorem 3.2.1. To see this, it 
suffices to observe that we do not use this parameter in the definition of effective 
hypothesis spaces and thus Occam algorithms (with fixed 𝒪 and Σ) according to 
Definition 6.8 are also Occam algorithms in the sense of Blumer et al. Moreover, 
every PAC algorithm in the sense of Blumer et al. is a PAC algorithm according to 
Definition 3.13.

Including the data example size as a parameter of the sample size 𝑚 strengthens 
results which prove that algorithms are not sample-efficient PAC learning algo­
rithms, as it makes it impossible to use data examples of excessive size. It is also 
more generous regarding the upper bounds (developing PAC algorithms), but we 
do not make use of that generosity.

A perhaps surprising observation is that following Definition 3.13, due to the 
generosity of including 𝑛𝒜 as a parameter of the sample size, every fitting algorithm 
is a (not necessarily sample-efficient) PAC learning algorithm. This is because the 
probability distribution 𝑃 from which examples are drawn may only assign a non-
zero probability to examples with ‖𝒜‖ ≤ 𝑛𝒜, which means the number of possible 
examples is bounded exponentially by 𝑛𝒜. Hence, the sample size 𝑚 can be chosen, 
such that every sample contains, with high likelihood, a large portion of the possible 
examples, and every query that fits the sample therefore has only a small error over 
the entire distribution. This, of course, requires that 𝑚 is an exponential function, 
and hence does not show sample-efficient PAC learnability.
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Algorithm 6.1: The bounded fitting algorithm for ℒ and 𝒬.

Parameter A size-restricted fitting algorithm 𝐀 for ℒ and 𝒬
Input A signature Σ, an ℒ ontology 𝒪, and labeled data examples 𝐸
Output A 𝒬Σ query that fits 𝐸 under 𝒪

𝑛𝑞 ≔ 1
while 𝐀(Σ, 𝒪, 𝐸, 𝑛𝑞) does not return a fitting query do
 𝑛𝑞 ≔ 𝑛𝑞 + 1
end while
return  the result of 𝐀(Σ, 𝒪, 𝐸, 𝑛𝑞)

Bounded Fitting

Lemma 6.9 tells us that we can obtain a sample-efficient PAC learning algorithm 
for a query class from an Occam algorithm. To formulate an Occam algorithm, 
it is important to realize that the VC-dimension of an effective hypothesis space 
is bounded by the cardinality of the effective hypothesis space, and therefore also 
by the size of hypotheses that an algorithm outputs. This is because, for a fixed 
signature Σ and alphabet, the number of queries 𝑞 with ‖𝑞‖ ≤ 𝑛 is only exponential 
in 𝑛.

Indeed, we show that an algorithm that outputs the smallest fitting query is 
an Occam algorithm for every query class 𝒬 and ontology language ℒ. For this, 
we define a variant of the fitting problem, namely size-restricted fitting. A size-
restricted fitting algorithm for ℒ and 𝒬 takes as input a signature Σ, an ℒ ontology 𝒪, 
a collection of labeled data examples 𝐸 and a natural number 𝑛𝑞 ≥ 1 in unary and 
returns, if it exists, a 𝑞 ∈ 𝒬Σ with ‖𝑞‖ ≤ 𝑛𝑞 that fits 𝐸 under 𝒪. If no such query exists, 
it returns no. Note that in contrast to fitting algorithms, we demand size-restricted 
fitting algorithms to always terminate, which is not a difficult requirement, as the 
set of queries 𝑞 ∈ 𝒬Σ with ‖𝑞‖ ≤ 𝑛𝑞 is finite and can be enumerated.

The simple principle of a bounded fitting algorithm is displayed in Algorithm 6.1. A 
bounded fitting algorithm uses an algorithm for the size-restricted fitting problem, 
to identify the smallest fitting query for labeled data examples. Inspired by ap­
proaches such as bounded model checking, it first searches for a fitting of size 1, then of 
size 2, and so on, until one is found, and then returns it. Note that a bounded fitting 
algorithm does not terminate if there is no fitting query, but in practice size bounds 
can be used to guarantee termination. Of course, the smallest fitting query can also 
be found by the arguably simpler strategy of enumerating all queries ordered by 
size. However, size-restricted fitting algorithms may use smarter strategies than 
naive enumeration and thus be significantly faster.
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Theorem 6.10. Let ℒ be an ontology language and 𝒬 a query class. Every bounded fitting 
algorithm for ℒ and 𝒬 is a sample-efficient PAC learning algorithm with sample size in
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 Proof. Let 𝐁 be a bounded fitting algorithm for ℒ and 𝒬. Let 𝒪 be an ℒ ontology, Σ
a signature, and 𝑛𝑞𝑇, 𝑚 ≥ 0. We show that the VC-dimension of 𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) is 
at most 𝑂(𝑛𝑞𝑇 ⋅ log|Σ|).

It is immediate from Algorithm 6.1 that, when started on Σ, 𝒪 and a collection of 
𝑚 data examples 𝐸, that is labeled according to some 𝑞𝑇 ∈ 𝒬Σ with ‖𝑞𝑇‖ ≤ 𝑛𝑞𝑇 under 
𝒪, then 𝐁 returns a 𝑞 ∈ 𝒬Σ that fits 𝐸 under 𝒪 whose size ‖𝑞‖ is smallest among all 
fitting queries. Consequently, 𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) consists only of queries 𝑞 ∈ 𝒬Σ with 
‖𝑞‖ ≤ 𝑛𝑞𝑇. There are at most (|Σ| + 𝑐 + 1)𝑛𝑞𝑇  such queries for some constant1 𝑐 and 
since 𝑛 queries can at most shatter a set of cardinality log 𝑛, the VC-dimension of 
𝐻𝐁(𝒪, Σ, 𝑛𝑞𝑇, 𝑚) is at most

log (|Σ| + 𝑐 + 1)𝑛𝑞𝑇 ∈ 𝑂(𝑛𝑞𝑇 ⋅ log|Σ|),

as desired. It remains to apply Lemma 6.9.

It is interesting that the sample size in Theorem 6.10 does not depend on the 
size of the examples 𝑛𝒜 or the size of the ontology ‖𝒪‖. This means that bounded 
fitting is even a sample-efficient PAC learning algorithm in a stricter sense than 
Definition 3.13. Additionally, it is useful to note that Theorem 6.10 does not rely on 
the exact size measure used in the size-restricted fitting algorithm. If we choose 
a different one, like the number of variables as a size measure for ELQs, we can 
obtain a similar result, by using the following in the proof of Theorem 6.10.

For 𝑛 ≥ 1, let ELQ∃
(𝑛) be the set of ELQs that use at most 𝑛 variables.

Lemma 6.11. Let ℒ be an ontology language and 𝒪 an ℒ ontology. Then, for all 𝑛 ≥ 1, 
the VC-dimension of ELQ∃

(𝑛) under 𝒪 is at most 2(|Σ| + 1)𝑛.

 Proof. We first observe that the number of queries in ELQ∃
(𝑛) is bounded from above 

by 𝑚𝑛 = 4(|Σ|+1)𝑛. To see this, note that the number of rooted, directed, unlabeled 
trees with 𝑛 nodes is bounded from above by the 𝑛-th Catalan number [OEI24], 
which, in turn, is bounded from above by 4𝑛 [DB86]. Each such tree gives rise to 
an ELQ by assigning a unique role name from Σ to each of the at most 𝑛 − 1 edges 

1The number of symbols from the finite alphabet used to encode syntactic objects as a word from 
the definition of ‖⋅‖.
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of the tree and a set of concept names from Σ to each of the at most 𝑛 nodes of the 
tree. This clearly yields the stated bound 𝑚𝑛 as

4𝑛 ⋅ |Σ|𝑛−1 ⋅ |Σ|𝑛 ≤ 4(|Σ|+1)𝑛.

Then, the VC-dimension of ELQ∃
(𝑛) under the empty ontology is at most log𝑚𝑛 =

2(|Σ| + 1)𝑛. Making the ontology non-empty may only decrease the VC-dimension 
as it may make non-equivalent concepts equivalent, but not vice versa.

If one views other query classes, like ELIQs or 𝒜ℒ𝒞 concepts, as syntax trees, 
one can see that the proof of Lemma 6.11 also applies to them. We use this different 
size bound in Section 6.4.

6.3 Not Sample-Efficient Fitting Algorithms

Although it is straightforward to obtain sample-efficient PAC learning algorithms for 
a query class by using bounded fitting, not every fitting algorithm is sample-efficient. 
Indeed, fitting algorithms that do not aim to find a fitting query of minimal size but 
aim for other properties of the fitting can often be shown not to be sample-efficient 
PAC learning algorithms.

Under certain assumptions, it is known that sample-efficient PAC learning implies 
the existence of Occam algorithms [BP92]. Meaning that, sample-efficient PAC 
learning is intrinsically linked to finding small fitting queries. These assumptions, 
however, require the concept space to be polynomially closed under exception lists, 
which is not known to be the case for queries under ontologies.

Recently, extremal fitting CQs have been studied by [tCat+23b]. These are CQs 
that fit given examples, but also have logically interesting properties in the set of 
all fitting queries. In this section, we show that fitting algorithms that produce 
these kinds of extremal fittings are not sample-efficient PAC learning algorithms. This 
already holds in the case without an ontology. To simplify writing, we therefore 
drop saying under the empty ontology. Although we show these results for CQs, the 
same also holds for ELQs and ELIQs [tCat+23c].

Additionally, we show that fitting algorithms that aim to produce ELQs of mini­
mal quantifier depth, are also not sample-efficient PAC learning algorithms.

We begin by formally introducing extremal fittings. Let 𝐸 be a collection of 
labeled examples. A CQ 𝑞 that fits 𝐸 is a

• most-specific fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞 ⊆∅ 𝑞′;

• strongly most-general fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞′ ⊆∅ 𝑞;
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• weakly most-general fitting CQ if for every CQ 𝑞′ that fits 𝐸, 𝑞 ⊆∅ 𝑞′ implies 
𝑞 ≡∅ 𝑞′.

There is also a more general notion than strongly most-general fitting:

• a finite set of CQs {𝑞1, … , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸 if each 𝑞𝑖
fits 𝐸 and for all CQs 𝑞′ that fit 𝐸, we have 𝑞′ ⊆∅ 𝑞𝑖 for some 𝑖 ≤ 𝑛.

Note that the definition of most-specific fitting CQs parallels that of strongly most-
general fitting CQs. One may also define a weak version of most-specific fitting 
CQs, but this definition turns out to be equivalent to the above definition of most-
specific fitting CQ [tCat+23b]. The different notions of most-general fitting CQ are 
connected as follows. If 𝑞 is a strongly most-general fitting CQ, then {𝑞} is a basis of 
most-general fitting CQs. If a basis of most-general fitting CQs is subset minimal, 
then it contains only weakly most-general fitting CQs. Furthermore, if a strongly 
most-general fitting CQ exists, then it is also the only weakly most-general fitting 
CQ.

A most-specific fitting CQ 𝑞 and a basis of most-general fitting CQs {𝑞1, … , 𝑞𝑛}
completely describe the space of all fitting CQs: For all CQs 𝑞′, 𝑞 ⊆∅ 𝑞′ and 𝑞′ ⊆∅ 𝑞𝑖
for some 𝑖, if and only if 𝑞′ fits 𝐸.

Example 6.12. Consider the positive example ({𝐴1(𝑎), 𝐴2(𝑎), 𝐴3(𝑎)}, 𝑎) and the neg­
ative examples ({𝐴1(𝑏)}, 𝑏), ({𝐴2(𝑏)}, 𝑏). The ELQ 𝑞(𝑥) ← 𝐴1(𝑥) ∧ 𝐴2(𝑥) ∧ 𝐴3(𝑥) is 
the most-specific fitting CQ of these examples. The ELQs 𝑞1(𝑥) ← 𝐴1(𝑥) ∧ 𝐴2(𝑥)
and 𝑞2(𝑥) ← 𝐴3(𝑥) are both weakly most-general fitting CQs. There is no strongly 
most-general fitting CQ, but the set {𝑞1, 𝑞2} is a basis of most-general fitting CQ.

Most-specific fitting CQs can be characterized in terms of direct products.

Theorem 6.13 ([tCat+23b]). For all CQs 𝑞 and collections of labeled examples 𝐸, the 
following are equivalent:

1. 𝑞 is a most-specific fitting CQ for 𝐸,

2. 𝑞 fits 𝐸 and is equivalent to the canonical CQ of �
(𝒜,𝑎,+)∈𝐸

𝒜.

Strongly most-general fitting CQs and finite bases of most-general fitting CQs 
can be characterized in terms of homomorphism dualities, a fundamental concept 
that originates from combinatorial graph theory and that has found diverse appli­
cations in different areas, including the study of constraint satisfaction problems, 
database theory and knowledge representation. Here, we use a relativized version 
of homomorphism dualities introduced by ten Cate et al. [tCat+23b].
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Definition 6.14 (Relativized homomorphism duality). Let (ℬ, 𝑏) be an example. A 
homomorphism duality relative to (ℬ, 𝑏) is a pair of finite sets of examples2 (𝐹, 𝐷) such 
that for all examples (ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏, the following are equivalent:

1. 𝒜𝑓, 𝑎𝑓 → ℬ′, 𝑏′ for some (𝒜𝑓, 𝑎𝑓) ∈ 𝐹,

2. ℬ′, 𝑏′ ↛ 𝒜𝑑, 𝑎𝑑 for all (𝒜𝑑, 𝑎𝑑) ∈ 𝐷.

The use of relativized in Definition 6.14 refers to the restriction to only examples 
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏. If one instead considers all examples (ℬ′, 𝑏′) one ob­
tains the more common notion of unrelativized homomorphism dualities, which are 
strongly connected (in the case without an ontology) to the unique characteriza­
tions and frontiers we encountered before [tCD22]. Most-general fittings can be 
characterized with the relativized variant as follows.

Theorem 6.15 ([tCat+23b]). For all CQs 𝑞1, … , 𝑞𝑛 and collections of labeled examples 𝐸, 
the following are equivalent:

1. {𝑞1, … , 𝑞𝑛} is a basis of most-general fitting CQs for 𝐸

2. each 𝑞𝑖 fits 𝐸, and ({(𝒜𝑞1, 𝑎𝑞1), … , (𝒜𝑞𝑛, 𝑎𝑞𝑛)}, {(ℬ, 𝑏) ∣ (ℬ, 𝑏, −) ∈ 𝐸}) is a homomor­
phism duality relative to ∏(𝒜,𝑎,+)∈𝐸 𝒜.

Or, formulated for strongly most-general fitting CQs: 𝑞 is a strongly most-general 
fitting CQ if and only if 𝑞 fits 𝐸 and ({(𝒜𝑞, 𝑎𝑞)}, {(ℬ, 𝑏) ∣ (ℬ, 𝑏, −) ∈ 𝐸}) is a homomor­
phism duality relative to ∏(𝒜,𝑎,+) 𝒜.

Most-General Fittings Preclude Sample-Efficiency

We show that fitting algorithms that always produce a most-general fitting CQ, if 
it exists, cannot be sample-efficient PAC learning algorithms. We only show this 
for strongly most-general fitting CQs since fitting algorithms that always produce 
a weakly most-general fitting CQ or the elements of a base of most-general fitting 
CQs must also produce a strongly most-general fitting CQ if it exists. Consequently, 
our result also applies to the latter kinds of algorithms. Guided by Theorem 6.15 
we base our proofs on relativized homomorphism dualities.

Known constructions of a homomorphism duality (𝐹, 𝐷) from 𝐹 relative to some 
example (ℬ, 𝑏) result in examples 𝐷 with size exponential in ‖𝐹‖ and ‖ℬ‖, already 
for acyclic examples [tCD22; NT05]. This makes them unsuitable for showing 

2The 𝐹 stands for forbidden (as dualities were introduced in the context of forbidding certain graph 
patterns) and the 𝐷 for duals.
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non-sample-efficiency, as it would force us to use negative data examples that are 
exponentially larger than the positive examples. Since Definition 3.13 allows the 
sample size 𝑚 to depend on the size of the examples, examples of exponential 
size would effectively allow a sample-efficient PAC learning algorithm to use an 
exponential number of examples. In order to avoid this effect, we begin by showing 
that for a certain restricted class of examples 𝐹, a relativized homomorphism duality 
(𝐹, 𝐷) exists such that 𝐷 is of polynomial size and can be computed in polynomial 
time.

A path ABox is an ABox 𝒜 such that the assertions in 𝒜 are of the form

𝑟1(𝑎0, 𝑎1), … , 𝑟𝑛(𝑎𝑛−1, 𝑎𝑛), 𝐴1(𝑎𝑗1), … , 𝐴𝑚(𝑎𝑗𝑚)

where all 𝑟𝑖 are role names, all 𝐴𝑖 are concept names, and for all 𝑗𝑖, 𝑗𝑖 > 0. A path 
example (𝒜, 𝑎) is a unary data example, where 𝒜 is a path ABox and 𝑎 = 𝑎0. This is 
the equivalent of path CQs from Section 6.1 for data examples, except that multiple 
different concept names and role names are permitted.

Lemma 6.16. Let (𝒜, 𝑎0) and (ℬ, 𝑏0) be path examples. There exists an example (�ℬ, �𝑏)
that can be computed in time polynomial in ‖𝒜‖ and ‖ℬ‖ such that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is a 
homomorphism duality relative to (ℬ, 𝑏0).

 Proof. Since 𝒜 and ℬ are path ABoxes, assume that ind(𝒜) = {𝑎0, … , 𝑎𝑛} and ind(ℬ) =
{𝑏0, … 𝑏𝑚}. We can check in polynomial time whether 𝒜, 𝑎0 → ℬ, 𝑏0. We distinguish 
cases.

If 𝒜, 𝑎0 ↛ ℬ, 𝑏0, then it follows that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ for all data examples ℬ′, 𝑏′
with ℬ′, 𝑏′ → ℬ, 𝑏0. Then, ({(𝒜, 𝑎0)}, {(ℬ, 𝑏0)}) is a homomorphism duality relative 
to (ℬ, 𝑏0).

If 𝒜, 𝑎0 → ℬ, 𝑏0, we construct a data example (�ℬ, �𝑏) such that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is 
the desired homomorphism duality relative to (ℬ, 𝑏0) as follows. Since 𝒜, 𝑎0 → ℬ, 𝑏0, 
it must be that 𝑛 ≤ 𝑚 and the role name 𝑟𝑖 is the same in 𝒜 and ℬ for all 𝑖 with 
1 ≤ 𝑖 ≤ 𝑛. The individual names used in �ℬ are pairs ⟨𝑏𝑖, 𝑓⟩ where 𝑏𝑖 ∈ ind(ℬ) and 𝑓
is an assertion from 𝒜 that mentions 𝑎𝑖 or the dummy assertion ∘. More specifically, 
ind(�ℬ) is the following set of individual names:

{⟨𝑏𝑖, ∘⟩ ∣ 𝑖 = 0 or 𝑛 < 𝑖 ≤ 𝑚} ∪
{⟨𝑏𝑖, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖)⟩ ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪
{⟨𝑏𝑖, 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)⟩ ∣ 0 ≤ 𝑖 ≤ 𝑛 − 1} ∪
{⟨𝑏𝑖, 𝐴(𝑎𝑖)⟩ ∣ 1 ≤ 𝑖 ≤ 𝑛 and 𝐴(𝑎𝑖) ∈ 𝒜}.

For all individual names ⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩ in the set above, we add to �ℬ the assertion

• 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) if 𝑓 ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1) or 𝑓′ ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1),
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• 𝐴(⟨𝑏𝑖+1, 𝑓′⟩) if 𝐴(𝑏𝑖+1) ∈ ℬ and 𝑓′ ≠ 𝐴(𝑎𝑖+1).

Then, set �𝑏 to be the individual name ⟨𝑏0, 𝑅1(𝑎0, 𝑎1)⟩. This completes the construction 
of (�ℬ, �𝑏). Note that every role assertion 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) in �ℬ is a copy of a role 
assertion 𝑟𝑖+1(𝑏𝑖, 𝑏𝑖+1) in ℬ. Since 𝑓, 𝑓′ ∈ 𝒜 ∪ {∘}, there are at most (‖𝒜‖ + 1)2 copies 
of every role assertion of ℬ in �ℬ. The same is true for concept name assertions. 
Therefore, ‖�ℬ‖ ≤ ‖ℬ‖ ⋅ (‖𝒜‖ + 1)2. It is easy to see that �ℬ can be computed in 
polynomial time using the above construction.

It remains to show that ({(𝒜, 𝑎0)}, {(�ℬ, �𝑏)}) is a homomorphism duality relative 
to (ℬ, 𝑏0). First, we prove that 𝒜, 𝑎0 → ℬ′, 𝑏′ implies ℬ′, 𝑏′ ↛ �ℬ, �𝑏 for all examples 
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏0. For this, it suffices that 𝒜, 𝑎0 ↛ �ℬ, �𝑏. For all 𝑘, let 𝒜𝑘 be 
the restriction of 𝒜 to assertions that contain only values 𝑎𝑖 with 𝑖 ≥ 𝑘. Then, for all 
𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all ⟨𝑏𝑖, 𝑓⟩ ∈ ind(�ℬ),

𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩ implies 𝑓 = 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖). (∗)

We show this by induction on 𝑛−𝑖. In the induction start, let 𝑖 = 𝑛. By construction of 
�ℬ, 𝑓 ∈ {𝑟𝑛(𝑎𝑛−1, 𝑎𝑛)} ∪ {𝐴(𝑎𝑛) ∣ 𝐴(𝑎𝑛) ∈ 𝒜𝑛}. Assume that 𝒜𝑛, 𝑎𝑛 → �ℬ, ⟨𝑏𝑛, 𝑓⟩. Then, 
it follows that 𝐴(⟨𝑏𝑛, 𝑓⟩) ∈ �ℬ for all 𝐴(𝑎𝑛) ∈ 𝒜, hence 𝑓 ≠ 𝐴(𝑎𝑛) for any 𝐴(𝑎𝑛) ∈ 𝒜. 
Therefore, the only possibility for 𝑓 that remains is that 𝑓 = 𝑟𝑛(𝑎𝑛−1, 𝑎𝑛).

In the induction step, assume that (∗) holds for 𝑖 + 1 and that 𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩. 
Again, this implies that 𝐴(⟨𝑏𝑖, 𝑓⟩) ∈ �ℬ for all 𝐴(𝑎𝑖) ∈ 𝒜𝑖, hence 𝑓 ∉ {𝐴(𝑎𝑖) ∣ 𝐴(𝑎𝑖) ∈
𝒜𝑖}. Additionally, from 𝒜𝑖, 𝑎𝑖 → �ℬ, ⟨𝑏𝑖, 𝑓⟩ and 𝑖 < 𝑛 it follows that there must be 
a role assertion 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ such that 𝒜𝑖+1, 𝑎𝑖+1 → �ℬ, ⟨𝑏𝑖+1, 𝑓′⟩. By the 
induction hypothesis, 𝑓′ = 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1). It follows from 𝑟𝑖+1(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ, 
that 𝑓 ≠ 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1). Thus, the only possibility that remains is that 𝑓 = 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖).

From (∗) and 𝑟1(𝑎0, 𝑎1) ∈ 𝒜 it now follows that 𝒜, 𝑎0 ↛ �ℬ, ⟨𝑏0, 111(𝑎0, 𝑎1)⟩ = �ℬ, �𝑏, 
since by construction of �ℬ, 𝑟1(⟨𝑏0, 𝑟1(𝑎0, 𝑎1)⟩, ⟨𝑏1, 𝑟1(𝑎0, 𝑎1)⟩) ∉ �ℬ.

Second, we show that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ implies ℬ′, 𝑏′ → �ℬ, �𝑏 for all examples 
(ℬ′, 𝑏′) with ℬ′, 𝑏′ → ℬ, 𝑏0. Let ℬ′, 𝑏′ be an example such that 𝒜, 𝑎0 ↛ ℬ′, 𝑏′ and 
ℬ′, 𝑏′ → ℬ, 𝑏0. Let ℎ be a homomorphism from ℬ′ to ℬ with ℎ(𝑏′) = 𝑏0. We construct 
a homomorphism 𝑔 from ℬ′ to �ℬ with 𝑔(𝑏′) = �𝑏 as follows. For all 𝑎 ∈ ind(ℬ′), there 
is an 𝑖 such that 0 ≤ 𝑖 ≤ 𝑚 and ℎ(𝑎) = 𝑏𝑖. Define 𝑔(𝑎) depending on this 𝑖 as follows. 
For 𝑖 = 0,

• if 𝒜𝑖, 𝑎𝑖 → ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏0, ∘⟩;

• otherwise, that is, if 𝒜𝑖, 𝑎𝑖 ↛ ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏0, 𝑟1(𝑎0, 𝑎1)⟩.

For 1 ≤ 𝑖 ≤ 𝑛,
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𝑦0

𝒜𝑞

𝑦1𝐴

𝑦2𝐵

�ℬ𝑞

⟨𝑥0, 𝑟(𝑦0, 𝑦1)⟩ ⟨𝑥0, ∘⟩

⟨𝑥1, 𝑟(𝑦0, 𝑦1)⟩𝐴, 𝐵

⟨𝑥2, 𝑟(𝑦1, 𝑦2)⟩𝐴, 𝐵

⟨𝑥1, 𝑟(𝑦1, 𝑦2)⟩𝐴, 𝐵 ⟨𝑥1, 𝐴(𝑦1)⟩𝐵

⟨𝑥2, 𝐵(𝑦2)⟩𝐴

𝑥0

𝒜𝑞𝑇

𝑥1𝐴, 𝐵

𝑥2𝐴, 𝐵

Figure 6.2: A homomorphism duality relative to a path example

• if 𝒜𝑖, 𝑎𝑖 → ℬ′, 𝑎, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖)⟩;

• otherwise, that is, if 𝒜𝑖, 𝑎𝑖 ↛ ℬ′, 𝑎, we distinguish cases:

– if there is an 𝐴(𝑎𝑖) ∈ 𝒜𝑖 such that 𝐴(𝑎) ∉ ℬ′, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝐴(𝑎𝑖)⟩;

– otherwise, set 𝑔(𝑎) = ⟨𝑏𝑖, 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)⟩ (note that in this case 𝑖 < 𝑛 and 
𝒜𝑖+1, 𝑎𝑖+1 ↛ ℬ′, 𝑎′ for all 𝑟𝑖+1(𝑎, 𝑎′) ∈ ℬ′).

For 𝑖 > 𝑛, set 𝑔(𝑎) = ⟨𝑏𝑖, ∘⟩.
It remains to verify that 𝑔 is a homomorphism. Let 𝐴(𝑎) be a concept name 

assertion in ℬ′. Since ℎ is a homomorphism, there is a fact 𝐴(𝑏𝑖) ∈ ℬ with ℎ(𝑎) = 𝑏𝑖. 
By definition of 𝑔, 𝑔(𝑎) = ⟨𝑏𝑖, 𝑓⟩ for some fact 𝑓 ∈ {∘, 𝑟𝑖(𝑎𝑖−1, 𝑎𝑖), 𝑟𝑖+1(𝑎𝑖, 𝑎𝑖+1)}∪{𝐴′(𝑎𝑖) ∈
𝒜 ∣ 𝐴′ ≠ 𝐴}. From the construction of �ℬ it follows that 𝐴(𝑔(𝑎)) ∈ �ℬ for all these 
cases of 𝑓.

Let 𝑟(𝑎, 𝑎′) be a role assertion in ℬ′. Since ℎ is a homomorphism, there is a role 
assertion 𝑟(𝑏𝑖, 𝑏𝑖+1) ∈ ℬ with ℎ(𝑎) = 𝑏𝑖, ℎ(𝑎′) = 𝑏𝑖+1 and 𝑟 = 𝑟𝑖+1. The function 𝑔 then 
maps 𝑎 to ⟨𝑏𝑖, 𝑓⟩ and 𝑎′ to ⟨𝑏𝑖+1, 𝑓′⟩, for some assertions 𝑓, 𝑓′ ∈ 𝒜 ∪ {∘}. It follows 
from the construction of �ℬ that there is an assertion 𝑟(⟨𝑏𝑖, 𝑓⟩, ⟨𝑏𝑖+1, 𝑓′⟩) ∈ �ℬ for all 
𝑓, 𝑓′, except for 𝑓 = 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1) ∈ 𝒜 (and 𝑖 + 1 ≤ 𝑛). Assume for contradiction 
that there is an assertion 𝑟(𝑎𝑖, 𝑎𝑖+1) ∈ 𝒜 and 𝑓 = 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1). By definition of 𝑔 and 
𝑓 = 𝑟(𝑎𝑖, 𝑎𝑖+1) it follows that there is no assertion 𝑟(𝑎, 𝑎″) ∈ ℬ′ with 𝒜𝑖+1, 𝑎𝑖+1 → ℬ′, 𝑎″, 
and it follows from definition of 𝑔 and 𝑓′ = 𝑟(𝑎𝑖, 𝑎𝑖+1) that 𝒜𝑖+1, 𝑎𝑖+1 → ℬ′, 𝑎′. A 
contradiction, since 𝑟(𝑎, 𝑎′) ∈ ℬ′.

Example 6.17. Consider the path examples (𝒜𝑞, 𝑦0) and (𝒜𝑞𝑇, 𝑥0), and the ABox �ℬ𝑞

displayed in Figure 6.2. The example (�ℬ𝑞, ⟨𝑥0, 𝑟(𝑦0, 𝑦1)⟩) is the result of constructing a 
homomorphism duality of (𝒜𝑞, 𝑦0) relative to (𝒜𝑞𝑇, 𝑥0) according to the construction 
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in the proof of Lemma 6.16. Note that �ℬ𝑞 is not itself a path ABox, and not even 
tree-shaped.

We now build on Lemma 6.16 and Theorem 6.15 to show that fitting algorithms 
that produce strongly most-general fittings are not sample-efficient PAC learning 
algorithms.

Theorem 6.18. Let 𝐀 be a fitting algorithm for CQs that always produces a strongly 
most-general fitting if it exists. Then 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that 𝐀 is a sample-efficient PAC learning algorithm 
that produces a strongly most-general fitting CQ, if it exists, with associated poly­
nomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13. We assume that the 
value of 𝑚 is at least 2, for any input.

Choose a signature Σ that contains the concept names 𝐴, 𝐵 and a role name 𝑟, 
𝛿 = 0.5, 𝜖 = 0.25, and 𝑛 ∈ ℕ large enough so that

2𝑛−1 > 𝑚�
1
𝛿

,
1
𝜖

, |Σ|, 0, 𝑝1(𝑛), 𝑝2(𝑛)�.

In that bound, 𝑝1 is a polynomial that bounds the size of the target CQ, and 𝑝2 is 
a polynomial that bounds the size of the data examples, which we describe next. 
Assume without loss of generality that 𝑝2(𝑛) ≥ 𝑝1(𝑛). As target CQ, we use

𝑞𝑇(𝑥0) ← 𝑟(𝑥0, 𝑥1) ∧ 𝐴(𝑥1) ∧ 𝐵(𝑥1) ∧ ⋯ ∧ 𝑟(𝑥𝑛−1, 𝑥𝑛) ∧ 𝐴(𝑥𝑛) ∧ 𝐵(𝑥𝑛).

Thus, 𝑞𝑇 is an 𝑟-path of length 𝑛 in which every node after the first is labeled with 
𝐴 and 𝐵. We will use (𝒜𝑞𝑇, 𝑥0) as a positive example for 𝑞𝑇. Note that 𝒜𝑞𝑇 is a path 
instance with ‖𝒜𝑞𝑇‖ = 𝑝1(𝑛) ≤ 𝑝2(𝑛).

Next, we construct instances that we use as negative examples. Define a set of 
CQs

𝑆 = {𝑞(𝑦0) ← 𝑟(𝑦0, 𝑦1) ∧ 𝛼1(𝑦1) ∧ ⋯ ∧ 𝑟(𝑦𝑛−1, 𝑦𝑛) ∧ 𝛼𝑛(𝑦𝑛) ∣ 𝛼𝑖 ∈ {𝐴, 𝐵}}.

The CQs in 𝑆 resemble 𝑞𝑇, except that every node is labeled with only one of the 
concept names 𝐴 and 𝐵. For all elements 𝑞 of 𝑆 it holds that 𝑞𝑇 ⊆∅ 𝑞 and 𝒜𝑞 is 
a path instance of polynomial size. In order to obtain the negative examples, we 
construct for each 𝑞 ∈ 𝑆, the example (�ℬ𝑞, 𝑎𝑞) such that ({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) is a 
homomorphism duality relative to (𝒜𝑞𝑇, 𝑥0). Using Lemma 6.16, it is easy to see 
that there is a fixed polynomial 𝑝2 such that ‖�ℬ𝑞‖ ≤ 𝑝2(𝑛). Since 𝒜𝑞, 𝑦0 → 𝒜𝑞𝑇, 𝑥0
for all 𝑞 ∈ 𝑆, it follows from the definition of relativized homomorphism duality 
(Definition 6.14) that 𝒜𝑞𝑇, 𝑥0 ↛ �ℬ𝑞, 𝑎𝑞. Hence, all (�ℬ𝑞, 𝑎𝑞) are negative examples for 
𝑞𝑇. An example of this duality for 𝑛 = 2 is displayed in Figure 6.2.
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The central properties of the chosen examples are the following. For 𝑞1, 𝑞2 ∈ 𝑆, 
let 𝑞1 ∧ 𝑞2 denote the unary CQ that joins 𝑞1 and 𝑞2 at the answer variable 𝑦0, but 
keeps all existential variables distinct. For 𝑆′ ⊆ 𝑆, let 𝑞𝑆′ = ⋀

𝑞∈𝑆 𝑞.

Claim. For every 𝑆′ ⊆ 𝑆, ({(𝒜𝑞𝑆′ , 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞) ∣ 𝑞 ∈ 𝑆′}) is a homomorphism duality 
relative to (𝒜𝑞𝑇, 𝑥0).

 Proof of the claim. Let 𝑆′ be a subset of 𝑆. By Definition 6.14, we have to show that 
for all examples (𝒜, 𝑎) with 𝒜, 𝑎 → 𝒜𝑞𝑇, 𝑥0, it holds that 𝒜𝑞𝑆′ , 𝑦0 → 𝒜, 𝑎 if and only 
if 𝒜, 𝑎 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′.

Let (𝒜, 𝑎) be an example such that 𝒜, 𝑎 → 𝒜𝑞𝑇, 𝑥0. First, we show that 𝒜𝑞′𝑆, 𝑦0 →
𝒜, 𝑎 implies that 𝒜, 𝑎 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′. So assume that 𝒜𝑞′𝑆, 𝑦0 → 𝒜, 𝑎. 
It suffices to show that 𝒜𝑞𝑆′ , 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞 for all 𝑞 ∈ 𝑆′. Take any 𝑞 ∈ 𝑆′. Since 
({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) is a homomorphism duality relative to (𝒜𝑞𝑇, 𝑥0) and 𝒜𝑞, 𝑦0 →
𝒜𝑞𝑇, 𝑥0, we have that 𝒜𝑞, 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞. By construction of 𝑞𝑆′, this implies 𝒜𝑞𝑆′ , 𝑦0 ↛
�ℬ𝑞, 𝑎𝑞.

Next, we show that 𝒜𝑞′𝑆, 𝑦0 ↛ 𝒜, 𝑎 implies that there is a 𝑞 ∈ 𝑆′ such that 
𝒜, 𝑎 → �ℬ𝑞, 𝑎𝑞. Since 𝒜𝑞𝑆′  is the join of all 𝒜𝑞 with 𝑞 ∈ 𝑆′ at the answer variable, 
there must be a 𝑞 ∈ 𝑆′ such that 𝒜𝑞, 𝑦0 ↛ 𝒜, 𝑎. By definition of homomorphism 
dualities, therefore 𝒜, 𝑎 → �ℬ𝑞, 𝑎𝑞, as required. This completes the proof of the 
claim.

Let the probability distribution 𝑃 assign probability 0.5 to the positive example 
(𝒜𝑞𝑇, 𝑥0), probability 1

2𝑛+1
 to all negative examples (�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆, and proba­

bility 0 to all other data examples. Now assume that the algorithm is started on a 
collection 𝐸 of 𝑚( 1𝛿 , 1𝜖 , |Σ|, 0, 𝑝1(𝑛), 𝑝2(𝑛)) data examples drawn according to 𝑃 and 
labeled according to 𝑞𝑇. Let 𝑆′ = {𝑞 ∈ 𝑆 ∣ (�ℬ𝑞, 𝑎𝑞, −) ∈ 𝐸} ⊆ 𝑆. We argue that 𝑞𝑆′ fits 
𝐸. Since 𝒜𝑞, 𝑦0 → 𝒜𝑞𝑇, 𝑥0 for all 𝑞 ∈ 𝑆, it follows that 𝑞𝑆′ fits the positive examples 
in 𝐸 which are all of the form (𝒜𝑞𝑇, 𝑥0). Now let (�ℬ𝑞, 𝑎𝑞) be a negative example in 
𝐸. We have 𝒜𝑞, 𝑦0 ↛ �ℬ𝑞, 𝑎𝑞 by the properties of homomorphism dualities and by 
construction of 𝑞𝑆′ it follows that 𝑞𝑆′(𝑦0) ↛ �ℬ𝑞, 𝑎𝑞, as required.

We next observe that if (𝒜𝑞𝑇, 𝑥0, +) ∈ 𝐸, then it follows from Theorem 6.15 and 
the claim that 𝑞𝑆′ is a strongly most-general fitting of 𝐸. Hence, with probability 
1 − 1

2|𝐸|
> 1 − 𝛿 (since the value of 𝑚 and thus |𝐸| is at least 2), the algorithm 𝐀 returns 

a CQ equivalent to 𝑞𝑆′.
We argue that 𝑞𝑆′ classifies all negative examples (�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆⧵𝑆′ incorrectly. 

To see this, let 𝑞 be a CQ from 𝑆 ⧵ 𝑆′. Note that 𝒜𝑞, 𝑦0 ↛ 𝒜𝑞𝑆′ , 𝑦0 by construction 
of 𝑞𝑆′. Then, it follows from ({(𝒜𝑞, 𝑦0)}, {(�ℬ𝑞, 𝑎𝑞)}) being a homomorphism duality 
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relative to (𝒜𝑞𝑇, 𝑥0) and 𝒜𝑞𝑆′ , 𝑦0 → 𝒜𝑞𝑇, 𝑥0 that 𝒜𝑞𝑆′ , 𝑦0 → �ℬ𝑞, 𝑎𝑞. Therefore, all 
(�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆 ⧵ 𝑆′ are labeled positively by 𝑞𝑆′.

Since |𝑆⧵𝑆′| = 2𝑛−|𝑆′| > 2𝑛−2𝑛−1 by choice of 𝑛 and each of the negative examples 
(�ℬ𝑞, 𝑎𝑞) with 𝑞 ∈ 𝑆 ⧵ 𝑆′ has probability 1

2𝑛+1
 to be drawn from 𝑃, we have

error𝑃,𝑞𝑇,∅(𝑞𝑆′) >
2𝑛 − 2𝑛−1

2𝑛+1
=

1
4

= 𝜖,

a contradiction.

Most-Specific Fittings Preclude Sample-Efficient PAC Learning

In contrast to most-general fitting CQs, Theorem 6.13 implies that most-specific 
fitting CQs always exist, provided that a fitting CQ exists at all. We show that 
fitting algorithms that always produce a most-specific fitting CQ also cannot be 
sample-efficient PAC learning algorithms.

Theorem 6.19. Let 𝐀 be a fitting algorithm for CQs that always produces a most-specific 
fitting CQ. Then 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that 𝐀 is a sample-efficient PAC learning algorithm 
with associated polynomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13. 
Choose a signature Σ that contains a concept name 𝐴 and a role name 𝑟, set 𝑞𝑇(𝑥0) ←
𝐴(𝑥0), 𝛿 = 𝜖 = 0.5, and 𝑛 even and large enough such that

1
2�

𝑛
𝑛/2� > 𝑚 �

1
𝜖

,
1
𝛿

, |Σ|, 0, ‖𝑞𝑇‖, 𝑝(𝑛)� ,

where 𝑝 is a fixed polynomial that bounds the size of the examples that we are 
going to use. We next construct positive examples for 𝑞𝑇; negative examples are not 

needed. Let 𝑁 denote the set of subsets of {1, … , 𝑛} and let 𝑁
1
2  be defined likewise, 

but include only sets of cardinality exactly 𝑛/2. Note that |𝑁
1
2 | = � 𝑛

𝑛/2�. With every 
𝑆 ∈ 𝑁, we associate the path ABox

𝒜𝑆 = {𝑟(𝑏0, 𝑏1), … , 𝑟(𝑏𝑛−1, 𝑏𝑛)} ∪ {𝐴(𝑏𝑖) ∣ 𝑖 ∈ 𝑆}.

as well as the example (𝒜′
𝑆, 𝑎0) that is obtained by constructing an example (ℬ𝑆, 𝑎0)

such that the pair ({(𝒜𝑆, 𝑏0)}, {(ℬ𝑆, 𝑎0)}) is a homomorphism duality relative to 
(𝒜{1,…,𝑛}, 𝑏0) via the construction in the proof of Lemma 6.16 and then adding the 
fact 𝐴(𝑎0). Due to this additional fact, every (𝒜′

𝑆, 𝑎0) is a positive data example for 
𝑞𝑇 and using Lemma 6.16 one can show that there is a fixed polynomial 𝑝 such that 
‖𝒜′

𝑆‖ ≤ 𝑝(𝑛)
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Let 𝑃 be the probability distribution that assigns probability 1/|𝑁
1
2 | to every 

example (𝒜′
𝑆, 𝑎0) with 𝑆 ∈ 𝑁

1
2 , and probability 0 to all other examples. Now, assume 

that 𝐀 is started on a collection of 𝑚( 1𝜖 , 1𝛿 , |Σ|, 0, ‖𝑞𝑇‖, 𝑝(2𝑛, 2𝑛) + 1) data examples 𝐸
drawn from 𝑃 and labeled according to 𝑞𝑇, and let 𝑞𝐻 be the CQ that is output by 𝐀. 
Since 𝐸 contains no negative examples, Theorem 6.13 implies that a most-specific 
fitting CQ exists. By the properties of 𝐀, 𝑞𝐻 must therefore be a most-specific CQ 
that fits 𝐸.

We argue that 𝑞𝐻 labels incorrectly all data examples (𝒜′
𝑆, 𝑎0) with 𝑆 ∈ 𝑁

1
2  that 

are not in the sample 𝐸. Let 𝑆 be any element of 𝑁
1
2  with (𝒜′

𝑆, 𝑎0, +) ∉ 𝐸. We 
aim to show that 𝒜𝑞𝐻, 𝑎𝑞𝐻 ↛ 𝒜′

𝑆, 𝑎0. Let 𝑞𝑆 be the canonical CQ of (𝒜𝑆, 𝑏0). Since 
({(𝒜𝑆, 𝑏0)}, {(ℬ𝑆, 𝑎0)}) is a homomorphism duality relative to (𝒜1,…,𝑛, 𝑏0), and 𝒜′

𝑆 =
ℬ𝑆 ∪ {𝐴(𝑎0)}, 𝒜𝑆, 𝑏0 ↛ 𝒜′

𝑆, 𝑎0. Hence, it suffices to show that 𝒜𝑆, 𝑏0 → 𝒜𝑞𝐻, 𝑎𝑞𝐻 or 
equivalently that 𝑞𝐻 ⊆∅ 𝑞𝑆.

Recall that 𝑞𝐻 is a most-specific fitting for 𝐸. Hence, it suffices to show that 𝑞𝑆
is a fitting for 𝐸. Let 𝑆′ be any element of 𝑁

1
2  with (𝒜′

𝑆′, 𝑎0) ∈ 𝐸. Then, 𝑆 ≠ 𝑆′

and thus 𝒜𝑆′, 𝑏0 ↛ 𝒜𝑆, 𝑏0 by construction. Since 𝒜𝑆, 𝑏0 → 𝒜{1,…,𝑛}, 𝑏0 and the pair 
({(𝒜𝑆′, 𝑏0)}, {(ℬ𝑆′, 𝑎0)}) is a homomorphism duality relative to (𝒜{1,…𝑛}, 𝑏0), it follows 
that 𝒜𝑆, 𝑏0 → ℬ𝑆′, 𝑎0 and hence 𝒜𝑆, 𝑏0 → 𝒜′

𝑆′, 𝑎0. Therefore, (𝒜′
𝑆′, 𝑎0) is a positive 

example for 𝑞𝑆, as required.
The definition of 𝑃 and the choice of 𝑛 now yield that with probability 1 > 1 − 𝛿,

error𝑃,𝑞𝑇(𝑞𝐻) =
|𝑁

1
2 | − |𝐸|

|𝑁
1
2 |

> 0.5,

a contradiction.

Minimum Quantifier Depth Precludes Sample-Efficiency

Other than most-specific and most-general fittings, one might also be interested in 
fitting queries that are simple in some sense, to aid understanding of their meaning. 
One way to judge the simplicity of queries, is the quantifier depth.

The quantifier depth of an ELQ is usually defined through its representation as 
an ℰℒ concept. There, it is simply the deepest nesting of existential restrictions. 
Formally, the function qdepth is defined inductively for all ℰℒ concepts by

qdepth(⊤) = 0
qdepth(𝐴) = 0

qdepth(𝐶 ⊓ 𝐷) = max(qdepth(𝐶), qdepth(𝐷))
qdepth(∃𝑟.𝐶) = qdepth(𝐶) + 1.
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We may also define the quantifier depth of an ELQ 𝑞(𝑥0) as the codepth of its answer 
variable 𝑥0.

Unfortunately, fitting ELQs of minimal quantifier depth can still be of large size. 
We show that fitting algorithms that produce ELQs of minimal quantifier depth 
are not sample-efficient PAC learning algorithms. To show this, we cannot use a 
similar construction as in the last two proofs, and use homomorphism dualities 
relative to some path example, as we do not use path-shaped queries. We require 
unrelativized homomorphism dualities or homomorphism dualities relative to tree-
shaped examples, but there is no known construction, even for path examples, that 
yields such homomorphism dualities of polynomial size. Therefore, we use the 
weaker notion of simulation dualities, which suffice for ELQs. Recall that ⪯ℰℒ denotes 
the existence of an ℰℒ simulation (Definition 5.25), and that ℰℒ simulations are 
closely linked to ELQs (see also Lemma 5.26). The proof is standard and omitted.

Lemma 6.20. Let 𝑞(𝑥) be an ELQ and (𝒜, 𝑎) an example. Then, 𝒜, ∅ ⊧ 𝑞(𝑎) if and only if 
𝒜𝑞, 𝑥 ⪯ℰℒ 𝒜, 𝑎.

This is a consequence of the semantics of CQs (and therefore also of ELQs) and 
the fact that the existence of a homomorphism and the existence of an ℰℒ simulation 
coincide if the source example is tree-shaped.

Definition 6.21 (Simulation duality). Let Σ be a signature. A Σ simulation duality is 
a pair of finite sets of unary examples (𝐹, 𝐷) such that for all examples (ℬ, 𝑏) with 
sig(ℬ) ⊆ Σ, the following are equivalent:

1. 𝒜𝑓, 𝑎𝑓 ⪯ℰℒ ℬ, 𝑏 for some (𝒜𝑓, 𝑎𝑓) ∈ 𝐹,

2. ℬ, 𝑏 ⪯̸ℰℒ 𝒜𝑑, 𝑎𝑑 for all (𝒜𝑑, 𝑎𝑑) ∈ 𝐷.

The main use of Definition 6.21 lies in the following property. Consider a Σ
simulation duality (𝐹, 𝐷) where 𝐹 = {(𝒜𝑞, 𝑎𝑞)} for some ELQ 𝑞. Then for any example 
(ℬ, 𝑏) that uses only symbols from Σ with ℬ, ∅ ⊧̸ 𝑞(𝑏), there must be an (𝒜, 𝑎) ∈ 𝐷
with ℬ, 𝑏 ⪯ℰℒ 𝒜, 𝑎, due to Lemma 6.20. We show that for ELQs, such a set 𝐷 always 
exists and is of polynomial size. Indeed, we show that this not only holds for ELQs, 
but also for examples that are directed acyclic graph shaped (DAG-shaped), since 
the notion of simulation dualities is of independent interest.

An ABox 𝒜 is DAG-shaped if its underlying directed graph is a DAG and there 
are no role assertions of the form 𝑟(𝑥, 𝑦), 𝑠(𝑦, 𝑥) ∈ 𝒜. Similar to the codepth of tree-
shaped ABoxes, we define a notion of codepth for DAG-shaped ABoxes. The codepth 
of an individual 𝑎 is 0 if there is no assertion 𝑟(𝑎, 𝑏) ∈ 𝒜 and the maximum of the 
codepths of all individuals 𝑏 with 𝑟(𝑎, 𝑏) ∈ 𝒜 plus 1 otherwise.
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Lemma 6.22. Let Σ be a signature and (𝒜, 𝑎) an example such that 𝒜 is DAG-shaped and 
sig(𝒜) ⊆ Σ. Then, we can compute in polynomial time a set 𝐷 such that ({(𝒜, 𝑎)}, 𝐷) is 
a Σ simulation duality. Moreover, if 𝒜 contains exactly one Σ assertion that mentions 𝑎, 
then 𝐷 is a singleton set.

 Proof. Let (𝒜, 𝑎) be an example with 𝒜 DAG-shaped and Σ a signature. We construct 
the required set 𝐷 as follows. First, we define an ABox 𝒜∗ which uses the following 
individuals

ind(𝒜∗) = {⊤} ∪
{⟨𝑏, 𝐴(𝑏)⟩ ∣ 𝐴(𝑏) ∈ 𝒜, 𝐴 ∈ Σ} ∪
{⟨𝑏, 𝑟(𝑏, 𝑐)⟩ ∣ 𝑟(𝑏, 𝑐) ∈ 𝒜, 𝑟 ∈ Σ}

and include the following assertions, for all ⟨𝑏, 𝐴(𝑏)⟩ ∈ ind(𝒜∗) and ⟨𝑏, 𝑟(𝑏, 𝑐)⟩ ∈
ind(𝒜∗):

(i) 𝐵(⊤) for all 𝐵 ∈ Σ ∩ NC;

(ii) 𝑠(⊤, ⊤) for all 𝑠 ∈ Σ ∩ NR;

(iii) 𝐵(⟨𝑏, 𝐴(𝑏)⟩) for all 𝐵 ∈ Σ ∩ NC with 𝐵 ≠ 𝐴;

(iv) 𝑠(⟨𝑏, 𝐴(𝑏)⟩, ⊤) for all 𝑠 ∈ Σ ∩ NR;

(v) 𝐵(⟨𝑏, 𝑟(𝑏, 𝑐)⟩) for all 𝐵 ∈ Σ ∩ NC;

(vi) 𝑠(⟨𝑏, 𝑟(𝑏, 𝑐)⟩, ⊤) for all 𝑠 ∈ Σ ∩ NR with 𝑠 ≠ 𝑟;

(vii) 𝑟(⟨𝑏, 𝑟(𝑏, 𝑐)⟩, ⟨𝑐, 𝛼⟩) for all ⟨𝑐, 𝛼⟩ ∈ ind(𝒜∗).

We prove two auxiliary claims.

Claim 1. For all 𝑏 ∈ ind(𝒜) and ⟨𝑏, 𝛼⟩ ∈ ind(𝒜∗), 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

 Proof of Claim 1. We prove the claim by induction on the codepth of 𝑏 in 𝒜. If 𝑏 has 
codepth 0, then 𝛼 is of the form 𝐴(𝑏), for 𝐴(𝑏) ∈ 𝒜. By Point (iii) in the definition 
of 𝒜∗, 𝐴(⟨𝑏, 𝐴(𝑏)⟩) ∉ 𝒜∗, and thus 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

Now, let 𝑏 have codepth greater than 0. We distinguish cases on the shape of 𝛼.

• If 𝛼 is of the form 𝐴(𝑏) for some 𝐴(𝑏) ∈ 𝒜, then we can argue as in the base 
case that 𝒜, 𝑏 ⪯̸ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

• If 𝛼 is of the form 𝑟(𝑏, 𝑐) for some 𝑟(𝑏, 𝑐) ∈ 𝒜, assume for contradiction that 
there is an ℰℒ simulation 𝑆 from 𝒜 to 𝒜∗ with (𝑏, ⟨𝑏, 𝑟(𝑏, 𝑐)⟩) ∈ 𝑆. Since 𝑆 is an 
ℰℒ simulation and 𝑐 is an 𝑟-successor of 𝑏 in 𝒜, there has to be an 𝑟-successor 
𝑐′ of ⟨𝑏, 𝑟(𝑏, 𝑐)⟩ in 𝒜∗ with (𝑐, 𝑐′) ∈ 𝑆. By Point (vi) and (vii), 𝑐′ is of shape ⟨𝑐, 𝛼⟩. 
But then 𝒜, 𝑐 ⪯ℰℒ 𝒜′, ⟨𝑐, 𝛼⟩, contradicting the induction hypothesis.
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This completes the proof of Claim 1.

Claim 2. For all 𝑏 ∈ ind(𝒜) and examples (ℬ, 𝑐) that only use symbols from Σ, if 
𝒜, 𝑏 ⪯̸ℰℒ ℬ, 𝑐 then there is a ⟨𝑏, 𝛼⟩ ∈ ind(𝒜∗) such that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝛼⟩.

 Proof of Claim 2. We prove the claim by induction on the codepth of 𝑏 in 𝒜. If 𝑏 has 
codepth 0 and 𝒜, 𝑏 ⪯̸ℰℒ 𝒜′, 𝑐, then there is a concept name 𝐴 ∈ Σ such that 𝐴(𝑏) ∈ 𝒜
and 𝐴(𝑐) ∉ ℬ. It can be verified using Points (i)–(iii) above that the relation

𝑆 = {(𝑐, ⟨𝑏, 𝐴(𝑏)⟩)} ∪ {(𝑐′, ⊤) ∣ 𝑐′ ∈ ind(ℬ)}

is an ℰℒ simulation from ℬ to 𝒜∗ with (𝑐, ⟨𝑏, 𝐴(𝑏)⟩) ∈ 𝑆 as required.
Now, let 𝑏 have codepth greater than 0 and assume 𝒜, 𝑏 ⪯̸ℰℒ ℬ, 𝑐. We distinguish 

cases on why the latter is the case:

• If there is a concept name 𝐴 ∈ Σ such that 𝐴(𝑏) ∈ 𝒜 and 𝐴(𝑐) ∉ ℬ, we can 
argue as in the base case that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝐴(𝑏)⟩.

• If there is an assertion 𝑟(𝑏, 𝑏′) ∈ 𝒜 such that for all 𝑟(𝑐, 𝑐′) ∈ ℬ, 𝒜, 𝑏′ ⪯̸ℰℒ ℬ, 𝑐′. 
We show that ℬ, 𝑐 ⪯ℰℒ 𝒜∗, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩.
The induction hypothesis implies that for all 𝑟(𝑐, 𝑐′) ∈ ℬ there is an ⟨𝑏′, 𝛽⟩ ∈
ind(𝒜∗) and a simulation 𝑆𝑐′ from ℬ to 𝒜∗ with (𝑐′, ⟨𝑏′, 𝛽⟩) ∈ 𝑆𝑐′. It can be 
verified using Points (v)–(vii) above that

𝑆 = {(𝑏, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩)} ∪ {(𝑐′, ⊤) ∣ 𝑐′ ∈ ind(ℬ)} ∪ �
𝑟(𝑐,𝑐′)∈ℬ

𝑆𝑐′

is a simulation from 𝒜′ to 𝒜∗ with (𝑏, ⟨𝑏, 𝑟(𝑏, 𝑏′)⟩) ∈ 𝑆.

This completes the proof of Claim 2.

We now show that the set

𝐷𝑎 = {(𝒜∗, ⟨𝑎, 𝛼⟩) ∣ ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗)}

forms a Σ simulation duality together with {(𝒜, 𝑎)}.
Suppose that 𝒜, 𝑎 ⪯̸ℰℒ (ℬ, 𝑏) for some example (ℬ, 𝑏) with sig(ℬ) ⊆ Σ. Then 

Claim 2 implies that there is some ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗) with ℬ, 𝑏 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩. It 
remains to note that (𝒜∗, ⟨𝑎, 𝛼⟩) ∈ 𝐷𝑎. Conversely, suppose that 𝒜, 𝑎 ⪯ℰℒ ℬ, 𝑏 and 
assume for showing a contradiction that ℬ, 𝑏 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩ for some ⟨𝑎, 𝛼⟩ ∈ ind(𝒜∗). 
Since ⪯ℰℒ is transitive, we obtain 𝒜, 𝑎 ⪯ℰℒ 𝒜∗, ⟨𝑎, 𝛼⟩, in contradiction to Claim 1.

Clearly, 𝐷𝑎 is a singleton set if 𝒜 contains only a single assertion mentioning 
𝑎. It remains to analyze the size of 𝒜∗. Points (i) and (ii) together contribute |Σ|
assertions to 𝒜∗. Points (iii) and (iv) contribute together |Σ| ⋅ 𝑛𝐶 assertions to 𝒜∗, 
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where 𝑛𝐶 denotes the number of assertions of shape 𝐴(𝑏) in 𝒜. Points (v) and (vi) 
contribute |Σ| ⋅ 𝑛𝑅 assertions where 𝑛𝑅 denotes the number of assertions of shape 
𝑟(𝑏, 𝑐) in 𝒜. Finally, Point (vii) contributes |𝒜|2 assertions. Overall, the number of 
assertions in 𝒜∗ is bounded by a polynomial in |Σ| and |𝒜|. Therefore, it can be 
computed in polynomial time.

Complementing Lemma 6.22, it is known that examples that are not DAG-shaped 
(contain a directed cycle) do not have finite simulation dualities [tCat+23c]. We 
find it remarkable to recall that DAG-shaped databases (that contain undirected 
cycles) do, in general, not have finite homomorphism dualities [NT00].

For ELQs instead of DAG-shaped examples, a result similar to Lemma 6.22 was 
obtained by Fortin et al. [For+22, Theorem 30]. There, dualities are called split 
partners, as the two sets 𝐹 and 𝐷 split the set of all examples into two. Fortin et al. 
also describe a construction of ⪯ℰℒℐ dualities of exponential size, and show that in 
general no polynomial size ⪯ℰℒℐ dualities exist.

Now, we continue by using Lemma 6.22 to show that minimal quantifier depth 
fitting algorithms are not sample-efficient PAC learning algorithms.

Theorem 6.23. Let 𝐀 be a fitting algorithm for ELQs that always produces a fitting of 
minimal quantifier depth. Then, 𝐀 is not a sample-efficient PAC learning algorithm.

 Proof. Assume to the contrary that there is a sample-efficient PAC learning algo­
rithm 𝐀 that produces a most shallow fitting concept, if it exists, with associated 
polynomial sample size 𝑚∶ ℝ2 × ℕ4 → ℕ as in Definition 3.13.

Choose Σ = {𝑟, 𝑠, 𝑡}, 𝛿 = 0.5, 𝜖 = 0.4, and 𝑛 large enough such that

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!

> 1 − 𝛿 (∗)

where 𝑝(𝑛) is the polynomial

𝑝(𝑛) = 𝑚�
1
𝛿

,
1
𝜖

, 0, |Σ|, 𝑝1(𝑛), 𝑝2(𝑛)�

and 𝑝1 and 𝑝2 are fixed polynomials that describe the size of the target query and 
of the examples that we are going to use respectively. Lemma 6.24 below shows 
that such an 𝑛 always exists, regardless of the precise polynomial 𝑝. The meaning 
of the expression on the left-hand side of (∗) will become clearer later.

We use the target query

𝑞𝑇(𝑥0) ← 𝑡(𝑥0, 𝑥1) ∧ ⋯ ∧ 𝑡(𝑥𝑛, 𝑥𝑛+1)
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with quantifier depth 𝑛 + 1. We construct (both positive and negative) examples 
such that, with high probability, the drawn examples admit a fitting of quantifier 
depth 𝑛 that does not generalize well. Define a set of 2𝑛 ELQs

𝑆 = {𝑞(𝑦0) ← 𝑟1(𝑦0, 𝑦1) ∧ ⋯ ∧ 𝑟𝑛(𝑦𝑛−1, 𝑦𝑛) ∣ 𝑟𝑖 ∈ {𝑟, 𝑠}, 1 ≤ 𝑖 ≤ 𝑛}.

For each 𝑞 ∈ 𝑆, we can construct by Lemma 6.22 an example (𝑃𝑞, 𝑎) such that 
({(𝒜𝑞, 𝑎𝑞)}, {(𝑃𝑞, 𝑎)}) is a Σ simulation duality. By the properties of simulation du­
alities, (𝑃𝑞, 𝑎) is a positive example for 𝑞𝑇. Also by Lemma 6.22, there is a single 
example (ℬ𝑇, 𝑎) such that ({(𝒜𝑞𝑇, 𝑎𝑞𝑇)}, {(ℬ𝑇, 𝑎)}) is a Σ simulation duality. For each 
𝑞 ∈ 𝑆, we construct a negatively labeled example (𝑁𝑞, 𝑎) by taking

(𝑁𝑞, 𝑎) = (𝑃𝑞 × ℬ𝑇, (𝑎, 𝑎)).

Both the positive examples and the negative examples are of size polynomial in 𝑛. 
We let 𝑝2(𝑛) be any polynomial that bounds (from above) the size of the examples.

Note that by the properties of dualities and products, for all 𝑞 ∈ 𝑆 and for all 
ELQs 𝑞′ that only use symbols from Σ,

(i) 𝑃𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if 𝑞′ ⊈∅ 𝑞, and

(ii) 𝑁𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if 𝑞′ ⊈∅ 𝑞 and 𝑞′ ⊈∅ 𝑞𝑇.

To see Point (i) note that 𝑃𝑞, ∅ ⊧ 𝑞′(𝑎) if and only if (by Lemma 6.20) 𝒜𝑞′, 𝑎𝑞′ ⪯ℰℒ
𝑃𝑞, 𝑎 if and only if (by duality) 𝒜𝑞, 𝑎𝑞 ⪯̸ℰℒ 𝒜𝑞′, 𝑎𝑞′ if and only if (by Lemma 6.20) 
𝑞′ ⊈∅ 𝑞. Point (ii) can be shown similarly and uses the fact that for all unary data 
examples (𝒜, 𝑎), (𝒜1, 𝑎1), (𝒜2, 𝑎2), 𝒜, 𝑎 ⪯ℰℒ 𝒜1 × 𝒜2, (𝑎1, 𝑎2) if and only if 𝒜, 𝑎 ⪯ℰℒ
𝒜1, 𝑎1 and 𝒜, 𝑎 ⪯ℰℒ 𝒜2, 𝑎2, similar to Lemma 3.3.

Let 𝑃 be the probability distribution that assigns probability 1
2𝑛+1

 to (𝑃𝑞, 𝑎) and 
(𝑁𝑞, 𝑎) for every 𝑞 ∈ 𝑆, and probability 0 to all other examples. Now, assume that 𝐀
is started on a collection of 𝑘 = 𝑚(1/𝛿, 1/𝜖, 0, |Σ|, 𝑝1(𝑛), 𝑝2(𝑛)) examples 𝐸 drawn from 
𝑃 labeled according to 𝑞𝑇, and then outputs a hypothesis 𝑞𝐻.

Note that the probability of sampling ℓ different objects from an 𝑁-element set is 
the ratio of those sequences of length ℓ that contain pairwise distinct elements in 
the set of all sequences of length ℓ, that is,

∏ℓ−1
𝑖=0 (𝑁 − 𝑖)

𝑁ℓ =
𝑁!

𝑁ℓ ⋅ (𝑁 − ℓ)!
.

We apply this observation to 𝑁 = 2𝑛 and ℓ = 𝑘. By choice of 𝑛, with probability 
> 1 − 𝛿 we have that for no 𝑞 ∈ 𝑆, both (𝑁𝑞, 𝑎, −) ∈ 𝐸 and (𝑃𝑞, 𝑎, +) ∈ 𝐸. We show that 
if this is the case, then the error of 𝑞𝐻 is strictly larger than 𝜖.
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Consider the ELQ 𝑞′(𝑦0) = ⋀
(𝑁𝑝,𝑎,−)∈𝐸

𝑝(𝑦0), where ⋀ denotes the joining of ELQs 
at the answer variable. We claim that 𝑞′ fits 𝐸. Since, for all 𝑞 ∈ 𝑆, 𝑞 ⊆∅ 𝑞, Point (ii) 
implies that 𝑁𝑞∅ ⊧̸ 𝑞(𝑎). Hence, 𝑞′ fits all negative examples in 𝐸. Together with our 
assumption that for no 𝑞 ∈ 𝑆, both (𝑁𝑞, 𝑎, −) ∈ 𝐸 and (𝑃𝑞, 𝑎, +) ∈ 𝐸, Point (i) implies 
that 𝑃𝑞, ∅ ⊧ 𝑝(𝑎) for all (𝑁𝑝, 𝑎, −) ∈ 𝐸 and (𝑃𝑝, 𝑎, +) ∈ 𝐸. Therefore, 𝑞′ fits all positive 
examples in 𝐸.

Since 𝑞′ is a fitting of quantifier depth 𝑛 and 𝐀 finds a fitting of minimal quantifier 
depth, 𝑞𝐻 must have quantifier depth at most 𝑛, which implies that 𝑞𝐻 ⊈∅ 𝑞𝑇.

Consider all 𝑞 ∈ 𝑆. It must be that either 𝑞𝐻 ⊆∅ 𝑞 or 𝑞𝐻 ⊈∅ 𝑞. In the first 
case, Point (i) implies 𝑃𝑞, ∅ ⊧̸ 𝑞𝐻(𝑎), hence 𝑞𝐻 labels the (positive) example (𝑃𝑞, 𝑎)
incorrectly. In the second case, Point (ii) implies 𝑁𝑞, ∅ ⊧ 𝑞𝐻(𝑎), hence 𝑞𝐻 labels the 
(negative) example (𝑁𝑞, 𝑎) incorrectly. Therefore,

error𝑃,𝑞𝑇,∅(𝑞𝐻) ≥ 0.5 > 𝜖,

a contradiction.

To complete the proof of Theorem 6.23, it remains to show that there always 
exists a suitable 𝑛.

Lemma 6.24. For every polynomial 𝑝(𝑛),

lim
𝑛→∞ �

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!� = 1.

 Proof. As argued in the proof of Theorem 6.23, the term inside the limit is a proba­
bility, so the limit is at most 1. We start with bounding the expression inside the 
limit from below.

2𝑛!
2𝑛𝑝(𝑛)(2𝑛 − 𝑝(𝑛))!

=
2𝑛 ⋅ (2𝑛 − 1) ⋅ ⋯ ⋅ (2𝑛 − 𝑝(𝑛) + 1)

(2𝑛)𝑝(𝑛)

≥
(2𝑛 − 𝑝(𝑛) + 1)𝑝(𝑛)

(2𝑛)𝑝(𝑛)

= �1 −
𝑝(𝑛) + 1

2𝑛 �
𝑝(𝑛)

It suffices to show that the limit of the last expression is 1. In order to do so, we 
manipulate the expression to avoid the 𝑝(𝑛) in the exponent. Let

�𝑝(𝑛) = 1 −
𝑝(𝑛) + 1

2𝑛
.
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Then,

lim
𝑛→∞

��𝑝(𝑛)𝑝(𝑛)� = lim
𝑛→∞

� exp � ln ��𝑝(𝑛)𝑝(𝑛)���

= exp � lim
𝑛→∞

� ln ��𝑝(𝑛)𝑝(𝑛)���

= exp � lim
𝑛→∞

�𝑝(𝑛) ⋅ ln(�𝑝(𝑛))��.

To determine the limit of a product where one factor 𝑝(𝑛) converges to ∞ and the 
other ln(⋅) converges to 0, we apply l’Hôpital’s rule. Set 𝑓(𝑛) = ln(1 − 𝑝(𝑛)+1

2𝑛 ) and 

𝑔(𝑛) = 1/𝑝(𝑛), so lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛)  is exactly the limit we want to determine (inside the 

exp(⋅)). L’Hôpital’s rule says that if lim𝑛→∞
𝑓′(𝑛)
𝑔′(𝑛)  exists, then

lim
𝑛→∞

𝑓′(𝑛)
𝑔′(𝑛)

= lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

.

The derivatives 𝑓′(𝑛) and 𝑔′(𝑛) of 𝑓(𝑛) and 𝑔(𝑛) are:

𝑓′(𝑛) =
ln(2)(𝑝(𝑛) + 1) − 𝑝′(𝑛)

2𝑛 − 𝑝(𝑛) − 1

𝑔′(𝑛) =
−𝑝′(𝑛)
𝑞(𝑛)

 for some polynomial 𝑞(𝑛)

It remains to observe that 𝑓′(𝑛)/𝑔′(𝑛) is an expression that has an exponential 2𝑛 in 
its numerator and only polynomials everywhere else. Thus,

lim
𝑛→∞

𝑓′(𝑛)
𝑔′(𝑛)

= 0 = lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

,

which yields exp(0) = 1 as desired.

Therefore, we cannot base a sample-efficient PAC learning algorithm on most-
general, most-specific, or quantifier depth minimal fittings. We instead continue with 
an algorithm that finds fitting queries of smallest size, based on bounded fitting.

6.4 SAT-based PAC ℰℒ Concept Learner

There is general interest in software systems that learn concepts from data examples 
for extracting knowledge from data [Bis+23; dAma20]. In Section 2.1, we briefly 
described existing approaches to concept learning. However, no existing system 
comes with formal guarantees in the sense of PAC learning, and many interesting 
fitting algorithms are not sample-efficient PAC learning algorithms, as we have seen 
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in Section 6.3. Theorem 6.10 tells us that bounded fitting algorithms can be a good 
foundation for query learning systems, as they are sample-efficient PAC learning 
algorithms, that is, they are guaranteed to generalize from few examples. Of course, 
to implement a bounded fitting algorithm, we need to specify and implement a 
concrete size-restricted fitting algorithm. Hence, the practicality of bounded fitting 
depends on the computational complexity of the corresponding size-restricted 
fitting problem.

In contrast to the general fitting problem, the size-restricted fitting problem for 
CQs is not coNExpTime-complete, but closer to being tractable.

Theorem 6.25 ([GLS99]). The size-restricted fitting problem for CQs under the empty 
ontology is Σ𝑝

2-complete.

For ELQs, where the general fitting problem is ExpTime-complete, the size-restrict­
ed fitting problem is even NP-complete. The NP-hardness is a direct consequence 
of Lemma 6.5.

Theorem 6.26 ([Hau89]). The size-restricted fitting problem for ELQs under the empty 
ontology is NP-complete.

These results also hold for different size measures, such as the word encoding 
size, or the number of variables. The NP-hardness of size-restricted fitting for ELQs 
seems a bit discouraging at first, but in practice many instances of NP-complete 
problems can be quickly decided by leveraging the efficiency of SAT solvers. In 
what follows, we describe an implementation of bounded fitting for ELQs under 
ℰℒℋ𝑟 ontologies, that uses a SAT solver to decide instances of the NP-complete 
size-restricted fitting problem.

First, we argue that adding an ℰℒℋ𝑟 ontology does not increase the complexity 
of the size-restricted fitting problem for ELQs. Recall that in Section 5.3 we defined 
ELQ-universal compact models of ℰℒ𝑟 ontologies (see Lemma 5.19). Similar models 
can be constructed for ℰℒℋ𝑟 ontologies, by taking role inclusions into account. 
For every ABox 𝒜 and ℰℒℋ𝑟 ontology 𝒪, we can compute in polynomial time 
an interpretation 𝒞𝒜,𝒪 that is ELQ-universal, meaning that for all ELQs 𝑞 and 
𝑎 ∈ ind(𝒜), 𝒜, 𝒪 ⊧ 𝑞(𝑎) if and only if 𝒞𝒜,𝒪, ∅ ⊧ 𝑞(𝑎) [LTW09]. As this interpretation 
is finite, we can view 𝒞𝒜,𝒪 as an ABox and use it as a data example.

Now, given a collection of labeled data examples 𝐸 and an ℰℒℋ𝑟 ontology 𝒪, 
we denote with 𝐸𝒪 the collection obtained from 𝐸 by replacing each (positive or 
negative) example (𝒜, 𝑎, ⋅) with (𝒞𝒜,𝒪, 𝑎, ⋅), where ⋅ ∈ {+, −}. The following lemma 
shows that a fitting algorithm for ELQs under the empty ontology gives rise to 
a fitting algorithm for ELQs under ℰℒℋ𝑟 ontologies with at most a polynomial 
increase in running time. It is immediate from the definition of ELQ-universality.
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Figure 6.3: A screenshot of the demo interface of SPELL

Lemma 6.27. An ELQ 𝑞 fits a collection of labeled examples 𝐸 under an ℰℒℋ𝑟 ontology 𝒪
if and only if 𝑞 fits 𝐸𝒪 under the empty ontology.

In contrast to ELQs, ELIQ-universal finite models of ontologies need not exist, 
as discussed in Section 5.3 (see Example 5.21). The same holds for CQ-universal 
models. Hence, we cannot hope to apply anything similar to Lemma 6.27 for PAC 
learning of ELIQs or CQs.

We implemented bounded fitting for ELQs and ℰℒℋ𝑟 ontologies as the system 
SPELL, short for SAT-based PAC ℰℒ concept Learner. SPELL is available at https:
//github.com/spell-system/SPELL, and includes a demo interface for selecting 
positive and negative examples interactively, displayed in Figure 6.3. On the left 
side, individuals from a searchable list can be selected as either positive or negative 
examples, and the right side is updated in real-time to show the fitting query 
found by SPELL. SPELL takes as input an ℰℒℋ𝑟 ontology 𝒪 and an ABox 𝒜 in 
OWL RDF/XML format, as well as a collection 𝐸 of positive and negative examples 
using 𝒜. SPELL outputs a fitting ELQ, represented as a SPARQL query. SPELL 
is implemented in Python 3 and uses the PySat library to interact with the SAT 
solver Glucose 4. For benchmarking, it provides integration into the SML-Bench 
framework [Wes+19].

As a first step, SPELL removes the ontology 𝒪 by replacing the given examples 
𝐸 with 𝐸𝒪 as per Lemma 6.27. It then runs bounded fitting in the variant where 
in each round 𝑛, the algorithm searches for a fitting ELQ with at most 𝑛 variables 
(rather than a fitting ELQ 𝑞 with ‖𝑞‖ ≤ 𝑛). The existence of such a fitting is checked 
using a reduction to SAT and the SAT solver. By Lemma 6.11 and the argument in 
the proof of Theorem 6.10, this variant of bounded fitting is also a sample-efficient 
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PAC learning algorithm with sample size

𝑂�
1
𝜖

⋅ log
1
𝜖

⋅ log
1
𝛿

⋅ |Σ| ⋅ ‖𝑞𝑇‖�.

We prefer this variant for implementation despite the additional factor |Σ| in the 
sample complexity compared to Theorem 6.10 because it admits a more natural 
reduction to SAT, which we describe next.

The SAT Encoding

From 𝐸𝒪 and the bound 𝑛, SPELL constructs a propositional formula 𝜑 = 𝜑1 ∧ 𝜑2
that is satisfiable if and only if there is an ELQ 𝑞 over Σ = sig(𝐸𝒪) with at most 𝑛
variables that fits 𝐸𝒪. Indeed, any model of 𝜑 returned by the SAT solver intuitively 
represents such an ELQ, encoded as follows. The formula 𝜑1 ensures that such a 
model represents an ELQ 𝑞(𝑧1) as a conjunction of atoms over variables 𝑧1, … , 𝑧𝑛. 
In 𝜑1, we use Boolean variables of the form 𝑐𝑖,𝐴 to express that 𝐴(𝑧𝑖) is an element 
of this conjunction, and Boolean variables 𝑥𝑗,𝑟 and 𝑦𝑖,𝑗 to express that 𝑟(𝑧𝑖, 𝑧𝑗) occurs 
in this conjunction. Since the atoms should form an acyclic and rooted query, we 
enforce that an atom of shape 𝑟(𝑧𝑖, 𝑧𝑗) occurs exactly once for each 𝑗, and that 𝑖 < 𝑗. 
The second part 𝜑2 then enforces that 𝑞 fits 𝐸𝒪. Let 𝒜 be the disjoint union of all 
databases that occur in an example in 𝐸𝒪. The encoding uses Boolean variables 𝑠𝑖,𝑎, 
with 1 ≤ 𝑖 ≤ 𝑛 and 𝑎 ∈ ind(𝒜), to express that 𝒜, ∅ ⊧ 𝑞𝑧𝑖(𝑎). The exact definition of 
𝜑2 uses ℰℒ simulations and relies on Lemma 5.26.

We now make the formula 𝜑 precise. For encoding the ELQ 𝑞, the formula 𝜑1
contains the following clauses for each 𝑖 with 2 ≤ 𝑖 ≤ 𝑛:

𝑖−1
�
𝑗=1

𝑦𝑗,𝑖 (6.1)

¬𝑦𝑗1,𝑖 ∨ ¬𝑦𝑗2,𝑖 for all 𝑗1, 𝑗2 with 1 ≤ 𝑗1 < 𝑗2 < 𝑖 (6.2)

�
𝑟∈Σ∩NR

𝑥𝑖,𝑟 (6.3)

¬𝑥𝑖,𝑟 ∨ ¬𝑥𝑖,𝑟′ for all 𝑟, 𝑟′ ∈ Σ ∩ NR with 𝑟 ≠ 𝑟′ (6.4)

The clauses (6.1) and (6.2) ensure that 𝑧𝑗 appears in exactly one atom of the form 
𝑟(𝑧𝑖, 𝑧𝑗) and that 𝑖 < 𝑗 for all such atoms. Clauses (6.3) and (6.4) ensure that there is 
a unique such role name.

The formula 𝜑2 makes sure that 𝑞 fits 𝐸𝒪 by enforcing that for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛
and 𝑎 ∈ ind(𝒜),

𝑠𝑖,𝑎 is true in a model of 𝜑 if and only if 𝒜, ∅ ⊧ 𝑞𝑧𝑖(𝑎) (∗)
 if and only if 𝒜𝑞𝑧𝑖

, 𝑧𝑖 ⪯ℰℒ 𝒜, 𝑎.
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To achieve this, we express the properties of ℰℒ simulations (see Definition 5.25) 
in terms of clauses. The challenge is to capture both directions of the if and only if
in (∗) efficiently, in a way that does not produce too many clauses, even for large 
examples.

In order to make the encoding more efficient for examples that contain many 
similar individuals, we use the notion of types that are sets of concept names. For 
all 𝑎 ∈ ind(𝒜), let type(𝑎) be the set {𝐴 ∈ NC ∣ 𝐴(𝑎) ∈ 𝒜}. Let TP then be the set 
{type(𝑎) ∣ 𝑎 ∈ ind(𝒜)} of all types in that occur 𝒜. We introduce auxiliary variables 
𝑡𝑖,𝜏, for every 1 ≤ 𝑖 ≤ 𝑛 and 𝜏 ∈ TP with the intention that 𝑡𝑖,𝜏 is true in a model if 
and only if the concept names of all atoms 𝐴(𝑧𝑖) are contained in the type 𝜏. This 
is enforced by including in 𝜑2 the following clauses for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all 
types 𝜏 ∈ TP:

¬𝑡𝑖,𝜏 ∨ ¬𝑐𝑖,𝐴 for all 𝐴 ∈ (Σ ∩ NC ⧵ 𝜏) (6.5)

𝑡𝑖,𝜏 ∨ �
𝐴∈(Σ∩NC⧵𝜏)

𝑐𝑖,𝐴. (6.6)

The following clauses then enforce the condition that concept names are preserved 
by simulations, for 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and all 𝑎 ∈ ind(𝒜):

¬𝑠𝑖,𝑎 ∨ 𝑡𝑖,type(𝑎). (6.7)

This, however, only captures the only-if -direction of the if and only if  in (∗) for 
concept names. To encode the other direction and the ℰℒ simulation condition for 
role names, we introduce further auxiliary variables 𝑑𝑖,𝑗,𝑎 that represent defects, that 
is violations of the ℰℒ simulation conditions. More precisely, a variable 𝑑𝑖,𝑗,𝑎 is true 
in a model if and only if 𝒜𝑞𝑧𝑖

, 𝑧𝑖 ⪯̸ℰℒ 𝒜, 𝑎 and the variable 𝑧𝑗 is an 𝑟-successor of 
𝑧𝑖 that is not simulated in any 𝑟-successor of 𝑎. Here, the role name 𝑟 is uniquely 
determined by 𝑗 by the Clauses (6.3) and (6.4). This behavior of the 𝑑𝑖,𝑗,𝑎 variables is 
achieved by the following clauses for all 𝑖, 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑟 ∈ Σ ∩NR, 𝑎 ∈ ind(𝒜), 
and all 𝑟(𝑎, 𝑏) ∈ 𝒜:

𝑠𝑖,𝑎 ∨ ¬𝑡𝑖,type(𝑎) ∨
𝑛

�
𝑘=𝑖+1

𝑑𝑖,𝑘,𝑎 (6.8)

𝑑𝑖,𝑗,𝑎 ∨ ¬𝑦𝑖,𝑗 ∨ ¬𝑥𝑗,𝑟 ∨ �
𝑟(𝑎,𝑐)∈𝒜

𝑠𝑗,𝑐 (6.9)

¬𝑠𝑖,𝑎 ∨ ¬𝑑𝑖,𝑗,𝑎 (6.10)
¬𝑑𝑖,𝑗,𝑎 ∨ 𝑦𝑖,𝑗 (6.11)
¬𝑑𝑖,𝑗,𝑎 ∨ ¬𝑥𝑗,𝑟 ∨ ¬𝑠𝑗,𝑏 (6.12)
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As an example, Clause (6.11) can be read as follows: if there is a defect 𝑑𝑖,𝑗,𝑎, then 
𝑦𝑖,𝑗 must be true, meaning that an atom 𝑟(𝑧𝑖, 𝑧𝑗) occurs in 𝑞 for some role name 𝑟.

The fact that 𝑞 fits 𝐸𝒪 is then expressed using (∗) as the clauses

�
(𝒜′,𝑎,+)∈𝐸𝒪

𝑠1,𝑎 ∧ �
(𝒜,𝑎,−)∈𝐸𝒪

¬𝑠1,𝑎.

These clauses suffice for correctness of the encoding. Summing up, the whole 
formula produced by SPELL in round 𝑛 uses a number of variables that is in 
𝑂(𝑛2 + 𝑛 ⋅ ‖𝒜‖), a number of clauses that is in 𝑂(𝑛3 ⋅ |Σ| ⋅ |ind(𝒜)|) and in total has 
size in 𝑂(𝑛3 ⋅ |Σ| ⋅ ‖𝒜‖), which is linear in ‖𝒜‖.

We have implemented two improvements of this basic encoding in SPELL. The 
first improvement is based on the simple observation that for computing a fitting 
ELQ with 𝑛 variables, for every example (𝒜, 𝑎, ⋅) ∈ 𝐸𝒪 it suffices to consider indi­
viduals that can be reached via at most 𝑛 − 1 role assertions from 𝑎. Moreover, we 
may restrict the signature Σ to contain only symbols that occur in all 𝑛 − 1-reachable 
parts of the positive examples.

The second improvement is based on the observation that the search space for 
models of 𝜑 contains significant symmetries, in the sense that equivalent ELQs are 
encoded differently.

Example 6.28. Consider the ELQs

𝑞1(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧2, 𝑧3) ∧ 𝑡(𝑧1, 𝑧4)

and
𝑞2(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧2, 𝑧4) ∧ 𝑡(𝑧1, 𝑧3).

The only difference between 𝑞1 and 𝑞2 are the names of existential variables, and 
therefore 𝑞1 ≡∅ 𝑞2. In the search of a fitting ELQ of size 𝑛, it does not make sense 
to consider both 𝑞1 and 𝑞2, considering one of the two suffices. However, they are 
encoded differently in models of 𝜑

To avoid this kind of symmetry in round 𝑛 of bounded fitting, we add clauses 
that permit for every tree-shaped graph 𝐺 with 𝑛 vertices only a single canonical 
assignment of the variable names 𝑧1, … , 𝑧𝑛 to the vertices of 𝐺. In order to produce 
the clauses, we enumerate outside the SAT solver all possible tree-shaped graphs 
with 𝑛 vertices. The four tree-shaped graphs with four vertices are displayed in 
Figure 6.4 using their canonical variable names. For each such graph 𝐺, we introduce 
a propositional variable 𝑥𝐺 and encode (in a straightforward way) that 𝑥𝐺 is true if 
and only if 𝑧1, … , 𝑧𝑛 are assigned to the vertices of 𝐺 in the canonical way. We then 
assert using a disjunction that one of the 𝑥𝐺 has to be satisfied. However, note that 
the number of tree-shaped graphs grows exponentially [OEI24] and therefore we 
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Figure 6.4: The four tree-shaped graphs with four vertices

only add these clauses if 𝑛 < 12, to avoid spending too much time and undoing the 
benefit of breaking this symmetry. There are other symmetries in the search space 
that are not covered by these clauses.

Example 6.29. Consider the ELQs

𝑞1(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑟(𝑧1, 𝑧3) ∧ 𝐴(𝑧2) ∧ 𝐵(𝑧3)

and
𝑞2(𝑧1) ← 𝑟(𝑧1, 𝑧2) ∧ 𝑠(𝑧1, 𝑧3) ∧ 𝐵(𝑧2) ∧ 𝐴(𝑧3).

Again, 𝑞1 ≡∅ 𝑞2, but 𝑞1 and 𝑞2 are represented by different models of 𝜑.

Currently, SPELL does try to break any other symmetries than the one described 
above, and it is unclear if doing so is necessarily beneficial for the running time of 
SPELL.

This completes the description of SPELL.

6.5 Performance of SPELL

In order to determine whether the bounded fitting and SAT-solving approach of 
SPELL is practical, we evaluate its performance on several ELQ learning benchmarks. 
We compare SPELL to the ELTL component of the DL-Learner system3, as it is the 
only other system for learning ELQs or ℰℒ concepts we are aware of. ELTL is not 
based on bounded fitting, but on the refinement-based approach briefly described 
in Section 2.1.

Existing benchmarks for concept learning systems are often aimed at learning 
concepts from the 𝒜ℒ𝒞 family of description logics, and fitting ELQs seldom 

3The version of DL-Learner we used is available at https://github.com/SmartDataAnalytics/
DL-Learner as commit a7cd4441e52b6e54aefdea33a4914e9132ebfd97
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exist. For example, in the popular Structured Machine Learning Benchmark (SML-
Bench) [Wes+19], SPELL and ELTL both identify the concept ⊤ as the best fitting 
ELQs in six of the eight available benchmarks. The concept ⊤ is not a particularly 
useful fitting concept, since it classifies all negative examples incorrectly.

Therefore, we designed several new benchmarks based on existing knowledge 
bases, making sure that fitting ELQs always exist. The benchmarks and detailed 
instructions on how to reproduce the reported results in this section are available 
at https://github.com/spell-system/benchmarks. We believe that these bench­
marks can be useful for future experimental evaluations of ELQ or ℰℒ concept 
learning systems. Next, we describe the four different types of benchmarks and 
report the performance4 of SPELL and ELTL. For increased readability, we write 
ELQs as ℰℒ concepts.

YAGO Benchmarks

Our first set of benchmarks is based on the YAGO 4 knowledge base, which com­
bines the concept and role names of schema.org with data from Wikidata [TWS20]. 
The ontology part of YAGO 4 consists of concept name inclusions 𝐴 ⊑ 𝐵, as well as 
domain and range restrictions. We used the smallest version of YAGO 4, containing 
only individuals that have an English Wikipedia entry. This version still contains 
over 40 million assertions. To speed up processing and the generation of the bench­
marks, we first extracted a fragment of 12 million assertions that focuses on famous 
people and movies5. From this fragment, we generated a series of benchmarks of 
varying difficulty by selecting positive and negative examples as follows.

First, we selected target queries. For 𝑛 with 4 ≤ 𝑛 ≤ 9 we used

𝐶𝑛 = ∃actor.
𝑛−2
�
𝑖=1

∃𝑟𝑖.⊤

where each 𝑟𝑖 is a role name that is a property of actors in YAGO 4, like alumniOf,
award, or spouse. Note that the ℰℒ concept 𝐶𝑛 uses 𝑛 variables if represented as an 
ELQ. Then, based on a given sample size, we selected positive examples for 𝐶𝑛 by 
querying the YAGO 4 fragment with 𝐶𝑛, and randomly selecting elements from the 
answers. For selecting negative examples, we needed to select non-answers of 𝐶𝑛
in YAGO 4. To select negative examples that are also actors, but do not have all the 
properties required by 𝐶𝑛, we queried YAGO 4 with generalizations of 𝐶𝑛. To ensure 
that we obtain enough negative examples, we constructed these generalizations 

4The reported running times were obtained on a 2021 MacBook Pro with M1 Pro Chip and 32 GB 
RAM.

5More precisely: the extracted fragment consists of all assertions that contain only individuals that 
can be reached in two steps in the underlying graph of YAGO 4 from a list of ∼2000 famous people.
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Figure 6.5: The running times of SPELL and ELTL in the YAGO benchmarks.

by first constructing the frontier of 𝐶𝑛 (see Definition 4.13), and then dropping 
some immediate successors of the root in the resulting queries. The smallest fitting 
query of the positive and negative examples selected for 𝐶𝑛 often has 𝑛 variables as 
a result of this.

Example 6.30. For 𝑛 = 4, positive examples are selected from the answers to the 
concept query

𝐶4 = ∃actor.�∃alumniOf.⊤ ⊓ ∃award.⊤�

and negative examples are selected from the answers to the concept queries

∃actor.∃alumniOf.⊤ and ∃actor.∃award.⊤.

We generated benchmarks by selecting 40, 80, 120, 160, 200, and 240 examples 
for each target query size 𝑛 with 4 ≤ 𝑛 ≤ 9.

The running times of SPELL and ELTL on these benchmarks, that is, the time 
to find a fitting concept query, are displayed in Figure 6.5. The dark red area 
indicates that the execution of ELTL was aborted after a timeout of 3600 s. Note that 
the running time axis is logarithmic. The running times of both systems behaves 
similarly, in that the sample size appears to have only little influence on the running 
time, while the number of variables of the smallest fitting query has an exponential 
influence on the running time. However, SPELL is approximately 1.5 orders of 
magnitude faster than ELTL in finding a fitting query. Specifically for 𝑛 = 8, SPELL 
is able to find a fitting query in around 100 s while ELTL takes over 3600 s. This 
indicates in particular that SPELL can handle larger target queries.
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Table 6.1: The target concepts and sample sizes of the OWL2Bench benchmarks.

 Target concept query  Sample size 

 o2b-1 UGC ⊓ ∃isTaughtBy.(Man ⊓ ∃likes.Music)  183 
 o2b-2 UGC ⊓ ∃isTaughtBy.(Woman ⊓ ∃sameHomeTown.Student)  238 
 o2b-3 UGC ⊓ ∃isTaughtBy.(Woman ⊓ ∃assistantProfessorOf.⊤ ⊓ ∃isCrazyAbout.⊤)  234 
 o2b-4 Woman ⊓ ∃teachesCourse.UGC  200 
 o2b-5 Woman ⊓ ∃teachesCourse.UGC ⊓ ∃dislikes.⊤  200 
 o2b-6 Woman ⊓ ∃teachesCourse.UGC ⊓ ∃dislikes.⊤ ⊓ ∃assistantProfessorOf.⊤  145 

Table 6.2: The OWL2Bench benchmark running times in seconds, TO: > 3600s

 o2b-1  o2b-2  o2b-3  o2b-4  o2b-5  o2b-6 

 ELTL  TO  TO  274  580  28  152 
 SPELL < 1 < 1 < 1 < 1 < 1 < 1

OWL2Bench Benchmarks

In a second set of benchmarks, we aimed to complement the first benchmarks with 
ones that use more features of ontologies. For this, we created six benchmarks 
based on the OWL2Bench ontology. Originally, OWL2Bench is a benchmark for 
ontology-mediated querying that combines an ABox generator with a handcrafted 
ontology which extends the University Ontology Benchmark [SBM20; Zho+13]. 
The ontology of OWL2Bench is formulated in the OWL 2 EL profile. We extracted 
its ℰℒℋ𝑟 fragment which uses all aspects of ℰℒℋ𝑟 and comprises 142 concept names, 
83 role names, and 173 concept inclusions. We then generated a matching ABox by 
running the OWL2Bench generator for one university.

From this ABox and ontology we generated benchmarks using a similar process 
as for the YAGO knowledge base, but using six hand-designed ELQs as target 
queries and fixed sample sizes instead of the 𝐶𝑛 concepts. Table 6.1 shows the target 
queries and the samples sizes of the six benchmarks. Again, positive examples were 
selected by querying with the target query and negative examples were obtained 
by querying with generalizations of the target query.

The running times of SPELL and ELTL on the six OWL2Bench benchmarks are 
displayed in Table 6.2. ELTL was aborted after a timeout of 3600 s in two cases. 
The difference in running times observed in the YAGO benchmarks is even more 
pronounced here, with SPELL returning a fitting ELQ almost instantaneously in all 
cases. Unfortunately, ELTL crashes immediately on these benchmarks unless the 
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option useMinimizer is switched off, which is enabled for all other benchmarks. We 
thus ran ELTL without useMinimizer, which might impact its performance.

Synthetic Benchmarks

In order to better understand the results we have observed so far, we hypothesized 
that SPELL and ELTL have different strengths and weaknesses based on the un­
derlying fitting algorithms. Based on the results of the YAGO and OWL2Bench 
benchmarks, we anticipated that the performance of bounded fitting as imple­
mented in SPELL would be most affected by the number of variables in the target 
query, whereas the performance of the refinement-based search implemented in 
ELTL would be most affected by the length of specialization sequences from ⊤, where 
a specialization sequence is an inverse generalization sequence (see Definition 4.33).

More formally, the depth of an ℰℒ concept query 𝐶 is the length 𝑘 of a sequence 
𝐶1, … , 𝐶𝑘 with 𝐶1 = ⊤, 𝐶𝑘 = 𝐶, and for all 𝑖,

1. ∅ ⊧ 𝐶𝑖+1 ⊑ 𝐶𝑖, and

2. for all 𝐷 with ∅ ⊧ 𝐶𝑖+1 ⊑ 𝐷 and ∅ ⊧ 𝐷 ⊑ 𝐶𝑖, either ∅ ⊧ 𝐶𝑖+1 ≡ 𝐷 or 
∅ ⊧ 𝐷 ≡ 𝐶𝑖.

Or in other words, 𝐶𝑖+1 is a downward neighbor of 𝐶𝑖. The depth of a concept 
is unique and does not depend on the specific sequence [Kri18a]. It is also an 
orthogonal parameter to the number of variables in a query: We will see shortly 
that there are queries of high depth with few variables and queries of low depth 
with many variables.

To investigate our hypothesis, we generated synthetic benchmarks, in which we 
varied the number of variables and the depth of the target query systematically. 
Target ELQs of the first class are called 𝑘-paths and are of the form

∃𝑟𝑘.⊤

for 𝑘 ≥ 1. These are expected to be difficult to learn for bounded fitting when the 
number of variables 𝑘 + 1 becomes large, but easy to learn for refinement-based 
approaches as the depth of ∃𝑟𝑘.⊤ is only 𝑘. Target ELQs of the second class are 
called 𝑘-1-conj and are of the form

∃𝑟.
𝑘

�
𝑖=1

𝐴𝑖

for 𝑘 ≥ 1. These have only 2 variables but depth 2𝑘. Target ELQs of the third class 
are called 𝑘-2-conj and are of the form

∃𝑟.∃𝑟.
𝑘

�
𝑖=1

𝐴𝑖
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Table 6.3: The running times on the synthetic benchmarks in seconds, TO: > 600s

𝑘-path 𝑘-1-conj 𝑘-2-conj
𝑘  ELTL  SPELL  ELTL  SPELL  ELTL  SPELL 

 4  1  < 1  1  < 1  1  < 1 
 5  1  < 1  1  < 1  4  < 1 
 6  1  < 1  2  < 1  394  < 1 
 7  1  < 1  4  < 1  TO  < 1 
 8  1  < 1  20  < 1  TO  < 1 
 9  1  < 1  124  < 1  TO  < 1 
 10  1  < 1  TO  < 1  TO  < 1 
 11  1  3  TO  < 1  TO  < 1 
 12  1  26  TO  < 1  TO  < 1 
 13  1  26  TO  < 1  TO  < 1 
 14  1  30  TO  < 1  TO  < 1 
 15  1  38  TO  < 1  TO  < 1 
 16  1  68  TO  < 1  TO  < 1 
 17  1  152  TO  < 1  TO  < 1 
 18  1  TO  TO  < 1  TO  < 1 

for 𝑘 ≥ 1 and even have depth 22𝑘 [Kri21]. The last two classes should be difficult 
to learn for refinement-based algorithms when 𝑘 gets large, but easy for SPELL 
due to the low number of variables. For each of these classes and for all 𝑘 with 
4 ≤ 𝑘 ≤ 18, we generate a benchmark consisting of a single positive and a single 
negative example, which are the canonical ABoxes of the target ELQ and the single 
element of its frontier under the empty ontology.

Table 6.3 shows the running times of SPELL and ELTL on these benchmarks. ELTL 
quickly finds all 𝑘-paths, but the running time also increases quickly with increasing 
𝑘 on the 𝑘-1-conj and 𝑘-2-conj benchmarks. For SPELL, the situation is reversed, the 
𝑘-1-conj and 𝑘-2-conj benchmarks are solved quickly, but its running time increases 
on the longer 𝑘-paths benchmarks, due to the size of the SAT encoding.

Generalization Benchmarks

In Section 6.4 we have shown that SPELL is a sample-efficient PAC learning algo­
rithm. In an initial set of experiments, we wanted to see if this theoretical guarantee 
means that in practical benchmarks, SPELL is better able to generalize from a sample 
than ELTL. For this, we again used the YAGO 4 knowledge base, the target query 
𝐶6 constructed as described above, and defined a uniform probability distribution 
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Table 6.4: Median accuracies on the generalization benchmarks

 Accuracy
 Sample size  ELTL  SPELL

 5  0.77  0.80
 10  0.78  0.81
 15  0.85  0.84
 20  0.85  0.85
 25  0.86  0.86
 30  0.89  0.86
 35  0.90  0.89
 40  0.96  0.97
 45  0.96  0.98
 50  0.96  0.98
 55  0.96  0.98
 60  0.98  0.98
 65  0.98  0.98
 70  0.98  0.98
 75  0.98  0.98

over all answers to the ELQ ∃actor.⊤ in the YAGO 4 knowledge base. For each 𝑘
with 1 ≤ 𝑘 ≤ 15 we then generated 20 benchmarks by independently drawing 𝑘 ⋅ 5
examples from the distribution and labeling them according to the target query. 
Instead of running time, we measured the accuracy of the queries that ELTL and 
SPELL return, with regard to the probability distribution. The median accuracies 
of the 20 results for each sample size are listed in Table 6.4.

As expected, fitting queries returned by SPELL generalize well to unseen exam­
ples, even when the number of training examples is small. To our surprise, ELTL 
exhibits the same characteristics. This may be because some heuristics of ELTL 
prefer fittings of smaller size, which might make ELTL an Occam algorithm and 
thus a sample-efficient PAC learning algorithm. It would be interesting to carry out 
more extensive experiments on this aspect, to determine if ELTL and SPELL have 
similar ability to generalize in all cases, or not.

6.6 Discussion

In this chapter, we investigated the PAC learnability of queries and presented SPELL, 
a sample-efficient PAC learning algorithm for ELQs under ℰℒℋ𝑟 ontologies. The 
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PAC learnability results can be summarized as follows.

• ELQs, ELIQs and CQs are not polynomial time PAC learnable and therefore 
also not polynomial time learnable using only equivalence queries, unless 
NP = RP (Theorem 6.7).

• Bounded fitting is a sample-efficient PAC learning algorithm for all query 
classes and all ontology languages (Theorem 6.10).

• Other interesting fitting algorithms, that produce most-general, most-specific 
or minimum quantifier depth fitting are not sample-efficient PAC learners 
(Theorems 6.18, 6.19 and 6.23).

Most importantly, the first result implies that for the polynomial time learnability 
results in Chapter 5, both membership and equivalence queries are necessary.

It is interesting to note that while the sample complexity of bounded fitting 
does not depend on the query class or ontology language (just the encoding of 
queries into an alphabet), its running time depends on both, as Theorem 6.26 and 
Theorem 6.25 demonstrate. For SPELL, we chose the advantageous combination 
of ELQs and ℰℒℋ𝑟 ontologies, to which we can apply Lemma 6.27 to remove the 
ontology.

Polynomial Query Learnability of ELQs. ELQs are not polynomial time learnable 
using only equivalence queries unless P = NP [FJL21a], but we do not know 
whether ELQs are polynomial query learnable using only equivalence queries. 
We conjecture that ELQs are polynomial query learnable using only equivalence 
queries, and that similar techniques as those in the proof of Theorem 6.10 can be 
used to show this. A result to the contrary would be surprising, due to the strong 
connection of PAC learning and exact learning.

On Dualities, Frontiers, and Unique Characterizations. In Section 6.3 we used 
duality constructions to obtain data examples with certain properties. It is interesting 
to observe that, in the setting without ontologies, dualities, frontiers and unique 
characterizations are closely connected [tCD22]. The connection between frontiers 
and unique characterizations was already discussed in Chapter 4. If 𝑞(𝑥) is a CQ, 
and ({(𝒜𝑞, 𝑥)}, 𝐹) is a homomorphism duality relative to 𝑞, then taking (𝒜𝑞, 𝑥) as a 
positive example, and 𝐹 as negative examples, results in a unique characterization 
of 𝑞. To see this, let 𝑝 be a CQ that fits these examples. Since (𝒜𝑞, 𝑥) is a positive 
example, it must be that 𝑞 ⊆∅ 𝑝. Since all elements of 𝐹 are negative examples, it 
follows from Definition 6.14 that 𝑝 ⊆∅ 𝑞. Similarly, it can be shown that the set 
{(𝒜𝑞 × ℬ, 𝑥 ⊗ 𝑏) ∣ (ℬ, 𝑏) ∈ 𝐹} is a CQ-frontier of 𝑞. Analogous connections can be 
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shown for ℰℒ simulation dualities, ELQs and ELQ-frontiers. This connection could 
perhaps be used in learning algorithms. However, we are not aware of any results 
on the existence of dualities under ontologies.

Future Directions for SPELL

While many practical queries can be expressed as ELQs (or ℰℒ concepts), there 
are some non-relational features that often occur in concept learning benchmarks 
like SML-Bench, but that are not yet supported by SPELL. These are nominals, 
allowing queries to reference specific individual names in the ABox, and what OWL 
calls datatype properties, allowing individuals to possess, for example, numerical 
properties like age. Therefore, in order to make SPELL more useful in practice, it 
could be extended to learn queries that contain nominals and datatype properties. 
This requires efficient encoding of the numerical properties into SAT. Perhaps some 
inspiration for such an encoding can be taken from the techniques to learn datatype 
properties implemented in DL-Learner [BLW16].

It could also provide useful to investigate settings in which input examples may 
be labeled erroneously or according to a target query formulated in a different 
language than the query to be learned. In both cases, one has to admit non-perfect 
fittings, for which the optimization features of SAT solvers and Max-SAT solvers 
seem promising for efficient implementation.

Additionally, more experiments are needed to better compare the ability of SPELL 
to generalize from examples to other query and concept learning systems.

As is, the support of ontology languages in SPELL is limited by Lemma 6.27, 
since the current implementation relies on the construction of compact universal 
models of ontologies. SPELL could be modified to use initial segments of (infinite) 
universal models 𝒰𝒜,𝒪 instead, to correctly handle more query classes and ontology 
languages. These initial segments are up to exponential in size and therefore would 
result in SAT encodings of exponential size. This, in general, is unavoidable as 
the size-restricted fitting problem for ELIQs under ℰℒℐ ontologies is ExpTime-
complete [tCat+23c], but it might not be an issue for ontologies that are used in 
practice, due to the small size of their universal model.

With this modification, or under the empty ontology, the SAT encoding used 
by SPELL could be extended to learn ELIQs, 𝒜ℒ𝒞 concepts, or CQs of bounded 
treewidth (since the size-restricted fitting problem for CQs of bounded treewidth 
is in NP). Extension to all CQs is not directly possible, as the size-restricted fitting 
problem for CQs is Σ𝑝

2  complete, as mentioned in Theorem 6.25. Hence, an ASP 
solver might be more suitable to implement bounded fitting for CQs.
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Chapter 7

Conclusion

Algorithms that learn query or concept from data examples under DL ontologies 
can support various query and ontology engineering tasks. To be usable in prac­
tice, learning algorithms have to be efficient in some sense, either by running in 
polynomial time, or by only requiring a polynomial number of examples. In this 
thesis, we formalized this notion of learning algorithm for queries under ontologies 
in Angluin’s exact learning model and Valiant’s PAC learning model, and aimed 
to determine which query classes are efficiently learnable under which ontology 
languages.

This thesis is the first investigation into this question, but builds upon work in 
the related areas of learning queries without ontologies, learning DL concepts, and 
learning ontologies.

We focused on ontologies written in DLs of the ℰℒ and DL-Lite families, and 
on the query classes of CQs, ELIQs (acyclic and rooted unary CQs) and ELQs 
(tree-shaped and rooted unary CQs). Other than efficiency, we were also interested 
in the kinds of exact learning queries that are necessary to learn a given combination 
of query class and ontology language. As mentioned before, ELIQs and ELQs can 
also be viewed as ℰℒℐ concepts and ℰℒ concepts, respectively. This means that our 
results also apply to the learning of concepts under ontology.

In Chapter 4, we looked at exact learning algorithms that only use membership 
queries. The existing approach to learn ELIQs under the empty ontology can be 
extended to show that ELIQs are polynomial time learnable under DL-Liteℋℱ−

core
ontologies using only membership queries. This requires significant groundwork, 
namely the existence of frontiers of ELIQs under ontologies and a bound on the 
length of generalization sequences under ontologies. Additionally, we showed that 
polynomial time learning with only membership queries fails for many extensions 
of DL-Liteℋℱ−

core  and most importantly if ontologies contain conjunctions.
Therefore, in Chapter 5, we considered learning algorithms that use both mem­

bership queries and equivalence queries, and discussed how the algorithms can 
use the counterexamples provided by equivalence queries to make progress. Here, 
extending the known learning algorithm for CQs under the empty ontology that 
uses membership queries and equivalence queries to the case with ontologies is 
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difficult. This is mainly due to existential restrictions in the ontology that imply the 
existence of anonymous individuals. We first showed that ELIQs are polynomial 
time learnable under DL-Liteℋℱ−

core  ontologies using guided generalizations to update 
hypotheses with counterexamples. Then, we moved on to ℰℒ𝑟 ontologies and used 
compact models to show that chordal and symmetry-free CQs, as well as symmetry-
free ELIQs and ELQs are polynomial time learnable. This required generalizing 
several of our techniques for disconnected CQs. We also argued that even simple 
queries are not polynomial time learnable under ℰℒℐ ontologies, and that ℰℒ𝒰
queries are likely also not polynomial time learnable.

In Chapter 6 we considered PAC learning of queries as it is closely related to 
learning with only equivalence queries. We first reviewed that (with or without 
ontologies) already simple query classes are not polynomial time PAC learnable, 
and therefore focussed on sample-efficient PAC learning. We showed that while sev­
eral fitting algorithms are not sample-efficient, bounded fitting is sample-efficient, 
using a classic argument connecting PAC learning with Occam algorithms. We 
then presented SPELL, an implementation of bounded fitting for ELQs and ℰℒℋ𝑟

ontologies, and compared it to an existing implementation of an ELQ learner, with 
generally favorable results.

Thus, our results successfully begin to provide answers to the main question

Which query classes are efficiently learnable under which ontology languages?

However, the answers are not yet complete, as major questions remain open:

1. Are ELIQs polynomial time learnable under ℰℒ ontologies?

2. Are CQs polynomial time learnable under DL-Lite ontologies?

The techniques we used formulate learning algorithms in this thesis fail to answer 
these questions. This is mainly because the task of updating hypotheses with 
counterexamples from equivalence queries is difficult to tackle and must deal 
with complicated interactions of query and ontology. Answering these questions 
negatively is also especially difficult. No proof in the style of Theorem 5.50, or 
reduction from another hard learning problem, has been found yet. Answering 
these questions either positively or negatively will require the development of new 
techniques that give new insight into the behavior of queries under ontologies.

So far, we have limited the investigation into the learnability of queries under 
ontologies to DL ontologies and CQs that use unary and binary relations only. 
Learning queries that use relations of higher arity is a natural step forward. Under 
the empty ontology, the results concerning CQ learning hold for relations of any 
arity [tCD22]. However, DL ontologies can only express knowledge about unary 
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and binary relations. So, to drop this restriction, it becomes necessary to adopt 
a different family of ontology languages that can use higher-arity relations. One 
possible choice are existential rules (also known as tuple generating dependencies). 
Taking this step would raise many new questions about the learnability of queries 
under ontologies. It is not at all clear whether the results of this thesis transfer to 
the higher-arity case.

We look forward to the future developments in this research area and the insights 
it may provide into queries, ontologies and knowledge representation. We hope 
that it can serve a basis for exciting applications.
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