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Abstract

We study extensions of description logics from the widely
used EL family with operators that make it possible to speak
about different levels of abstraction. We analyze the com-
putational complexity of reasoning and show that often, this
complexity is significantly lower than in the corresponding
extension of the more expressive description logic ALC. By
slightly varying the semantics, we also obtain a case that ad-
mits reasoning in polynomial time.

1 Introduction

Knowledge representation with ontologies often involves
concepts that are situated at different levels of abstraction or,
equivalently, at different levels of granularity. For example,
the widely known medical ontology SNOMED CT contains
the concepts Arm, Hand, Finger, Phalanx, Osteocyte, and
Mitochondrion which may reasonably be viewed as all be-
longing to different, increasingly more fine-grained levels of
abstraction. Existing ontology languages, however, do not
provide any explicit support for representing and interrelat-
ing different abstraction levels.

Recently, this shortcoming has led to the proposal of a
scheme for extending description logics (DLs) with opera-
tors that make it possible to explicitly speak about different
abstraction levels and their interaction (Lutz and Schulze
2023). The main features of this scheme are as follows.
Each of the (finitely many) abstraction levels is associated
with a classical DL interpretation. A refinement function
associates objects on more coarse-grained levels with an en-
semble of objects on more fine-grained levels. Such an en-
semble is simply a tuple of objects that the refined object
decomposes into. This may for instance be in the sense of
mereological parts, but the scheme is by no means restricted
to mereology.

Operators based on conjunctive queries (CQs) make it
possible to describe how objects relate to their refining en-
sembles. These operators come in two flavours. A refine-
ment operator expresses that every object of a certain kind
refines into a certain kind of ensemble. For example, the
statement

L2:qA refines L1:Aircraft,
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Figure 1: The complexity of satisfiability in abstraction DLs.

where q denotes the conjunctive query

qA = Fuselage(x1) ∧Wings(x2) ∧ Stabilizer(x3)∧
carries(x2, x1) ∧ carries(x1, x3),

expresses that every instance of Aircraft on the more coarse-
grained abstraction levelL1 decomposes into an ensemble of
three objects on the more fine-grained level L2, as described
by qA. Conversely, an abstraction operator expresses that
for every ensemble of a certain kind, there is an object that
refines into it. Reusing the query qA from above, for exam-
ple, it would be reasonable to also state

L1:Aircraft abstracts L2:qA

expressing that every ensemble that consists of a fuselage, a
set of wings, and a stabilizer, related as stated by qA, forms
an aircraft. While the operators illustrated above speak
about concepts such as Aircraft that are refined or abstracted,
there are analogous operators also for roles (that is, binary
relations) such as carries.

The DLs with abstraction and refinement proposed
in (Lutz and Schulze 2023) are based on the expressive de-
scription logics ALC and ALCI. In this paper, we replace
ALC with important members of the EL family of descrip-
tion logics, in particular with the eponymous EL and its ex-
tension ELHr with role hierarchies and range restrictions.
These DLs play an important role in practice for at least
three reasons. First, they are among very few description
logics that admit reasoning in polynomial time. Second,
a mild extension of ELHr was standardized by the W3C
as the EL profile of the widely used OWL 2 ontology lan-
guage (Motik et al. 2009). And third, many prominent
large-scale ontologies such as SNOMED CT are formulated
in ELHr or mild extensions thereof.



Two guiding questions for our investigation are: (1) Are
the resulting DLs with abstraction and refinement computa-
tionally more well-behaved than those based on ALC? And
(2) Can we even identify useful cases where reasoning is
possible in polynomial time? We remark that polynomial
time cannot be expected in the presence of abstraction op-
erators because, whenever these operators are present, then
there is an obvious polynomial time reduction from the ho-
momorphism problem on directed graphs; this implies that
reasoning (concept satisfiability, to be precise) is at least
NP-hard. Refinement operators, however, do not preclude
polynomial time reasoning up-front.

We first prove that the extension ELHabs
r of ELHr with

abstraction and refinement operators for both concepts and
roles still enjoys the existence of universal models (defined
in terms of homomorphisms). This is important because
the existence of universal models makes a crucial differ-
ence when designing algorithms, and in fact universal mod-
els underlie all important polynomial time reasoning algo-
rithms for description logics. To construct universal models,
we give a non-trivial chase procedure tailored specifically
to ELHabs

r . The algorithms behind our upper complexity
bounds then all rely on universal models.

Our findings on the complexity of satisfiability in ELHabs
r

and various fragments thereof are summarized in Figure 1.
There, ‘cr’ stands for concept refinement operators, ‘ca’
for concept abstraction, and likewise for ‘rr’ and ‘ra’ and
roles in place of concepts. We remark that subsumption and
(un)satisfiability can be reduced to one another in polyno-
mial time in all considered logics. All stated results are com-
pleteness results with the lower bounds holding already for
(the respective fragments of) ELabs and the upper bounds
applying to ELHabs

r . The results shown in gray are from
(Lutz and Schulze 2023).

Full ELHabs
r and ELabs turn out to be computationally

no more well-behaved than in the case where ALC is used
as the base logic: satisfiability is 2EXPTIME-complete in
both cases. This still holds when only role refinement is
admitted. The picture changes, however, in the important
case where only concept-based operators are used, but no
role-based ones. With only concept refinement, the com-
plexity reduces to CONP which we consider a significant
improvement as it enables the use of SAT solvers to decide
satisfiability. With both concept refinement and abstraction,
satisfiability is PSPACE-complete which is still significantly
lower than 2EXPTIME-completeness in the case whereALC
is used as the base logic.

To attain polynomial time, we change the semantics: in-
stead of tuples of objects, ensembles are now sets of objects.
While this has a subtle impact on modeling (see Example 4
in the paper), it is still a very reasonable semantics. Under
this semantics, we indeed achieve polynomial time reason-
ing when only concept and role refinement is admitted.

To comply with space restrictions, proof details are pro-
vided in the appendix.

Related Work. As already explained, we adopt the
framework of (Lutz and Schulze 2023). It is loosely related

to description logics of context (Klarman and Gutiérrez-
Basulto 2016) and to other multi-dimensional DLs (Wolter
and Zakharyaschev 1999). Granularity has also received
attention in foundational ontologies, see e.g. (Bittner and
Smith 2003). There are other approaches to combine de-
scription logic and abstraction/granularity, but from very dif-
ferent perspectives and in technically very different ways,
see for example (Calegari and Ciucci 2010; Cima et al.
2022; Glimm et al. 2017; Lisi and Mencar 2018).

2 Preliminaries
Fix countably infinite sets C and R of concept names and
role names. EL-concepts C,D take the form C,D ::= > |
A | C uD | ∃r.C where A ranges over concept names and
r over role names. An ELHr-ontology is a finite set O of
concept inclusion (CIs) C v D with C and D EL-concepts,
role inclusions r v s with r, s ∈ R, and range restrictions
> v ∀r.C with r ∈ R and C an EL-concept. We say O
is an EL-ontology if it contains no role inclusions and range
restrictions.

An interpretation is a pair I = (∆I , ·I) with ∆I a non-
empty set (the domain) and ·I an interpretation function that
maps every concept name A ∈ C to a set AI ⊆ ∆I and ev-
ery role name r ∈ R to a binary relation rI ⊆ ∆I ×∆I .
The interpretation function is extended to compound con-
cepts by setting >I = ∆I , (C1 u C2)I = CI1 ∩ CI2 , and
(∃r.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}. An inter-
pretation I satisfies a concept inclusion C v D if CI ⊆ DI
and likewise for role inclusions; it satisfies a range restric-
tion > v ∀r.C if (d, e) ∈ rI implies e ∈ CI . We say that I
is a model of an ontology O if I satisfies all inclusions and
range restrictions in O. We write O |= r v s if every model
of O satisfies r v s. One can decide whether O |= r v s in
polynomial time by computing the reflexive-transitive clo-
sure of the role inclusions in O.

A conjunctive query (CQ) q(x̄) takes the form
q(x̄)← ϕ(x̄) with x̄ a tuple of variables and ϕ a conjunction
of concept atoms C(x) and role atoms r(x, y) where C is a
(possibly compound) EL-concept, r is a role name, and x, y
are variables from x̄. We require that every variable from x̄
occurs in some atom of q, but may omit this atom in writing
in case it is >(x). We may write α ∈ q to indicate that α
is an atom in ϕ. With var(q), we denote the variables in ϕ.
The arity of q is the length of x̄. We say that q is connected
if the undirected graph with node set var(q) and edge set
{{v, v′} | r(v, v′) ∈ q for any r ∈ R} is. Note that CQs as
defined here do not admit quantified variables. The reason is
that admitting such variables results in DLs with abstraction
and refinement to become undecidable, even when based on
EL (Lutz and Schulze 2023). In examples, we shall often
write only ϕ(x̄) in place of q(x̄)← ϕ(x̄). We then choose a
variable naming scheme such as x1, x2, x3 that makes clear
the order of the variables in x̄ (and we then assume that there
are no repeated variables in x̄).

Let q(x̄) be a CQ and I an interpretation. A mapping
h : x̄ → ∆I is a homomorphism from q to I if C(x) ∈ q
implies h(x) ∈ CI and r(x, y) ∈ q implies (h(x), h(y)) ∈
rI . A tuple d̄ ∈ (∆I)|x̄| is an answer to q on I if there is a



homomorphism h from q to I with h(x̄) = d̄. We use q(I)
to denote the set of all answers to q on I.

For any syntactic object O such as an ontology or a con-
cept, we use ||O|| to denote the size ofO, that is, the number
of symbols needed to write O using a suitable alphabet.

3 DLs with Abstraction and Refinement
We extend ELHr to the DL ELHabs

r that supports abstrac-
tion and refinement, following (Lutz and Schulze 2023).
Fix a countable set A of abstraction levels. An ELHabs

r -
ontology is a finite set of statements of the following form:

• labeled concept inclusions C vL D, role inclusions
r vL s, and range restrictions > vL ∀r, C,

• concept refinements L:q(x̄) refines L′:C,

• concept abstractions L′:C abstracts L:q(x̄),

• role refinements L:q(x̄, ȳ) refines L′:qr(x, y),

• role abstractions L′:r abstracts L:q(x̄, ȳ)

where L,L′ range over abstraction levels from A, C,D over
EL-concepts, r over role names, q over conjunctive
queries, and qr over conjunctive queries of the form
C1(x) ∧ r(x, y) ∧ C2(y). In concept and role abstractions,
we additionally require the CQ q to be connected.

We also consider various fragments of ELHabs
r . With

ELHabs
r [cr,ca], for example, we mean the fragment of

ELHabs
r that admits only concept refinement and concept

abstraction, but neither role refinement nor role abstraction
(which are identified by rr and ra). As in the base case, we
dropH if no role inclusions are admitted and likewise for ·r
and range restrictions.

We next define the semantics of ELHabs
r , based on A-

interpretations that include one traditional DL interpreta-
tion for each abstraction level. Formally, an A-interpretation
takes the form I = (AI ,≺, (IL)L∈AI , ρ), where

• AI ⊆ A is the set of relevant abstraction levels;

• ≺ ⊆ AI ×AI is such that the directed graph (AI ,≺) is
a tree;1 intuitively, L ≺ L′ means that L is less abstract
than L′ or, in other words, that the modeling granularity
of L is finer than that of L′;

• (IL)L∈AI is a collection of interpretations IL, one for
every L ∈ AI , with pairwise disjoint domains; we use
L(d) to denote the unique L ∈ AI with d ∈ ∆IL ;

• ρ is the refinement function, a partial function that asso-
ciates pairs (d, L) ∈ ∆I ×AI such that L ≺ L(d) with
an L-ensemble ρ(d, L), that is, with a non-empty tuple
over ∆IL . We want every object to participate in only
one ensemble and thus require that

(∗) for all d ∈ ∆I and L ∈ AI , there is at most one e ∈
∆IL such that d occurs in ρ(e, L(d)).

For readability, we may write ρL(d) in place of ρ(d, L).

An A-interpretation I = (AI ,≺, (IL)L∈AI , ρ) satisfies

1Dropping this restriction results in undecidability (Lutz and
Schulze 2023).

• a labeled concept inclusion C vL D if IL satisfies C v
D, and likewise for role inclusions and range restrictions;

• L:q(x̄) refines L′:C if L ≺ L′ and for all d ∈ CIL′ , there
is an ē ∈ q(IL) such that ρL(d) = ē;

• L′:C abstracts L:q(x̄) if L ≺ L′ and for all ē ∈ q(IL),
there is a d ∈ CIL′ such that ρL(d) = ē;

• L:q(x̄, ȳ) refines L′:qr(x, y) if L ≺ L′ and for all
(d1, d2) ∈ qr(IL′), there is an (ē1, ē2) ∈ q(IL) such that
ρL(d1) = ē1 and ρL(d2) = ē2;

• L′:r abstracts L:q(x̄, ȳ) if L ≺ L′ and for all (ē1, ē2) ∈
q(IL), there is a (d1, d2) ∈ rIL′ such that ρL(d1) = ē1

and ρL(d2) = ē2.

An A-interpretation is a model of an ELHabs
r -ontology if it

satisfies all inclusions, refinements, etc in it.
Example 1. We consider the domain of actions. Assume
that there is a MealPrep action that refines into subactions:
L2:qM refines L1:MealPrep where

qM = Buying(x1) ∧ Cooking(x2) ∧ precedes(x1, x2)

We might have budget-friendly meal preparation and buying
actions:

BudgetMealPrep vL1 MealPrep

BudgetBuying vL2
Buying

BudgetBuying u ∃bought.Expensive vL2
⊥

A budget-friendly meal preparation requires buying non-
expensive ingredients: L2:qB refines L1:BudgetMealPrep
where

qB(x1, x2) = BudgetBuying(x1).

We are interested in two reasoning problems: concept sat-
isfiability and concept subsumption. Concept satisfiability
means to decide, given an ontology O, an EL-concept C,
and an abstraction level L ∈ A, whether there is a model I
ofO such that CIL 6= ∅. We then say that C is L-satisfiable
w.r.t. O and call I an L-model of C and O.

For concept subsumption, we are given an ontology O,
two concepts C and D, and an abstraction level L ∈ A, and
are asked to decide whether CIL ⊆ DIL in every model I
of O. If this is the case we say that C is L-subsumed by D
w.r.t. O and write O |= C vL D.

We remark that the ⊥-concept, interpreted as ⊥I = ∅ in
every interpretation I, can be expressed in ELabs[cr] at the
expense of introducing fresh symbols: a CI C vL ⊥ can be
simulated by

L′:A(x) refines L:C L′:r(x1, x2) refines L:C

where A, r, and L are a fresh concept name, role name,
and abstraction level. This is because the two refinements
require ensembles of different length. W.l.o.g., we thus use
the ⊥-concept whenever convenient.

Using ⊥, (un)satisfiability and subsumption are easily in-
terreducible in polynomial time. In fact, it is not hard to see
that a concept C is L-unsatisfiable w.r.t. an ontology O iff
C is L-subsumed by some fresh concept name A w.r.t. O.
Conversely, C is L-subsumed by D w.r.t. O iff C is L-
unsatisfiable w.r.t. O ∪ {C uD v ⊥}. We thus state all our



results in terms of satisfiability and assume that it is under-
stood that (up to complementation) they also apply to sub-
sumption.

4 Upper Bounds
We prove upper complexity bounds for satisfiability in
ELHabs

r . A 2EXPTIME upper bound for full ELHabs
r

follows from the results in (Lutz and Schulze 2023).
We thus concentrate on the fragments ELHabs

r [cr] and
ELHabs

r [cr, ca].

4.1 Simplifying Assumptions
We discuss some assumptions, all w.l.o.g., made throughout
Section 4. First, we assume that the input ontology O is in
normal form, meaning that:

1. all the CIs in O are of one of the following forms, where
A,A1, . . . , An, B are concept names:

> vL A A1 u · · · uAn vL B
A vL ∃r.B ∃r.A vL B

2. all range restrictions and (concept and role) refinements
and abstractions contain only concept names, but no com-
pound concepts, also inside of CQs.

By introducing new concept and role names, any ELHabs
r

ontology O can be converted into an ontology O′ in nor-
mal form that is a conservative extension of O, i.e., every
model of O′ is also a model of O, and every model of O
can be extended to a model of O′ by appropriately choosing
the interpretations of the concept names that have been in-
troduced during the conversion. The conversion takes only
linear time, see for example (Baader et al. 2005). We fur-
ther assume that the concept C0 whose satisfiability is to be
decided is a concept name, thus not compound. Finally, we
assume that the abstraction level L0 for which satisfiability
is to be decided is the root of the tree GO that is defined by
the abstractions and refinements inO. Let us make the latter
more precise.

We use AO to denote the set of abstraction levels men-
tioned inO and≺O for the smallest relation on AO such that
L ≺O L′ if O contains a concept refinement L:q(x̄) refines
L′:C or a concept abstraction L′:C abstracts L:q(x̄). The
abstraction graph of an ontology O is the directed graph

GO = (AO,≺−1
O ).

Note that by the definition of the semantics, O being satisfi-
able implies that GO is a tree.

Now assume that the abstraction level L0 for which sat-
isfiability is to be decided is not the root of GO, but LR is.
Then GO contains a path LR = L̂1, . . . , L̂k = L0 and we
can extend O with concept refinements L̂i+1:A(x) refines

L̂i:A and L̂k:C0(x) refines L̂k−1:A for 1 ≤ i < k, with
A a fresh concept name, and decide LR-satisfiability of A
w.r.t. the extended ontology.

4.2 Universal Models and The Chase
A crucial property of description logics of the EL family is
the existence of universal models, defined in terms of homo-
morphisms. In particular, universal models are at the basis
of all polynomial time algorithms for description logic rea-
soning that we are aware of. A fundamental observation that
underlies the design of our algorithms is that universal mod-
els also exist for ELHabs

r .
Let Ii = (AIi ,≺i, (IL,i)L∈AIi , ρi) be an A-interpreta-

tion, for i ∈ {1, 2}. A function h : ∆I1 → ∆I2 is a ho-
momorphism from I1 to I2 if the following conditions are
satisfied, for all d, e ∈ ∆I1 :

1. L(d) = L(h(d));

2. ≺1 ⊆ ≺2;

3. d ∈ AI1 implies h(d) ∈ AI2 for all A ∈ C;

4. (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for all r ∈ R;

5. ρ1(d, L) = ē implies ρ2(h(d), L) = h(ē)

where h(ē) is the tuple obtained from ē by applying h
component-wise. Note that this implies AI1 ⊆ AI2 .

Let C0 be an EL-concept, O an ELHabs
r -ontology, and

L0 ∈ A an abstraction level. A model I of O with distin-
guished element d ∈ CI0 , where L(d) = L0, is a univer-
sal L0-model of C0 and O if the following holds: for every
model J of O and every e ∈ CJ0 with L(e) = L0, there
exists a homomorphism h from I to J with h(d) = e. Our
aim is to show the following.

Lemma 1. Let C0 be an EL-concept, O an ELHabs
r -

ontology, and L0 ∈ A. If C0 is L0-satisfiable w.r.t. O, then
there exists a universal L0-model of C0 and O.

Lemma 1 is proved by a somewhat intricate chase proce-
dure. For technical reasons, this chase may construct struc-
tures that do not satisfy all the conditions required of A-
interpretations. The chase does thus not run directly in A-
interpretations, but rather on a weakening that we call inter-
pretation candidates.

Let K be a countably infinite set of constants. A fact is
an expression of the form A(a) or r(a, b) where A is a con-
cept name, r a role name, and a, b are constants. Homomor-
phisms from conjunctive queries to sets of facts are defined
in the expected way. An interpretation candidate is a triple
I = (F, ρ,∼) where

• F is a fact assignment, that is, a function that maps each
abstraction level L ∈ AO to a set of facts F (L). We
use dom(F (L)) to denote the domain of F (L), that is,
dom(F (L)) = {a ∈ K | a is used in a fact in F (L)}.
We demand that the F (L) have pairwise disjoint domains
and may write dom(F ) to denote

⊎
L∈AO dom(FL). We

further use L(a), for any a ∈ dom(F ), to denote the
unique L ∈ AO such that a ∈ dom(F (L));

• ρ is a refinement function, that is, a partial function that as-
sociates pairs (a, L) ∈ dom(F )×AO such thatL ≺ L(a)
with an L-ensemble ρ(a, L), that is, with a non-empty tu-
ple over dom(F (L));



• ∼ is an equivalence relation on the set dom(F ). If we
set a1 ∼ a2, we mean to set ∼ := ∼ ∪ {(a1, a2)} and
add the smallest number of tuples such that ∼ is again an
equivalence relation. We use [a] to denote the equivalence
class of a ∈ dom(F ) w.r.t. ∼.
For readability we may write FL instead of F (L) and

ρL(a) instead of ρ(a, L). Note that ρ, in contrast to the re-
finement function in A-interpretations, allows elements to
be part of multiple ensembles.

Our chase procedure starts from the initial interpretation
candidate I0 = (F 0, ρ0,∼0) for C0, L0, and O where
F 0
L = {A>(aL)} for all L ∈ AO \ {L0}, F 0

L0
= {C0(a0)},

ρ0 is empty, and ∼0 is the identity. It then applies a set of
rules in a fair way, that is, every rule that is applicable will
eventually be applied. The chase may also abort and report
unsatisfiability of the input. We start by giving the rules that
treat inclusions and range restrictions:

R1 if A1(a) ∈ FL, . . . , An(a) ∈ FL, and A1 u · · · u An vL
B ∈ O, then add B(a) to FL;

R2 if a ∈ dom(FL) and > vL A ∈ O, then add A(a) to FL;
R3 if A(a) ∈ FL, A vL ∃r.B ∈ O, then add r(a, b) and

B(b) to FL with b as a fresh constant;
R4 if r(a, b) ∈ FL, A(b) ∈ FL, and ∃r.A vL B ∈ O, then

add B(a) to FL.
R5 if r(a, b) ∈ FL and r vL s ∈ O, then add s(a, b) to FL;
R6 if r(a, b) ∈ FL and > vL ∀r.C ∈ O, then add C(a) to

FL;

Next up are the rules that pertain to concept refinements and
abstractions in O. We may use x ∈ x̄ to express that vari-
able x occurs in the tuple x̄. For a CQ q(x̄) and a tuple of
constants ā with |x̄| = |ā|, we use q(ā) to denote the set
of facts obtained from q by replacing in every atom the i-th
variable in x̄ by the i-th constant in ā, for 1 ≤ i ≤ |ā|.

R7 if A(a) ∈ FL, L′: q(x̄) refines L:A ∈ O, and ρL′(a)
is undefined, then set ρL′(a) = ā for a tuple ā of fresh
constants with |ā| = |x̄|;

R8 if A(a) ∈ FL, L′: q(x̄) refines L:A ∈ O, ρL′(a) is de-
fined, and |x̄| = |ρL′(a)|, then add q(ρL′(a)) to FL′ ; if
|x̄| 6= |ρL′(a)|, then return ‘unsatisfiable’;

R9 if h is a homomorphism from q to FL for any concept
abstraction L′:A abstracts L: q(x̄) ∈ O and there is no
a ∈ dom(FL′) with ρL(a) = h(x̄), then introduce a fresh
constant a and set ρL(a) = h(x̄);

R10 if h is a homomorphism from q to FL for any concept
abstraction L′:A abstracts L: q(x̄) ∈ O and there is an
a ∈ dom(FL′) with ρL(a) = h(x̄), then add A(a) to FL′ .

There are analogous rules for role refinement and role ab-
straction, given in the appendix. We also have rules that
concern overlapping ensembles. Intuitively, overlapping en-
sembles require the identification of elements, but we do not
want to do this in the chase itself to preserve monotonicity,
that is, rule applications should always extend the interpre-
tation candidate. We thus only record the necessary identifi-
cations in the ‘∼’ component of interpretation candidates.

R15 if ρL(a1) = ē1, ρL(a2) = ē2, there are b1 ∈ ē1 and
b2 ∈ ē2 with b1 ∼ b2 and |ē1| 6= |ē2|, then return ‘unsat-
isfiable’;

R16 if there are b1 ∈ ρL(a1) and b2 ∈ ρL(a2) with b1 ∼ b2,
then set a1 ∼ a2;

R17 if a1 ∼ a2, ρL(a1) = ē1, and ρL(a2) = ē2 with |ē1| =
|ē2|, then set ē1[i] ∼ ē2[i] for 1 ≤ i ≤ |ē1|;

R18 if a1 ∼ a2 and fact f ∈ FL contains constant a1, then
add to FL the fact obtained from f by replacing some
occurrence of a1 with a2.

R19 if a1 ∼ a2, ρL(a1) is defined, and ρL(a2) is unde-
fined, then add to FL facts A>(b1), . . . , A>(bn), with
b1, . . . , bn fresh constants and n = |ρL(a1)|, and set
ρL(a2) = (b1, . . . , bn) (where A> is a fresh concept
name).

A chase sequence is a sequence of interpretation candi-
dates I0, I1, . . . such that I0 = (F 0, ρ0,∼0), Ii+1 is ob-
tained from Ii by applying one of the rules defined above.
Every chase sequence I0, I1, . . . gives rise to an interpreta-
tion candidate I∗ = (F ∗, ρ∗,∼∗) in the limit, with F ∗ =⋃
i Fi, ρ

∗ =
⋃
i ρi, and ∼∗=

⋃
i ∼i. We also call I∗ the

result of chasing C0 w.r.t. L0 and O. It can be shown that,
up to isomorphism, all fair chase sequences deliver the same
result.2

The chase is sound and complete in the following sense.

Lemma 2. Let O be an ELHabs
r -ontology in normal form

whose abstraction graph GO is a tree, C0 a concept name,
and L0 an abstraction level. The L0-chase on C0 and O
does not abort if and only if C0 is L0-satisfiable w.r.t. O.

In the proof of the ‘only if’ direction of Lemma 2 (sound-
ness), we start from a non-aborting chase sequence that de-
livers a result I∗ = (F ∗, ρ∗,∼∗), and then construct from I∗

an L0-model I of C0 and O. Intuitively, we apply filtration
to make the equalities recorded in ∼∗ real equalities. This is
achieved by setting I = (AI ,≺, (IL)L∈AI , ρ) where

∆IL = {[a] | a ∈ dom(F ∗L)}
AIL = {[a] | A(a′) ∈ F ∗L and a′ ∈ [a]}
rIL = {([a], [b]) | r(a′, b′) ∈ F ∗L and a′ ∈ [a], b′ ∈ [b]}
ρL = {([a], ([b1] · · · [bn])) | (a′, (b′1 · · · b′n)) ∈ ρ∗L with

a′ ∈ [a], b′i ∈ [bi] for 1 ≤ i ≤ n}.

The remaining components AI and ≺ are defined as AO
and ≺O, respectively. We show in the appendix that I is not
only an L0-model of C0 and O, but even a universal such
model, thus proving Lemma 1.

4.3 ELHabs
r [cr] in CONP

Our aim is to prove the following.

Theorem 1. Satisfiability in ELHabs
r [cr] is in CONP.

2Note that our rule R3 is oblivious in the sense that it may al-
ways add a fresh constant b even if there is already a b′ with r(a, b′)
and B(b′) in FL.



It suffices to find an NP algorithm for unsatisfiability. As-
sume that the concept nameC0, the ELHabs

r [cr]-ontologyO,
and the abstraction level L0 are given as an input, that is, we
want to decide whether C0 is L0-unsatisfiable w.r.t. O. If
the abstraction graph GO of O is not a tree, we directly re-
turn ‘unsatisfiable’. Otherwise, the only remaining way in
which unsatisfiability may arise is that there are two refine-
ment statements that both apply to the same element of a
model, but require ensembles of different length.

Example 2. Consider the following ontology O:

C0 v ∃r.A1

L1:A2(x) refines L0:A1

A2 v ∃s.A3

L2:B(x) refines L1:A3

L2: r(x1, x2) refines L1:A3

The reader may try to construct an L0-model of C0 and O,
following the sequence of existential quantifications and re-
finements suggested by the order of the statements in O.

As suggested by Example 2, our algorithm guesses a se-
quence of existential quantifications and refinements that
lead to two ‘incompatible’ refinements. To make this pre-
cise, we need some preliminaries.

We use u to denote the universal role, that is, a fixed role
name that is always interpreted as uI = ∆I×∆I . An ABox
is a finite set of facts as defined in the previous section. An
interpretation I satisfies a concept assertionC(a) if a ∈ CI ,
a role assertion r(a, b) if (a, b) ∈ rI , and an ABox A if it
satisfies all concept and role assertions in it. For an ABox
A, an ELHr-ontology O, and an EL-concept C, we write
A,O |= ∃u.C if CI 6= ∅ in every model I of O that satis-
fiesA. It is known that givenA,O, and C, it can be decided
in polynomial time whetherA,O |= ∃u.C (Krötzsch 2010).
Note that a conjunctive query can be viewed as an ABox in
an obvious way, by viewing variables as constants.

For a set of concept names S and L,L′ ∈ AO, we use
Qref
L,L′(S) to denote the set of CQs q(x̄) such that O con-

tains a concept refinement L′:q(x̄) refines L:C with C ∈ S.
We assume that the conjunctive queries q(x̄) in concept re-
finements in O use canonical variable names, that is, the
variable with the left-most occurrence in x̄ is x1, the vari-
able that occurs next is x2, etc.

For an abstraction level L ∈ AO, we use OL to denote
the ELHr-ontology that consists of all concept inclusions
C v D such that C vL D ∈ O, all role inclusions r v s
such that r vL s ∈ O, and all range restrictions > v ∀r.C
such that > vL ∀r.C ∈ O.

We are now ready to describe the algorithm. It guesses
a sequence S1, L1, . . . , Sn, Ln where S1, . . . , Sn are sets of
concept names that occur in O and L1, . . . , Ln are abstrac-
tion levels, n ≤ |AO|. It accepts if the following conditions
are satisfied, and rejects otherwise:

1. one of the following holds:

• L1 = L0 and OL1
|= C0 vL1

∃u.(uS1) or
• OL1

|= > vL1
∃u.(uS1);

2. for 1 ≤ i < n:

Ai,OLi |= ∃u.(uSi+1)

where Ai is the union of all queries in Qref
Li,Li+1

(Si),
viewed as ABoxes.3

3. There are concept refinements L′: q(x̄) refines L:A ∈ O
and L′: q′(x̄′) refines L:B ∈ O such that A,B ∈ Sn and
|x̄| 6= |x̄′|.

Note that in Example 2, we have always interleaved a sin-
gle existential restriction with each refinement statement.
In general, however, there can be a more complex ‘EL-
derivation’ between two subsequent refinements, and we ab-
stract away from that by using the universal role.
Lemma 3. The algorithm accepts iff C0 is L0-unsatisfiable
w.r.t. O.

The proof of Lemma 3 crucially uses universal models as
produced by the chase procedure from Section 4.2.

Note that, by what was said above, Conditions 1 to 3 can
be checked in polynomial time. We have thus obtained an
NP algorithm, as desired.

4.4 ELHabs
r [cr, ca] in PSPACE

We now add concept abstraction, that is, we move from
ELHabs

r [cr] to ELHabs
r [cr, ca]. This makes a significant dif-

ference because now we can also pass information upwards
through the tree-shaped abstraction graph of the ontology, as
illustrated by the following example.
Example 3. Consider the following ontology O:

L1:A1(x) refines L0:C0 L2:A2(x) refines L0:C0

A1 v B1 A2 v B2

L0:C1 abstracts L1:B1(x) L0:C2 abstracts L2:B2(x)

C1 u C2 v ⊥

C0 is L0-unsatisfiable w.r.t. O, but there is no (linear!) se-
quence of existential quantifications and refinements as in
Example 2.

We want to prove the following, which is substantially
more difficult than proving the CONP upper bound in the
previous section. In fact, we view the following as a main
result of this paper.

Theorem 2. Satisfiability in ELHabs
r [cr, ca] is in PSPACE.

Let a concept name C0, an ELHabs
r [cr, ca]-ontology O,

and an abstraction level L0 ∈ AO be given as an input.
If the abstraction graph of O is not a tree, we immediately
return ‘unsatisfiable’.

Our algorithm has some resemblance with the standard
non-deterministic PSPACE algorithm for the satisfiability of
ALC concepts (without ontologies) that verifies the exis-
tence of a tree model of polynomial depth by traversing it
in a depth-first manner, always keeping only a single path
in memory (Baader et al. 2017). In our case, we want to
verify the existence of an A-interpretation I that is an L0-
model of C0 and O. The tree that our algorithm traverses is

3Here we rely on canonical variable names.



(AI ,≺−1), which we can w.l.o.g. assume to be the abstrac-
tion graph of O (since universal models constructed by the
chase have this property).

We are, however, confronted with two challenges. First,
the ‘upwards’ nature of abstractions makes it difficult to tra-
verse the tree in a depth-first manner. We address this by a
suitable guessing strategy. And second, the interpretations
IL of a universal model, which correspond to the nodes of
the traversed tree, are infinite and thus cannot be guessed.
While infinite but regularly-shaped models can often be sub-
stituted by ‘compact’ finite models of polynomial size when
designing algorithms for plain EL (Lutz et al. 2009), this is
no longer true in the presence of CQs. To address this, we
stick with infinite models IL, but represent them by com-
pact (finite!) interpretations that we call pseudo-models. We
then use a non-standard semantics for CQs on those compact
representations.

Pseudo-Models For the following, one should imagine the
interpretations IL to take the shape of an infinite tree whose
nodes are ensembles and domain elements that do not par-
ticipate in an ensemble. In a pseudo-model I, intuitively we
identify ensembles / non-ensemble elements that are isomor-
phic, thus obtaining finiteness but losing the tree-shape.

Let q(x̄) be a CQ and I an EL-interpretation (represent-
ing the pseudo-model). Recall that in Section 2, we had as-
sociated an undirected graphGq with q. We assume that I is
equipped with a set of ensembles. Let h be a homomorphism
from q to I. We aim to identify a condition on h (‘tame-
ness’) that allows us to obtain from h a homomorphism into
the interpretation obtained by unraveling the pseudo-model
I into an infinite tree-like interpretation.

We associate with h an equivalence relation ∼h on var(q)
by setting x ∼h y if Gq contains a path x = z1, . . . , zn = y
such that h(z1), . . . , h(zn) are all part of the same ensemble
in I. Let Gh,I be the directed graph whose nodes are the
equivalence classes of ∼h and which has an edge (c1, c2) if
there is an r(x1, x2) ∈ q with x1 ∈ c1 and x2 ∈ c2. A node
c of Gh,I is an ensemble node if there is an (equivalently:
for all) x ∈ c such that h(x) is part of an ensemble in I. We
recommend to the reader to verify that all nodes that are not
ensemble nodes are singleton classes. We say that h is tame
if the following conditions are satisfied:

1. Gh,I is a tree, possibly with self-loops on ensemble
nodes;

2. for all edges (c1, c2) in Gh,I , there are d1, d2 ∈ ∆I such
that for all r(x1, x2) ∈ q with x1 ∈ c1 and x2 ∈ c2, we
have h(x1) = d1 and h(x2) = d2 .

Condition 2 reflects the fact that the tree-like interpreta-
tions IL satisfy the following property: if di is an element
in ensemble ei, for i ∈ {1, 2}, and there is a role edge
(d1, d2) ∈ rIL , then d1, d2 are unique with this property.

An answer d̄ ∈ q(I) is tame if there is a tame homo-
morphism h from q(x̄) to IL with h(x̄) = d̄. An A-
interpretation I being a pseudo-model ofO is defined in the
same way as being a model ofO except that in the semantics
of concept abstractions, answers to a CQ q on an interpreta-
tion IL are replaced with tame answers.

A central observation underlying the subsequent algo-
rithm is that we can always find pseudo-models in which
each maximal connected component has size polynomial
in ||O||. Formally, a maximal connected component (MCC)
of an A-interpretation I is an EL-interpretation that can be
obtained as follows: choose an abstraction level L, then
choose a maximal subset ∆ ⊆ ∆IL such that the follow-
ing undirected graph is connected:

(∆, {{d, e} | (d, e) ∈ rIL for some role name r
or d, e in ē for some L-ensemble ē});

and finally take the restriction of ∆IL to domain ∆. In the
appendix, we prove the following.

Lemma 4. If C0 is L0-satisfiable w.r.t. O, then there is an
L0-pseudo-model I of C0 and O such that each MCC of I
has at most 2 · (||O||2 + ||O||) elements.

Our proof of Lemma 4 is rather laborious. The reason is
that the structure of the universal models as constructed in
Section 4.2 turns out to be surprisingly hard (and, to us, ac-
tually infeasible) to analyze. This is mainly due to the appli-
cation of the filtration construction after chase termination.
To avoid such an analysis, we first introduce another, more
semantic construction of universal models. In this construc-
tion, we start from the universal models from Section 4.2
and ‘combine small pieces of them’ in a uniform, tree-like
way. The structure of the resulting universal models, which
we call uniform, is clear by definition. In particular, each
EL-interpretation IL is a tree of ensembles / non-ensemble
nodes, as described above. Starting from uniform universal
models, we can then carefully craft pseudo-models by se-
lecting ensembles and non-ensemble elements and ‘rerout-
ing’ role edges.

The Algorithm The aim of our algorithm is to verify the
existence of a pseudo-model of C0 and O, as per Lemma 4.
To represent MCCs of that pseudo-model, we use mosaics.
A mosaic is a tuple M = (I, L,E, ē) that consists of

1. a model I of OL such that |∆I | ≤ 2 · (||O||2 + ||O||),

2. an abstraction level L ∈ AO,

3. a set E of non-overlapping ensembles, that is, non-empty
tuples over ∆I that do not share elements, and

4. a tuple ē over ∆I with ē ∈ E or ē = ().

We may write IM for I, and likewise for LM , EM , and ēM .
We further define a function

• Qref
M,L′ that maps each d ∈ ∆I to the set of CQs

Qref
M,L′(d) = {q | L′:q(x̄) refines L:A ∈ O and d ∈ AI};

• T abs
M,L′ that maps each d̄ ∈ E to the set of concept names
T abs
M,L′(d̄) = {A | L′:A abstracts L:q(x̄) ∈ O and d̄ ∈
q(I) is tame}.

Note that, as mosaics are equipped with an explicit set E of
ensembles, it is clear what we mean by a tame answer.

Our algorithm is now listed as Algorithm 1. In Line 3, we
guess a set XL of sets of concept names. This is related to
the first challenge mentioned above and the idea is that for



Algorithm 1 Algorithm for satisfiability in ELabs[cr,ca]

1: procedure EL[cr,ca]-SAT(C0, L0)
2: for all L ∈ AO do
3: Guess a set XL ∈ 22C

of sets concept names
such that |XL| ≤ ||O||3 + ||O||2

4: Guess a mosaic M such that
LM = L0, CI

M

0 6= ∅, and eM = ()
5: R← RECURSE(M)
6: for all L ∈ AO and T ∈ XL do
7: Guess a mosaic M such that

LM = L, (
d
T )I

M 6= ∅, and eM = ()
8: R← R ∧ RECURSE(M)

9: return R
10: procedure RECURSE(M = (I, L,E, ē))
11: for all d ∈ ∆I and L′ ∈ AO s.t. Qref

M,L′(d) 6= ∅ do
12: Guess a mosaic M ′ = (I ′, L′, E′, ē′)
13: if ē′ /∈ q(I ′) for some q ∈ Qref

M,L′(d) or d /∈ AI

for some A ∈ T abs
L (ē′) then return false

14: RECURSE(M ′)

15: for all L′:A abstracts L:q(x̄) ∈ O and all
tame answers d̄ ∈ q(I) with d̄ 6= ē do

16: if d̄ 6∈ E then return false

17: Guess a set T ′ ∈ XL′

18: if T abs
M,L′(d̄) 6⊆ T ′ or d̄ /∈ q(I) for some
L′:q(x̄) refines L:A ∈ O with A ∈ T ′ then
return false

19: return true

every set S ∈ XL, there must be an element on level L that
satisfies all concept names in S, and that (copies of) these
elements can be used to satisfy all abstractions that ever re-
quire a witness during the run of the algorithm. Intuitively,
the algorithm repeatedly guesses mosaics and makes recur-
sive calls to satisfy refinement statements from the ontology.
More precisely, it is the tuple ēM in the fourth component of
a mosaic M that, if not empty, is the ensemble which satis-
fies the refinement.

Lemma 5. The algorithm accepts iff C0 is L0-satisfiable
w.r.t. O.

It is easy to see that the recursion depth of the algorithm
is bounded by |AO| and that only a polynomial amount of
space is consumed. Needless to say, we can eliminate non-
determinism by applying Savitch’s theorem.

5 Lower Bounds
We prove lower complexity bounds that match the upper
bounds presented in Section 4. We start with the following.

Theorem 3. Satisfiability is

1. CONP-hard in ELabs[cr] and
2. PSPACE-hard in ELabs[cr, ca].

The proofs of Points 1 and 2 of Theorem 3 are closely
related. We start with Point 1, which is proved by reduction
from unsatisfiability in propositional logic.

Let ϕ be a propositional formula that uses variables
p1, . . . , pn and only the junctors ¬ and ∧. Let sub(ϕ) be
the set of all subformulas of ϕ. We construct an ELabs[cr]-
ontology O that uses the following concept and role names:
• Tψ and Fψ , for each ψ ∈ sub(ϕ), to represent that ψ

evaluates to true or false;
• Pi and P i, for i ∈ {1, . . . , n}, to represent assigning true

or false to pi.
The ontology O uses the abstraction levels L0 � · · · � Ln.
When refining from Li to Li+1, we introduce two domain
elements that represent the two possible truth assignments
for variable pi+1. This is achieved by including in O the
following for 1 ≤ i ≤ n:

Li:Pi(x1) ∧ P i(x2) refines Li−1:>. (1)

If desired, it is easy to make the query connected. To pre-
serve the truth assignments to variables on finer levels, we
add for 1 ≤ i < n and i < j < n:

Lj+1:Pi(x1) ∧ Pi(x2) refines Lj :Pi (2)

Lj+1:P i(x1) ∧ P i(x2) refines Lj :P i (3)

This generates a binary tree of refinements of depth n, rep-
resenting all possible truth assignments at the leaves, that is,
by domain elements on level Ln. We evaluate ϕ on all these
truth assignments and generate an inconsistency if ϕ ever
evaluates to true:

Pi vLn
Tpi and P i vLn

Fpi for 1 ≤ i ≤ n (4)
Tψ vLn F¬ψ and Fψ vLn T¬ψ for all ¬ψ ∈ sub(ϕ) (5)

and for all ψ = ψ1 ∧ ψ2 ∈ sub(ϕ):

Tψ1
u Tψ2

vLn
Tψ Fψ1

vLn
Fψ Fψ2

vLn
Fψ (6)

and finally:
Tϕ vLn

⊥. (7)

Lemma 6. ϕ is unsatisfiable iff > is L0-satisfiable w.r.t. O.
Point 2 of Theorem 3 is proved by reduction from the va-

lidity of quantified Boolean formulas (QBFs) of the form
ϕ0 = Q1p1 · · ·Qnpnϕ with Qi ∈ {∃,∀} and ϕ a proposi-
tional formula that uses only the variables p1 to pn and the
junctors ¬ and ∧ (Arora and Barak 2009). We construct an
ELabs[cr, ca]-ontology O such that ϕ0 is valid if and only if
> is L0-satisfiable w.r.t. O.

The construction of O may be viewed as an extension of
the construction from the previous reduction. In particular,
we use the same concept and role names, plus a concept
name F and a role name s. We next give details. To con-
struct O, we reuse statements (1) to (6) from the previous
reduction, adding an s(x1, x2)-atom to the query in refine-
ments (1) to (3). As in the previous reduction, this generates
a full binary tree of refinements of depth n that represents
all truth assignments as domain elements on level Ln. We
next implement a bottom-up pass on this tree that evaluates
the quantifiers in ϕ0 using the concept name F . We first add
to O:

Fϕ vLn
F. (8)



For each i ∈ {1, . . . , n} with Qi = ∀ and j ∈ {1, 2}, we
further add the following concept abstraction:

Li−1:F abstracts Li: q(x1, x2) where (9)
q(x1, x2) = F (xj) ∧ s(x1, x2)

and for each i ∈ {1, . . . , n} with Qi = ∃, we add the con-
cept abstraction

Li−1:F abstracts Li: q(x1, x2) where (10)
q(x1, x2) = F (x1) ∧ F (x2) ∧ s(x1, x2)

Note that, as required and due to our use of the role name s,
the queries in these abstraction statements are connected.
This is in fact the only reason why s was introduced. Fi-
nally, we add the following CI, representing our wish that
ϕ0 is valid:

F vL0
⊥. (11)

Lemma 7. ϕ0 is valid iff > is L0-satisfiable w.r.t. O.
Finally, we prove the following.

Theorem 4. Satisfiability in ELabs[rr] is 2EXPTIME-hard.
This is achieved by reducing the word problem for expo-

nentially space-bounded alternating Turing machines. More
precisely, we adapt a reduction from (Lutz and Schulze
2023) used there to show that satisfiability in ALCabs[rr] is
2EXPTIME-hard.

6 Getting To Polynomial Time
We now consider a semantic variation of ELHabs

r [cr] that re-
duces the complexity of satisfiability from coNP to PTime.
This variation is obtained by letting L-ensembles be sets
rather than tuples, that is, dropping the order of elements
in the ensemble. Moreover, refinements are now interpreted
as a partial description of an ensemble, that is, the variables
in the CQ used in the refinement describe elements of the
ensemble that must exist, but other elements may exist as
well.

In more detail, the refinement function ρ is now a partial
function that associates every pair (d, L) ∈ ∆I ×AI such
that L ≺ L(d) with a non-empty subset of ∆IL called an L-
ensemble. We still require that every object participates in
at most one ensemble, that is, Property (∗) from the original
definition of the semantics is still required to be satisfied.
The semantics of refinement statements is then as follows.
An A-interpretation I = (AI ,≺, (IL)L∈AI , ρ) satisfies a
• concept refinement L:q(x̄) refines L′:C if L,L′ ∈ AI

and for all d ∈ CIL′ , there is an ē ∈ q(IL) s.t. all ele-
ments of ē are in ρL(d);

• role refinement L:q(x̄, ȳ) refines L′:qr(x, y) if L,L′ ∈
AI and for all (d1, d2) ∈ qr(IL′), there is an (ē1, ē2) ∈
q(IL) s.t. all elements of ēi are in ρL(di), for i ∈ {1, 2}.

We call this semantics the set ensemble semantics. Note
that under this semantics, we can no longer simulate ⊥ by
concept refinement. We instead assume that ⊥ is explicitly
available as a concept constructor (to ensure that satisfiabil-
ity and subsumption are mutually reducible).

The following example illustrates the impact of switching
to set ensemble semantics which, we believe, is fairly mild
if the modeling discipline is adjusted in a suitable way.

Example 4. Consider the following ontology O:

SportsCar v Car

L1:Engine(x1) ∧ Body(x2) refines L2:Car

L1:TurboEngine(x1) ∧ Body(x2) refines L2:SportsCar

Under the standard semantics, every sports car refines into
an ensemble of exactly two elements, the first one both an
engine and a turbo engine, and the second one a body. Un-
der set ensemble semantics, a sports car may refine into an
ensemble of three elements: an engine, a turbo engine, and
a body. If we add the natural concept inclusion

TurboEngine v Engine,

then the turbo engine is also an engine and, arguably, the
difference between the two semantics becomes negligible.

We aim to prove the following.
Theorem 5. Under the set ensemble semantics, satisfiability
in ELabs[cr, rr] is in PTime.

We prove Theorem 5 by providing a polynomial time re-
duction from L-satisfiability in ELHabs

r [cr] to satisfiability
in ELHOr,⊥, the extension of ELHr with nominals and ⊥.
More precisely, we assume a countably infinite set I of in-
dividuals and admit expressions {a}, with a ∈ I, as con-
cepts. The semantics is given by {a}I = a for all interpre-
tations I. It is known that satisfiability in ELHOr,⊥ is in
PTime (Krötzsch 2010).

Let C0 be an EL-concept, O an ELHabs
r [cr]-ontology in

normal form, and L0 ∈ AO, given as input. We assume
w.l.o.g. that no two CQs in (refinements in) O share a vari-
able. If GO is not a tree, we may directly return ‘unsat-
isfiable’. Otherwise, we construct in polynomial time an
ELHOr,⊥-ontology O′. Introduce a fresh role name rL for
each role name r in O and each abstraction level L in O,
and an additional fresh role name u. We include in O′ the
following concept inclusions:

1. > v ∃u.L for all L ∈ AO;
2. LuA1 u · · · uAn v B for all A1 u · · · uAn vL B inO

(with A1 u · · · uAn = > if n = 0);
3. ∃rL.A v B for all ∃r.A vL B in O;
4. L uA v ∃rL.(L uB) for all A vL ∃r.B in O;
5. for all L:q(x̄) refines L′:A in O:

• L′uA v ∃u.(LuBu{ax}) wheneverB(x) is an atom
in q;

• L′ u A v ∃u.(L u {ax} u ∃rL.(L u {ay})) whenever
r(x, y) is an atom in q;

6. for all L:q(x̄, ȳ) refines L′:qr(x, y) in O with qr =
A1(x) ∧ r(x, y) ∧A2(y):
• A1 u∃rL′ .A2 v ∃u.(LuB u{ax}) whenever B(x) is

an atom in q;
• A1 u ∃rL′ .A2 v ∃u.(L u {ax} u ∃sL.(L u {ay}))

whenever s(x, y) is an atom in q;
Moreover, O′ contains the following:

7. the role inclusion rL v sL for every role inclusion r vL s
in O;



8. the range restriction > v ∀rL.C for every range restric-
tion > vL ∀r.C in O.

Lemma 8. C0 is L0-satisfiable w.r.t. O under set ensemble
semantics iff C0 u L0 is satisfiable w.r.t. O′.

This proves Theorem 5. An extension to the case that
includes concept or role abstractions is not easily possi-
ble. In fact, it is straightforward to prove the following by
a reduction from the homomorphism problems on directed
graphs (the semantics of concept abstractions is defined as
expected).

Theorem 6. Under the set ensemble semantics, satisfiability
is coNP-hard in ELabs[cr, ca].

We remark that exactly the same reduction as given in this
section also serves to reduce satisfiability in ALCabs[cr, rr]
under set ensemble semantics to satisfiability in ALCO, the
extension of ALC with nominals. The latter problem is EX-
PTIME-complete (Tobies 2001), which explains the entry for
ALCabs under set ensemble semantics in Figure 1.

7 Conclusion
We have studied description logics of refinement and ab-
straction based on members of the EL family. While, com-
pared to the ALC version, the computational complexity
does not drop for the full logic, we have identified nat-
ural fragments where it does. We leave the complexity
of other (less natural) fragments such as ELHabs

r [ca] and
ELHabs

r [ca, ra] as future work.
It would be interesting to consider DLs of abstraction and

refinement based on the extension ELI of EL with inverse
roles. Then already reasoning in the base logic is EXPTIME-
hard so we cannot expect any lower complexities. One might
also define ontology languages with abstraction and refine-
ment based on existential rules, see e.g. (Baget et al. 2011;
Calı̀ et al. 2010). It is then natural to extend the arity of
all relations by one position that represents the abstraction
level. Note, however, that since every object is required to
refine only into a single ensemble, it does not seem possible
to encode abstraction and refinement into existing (decid-
able) existential rule formalisms in a simple way.
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A Proofs for Section 4.2
A.1 Missing Rules
We list the chase rules that treat role refinement and role
abstraction, omitted in the main body of the paper:

R11 if h is a homomorphism from qr to FL for a role refine-
ment L′:q(x̄, ȳ) refines L:qr(x, y) in O then

• if ρL′(h(x)) is undefined, then set ρL′(h(x)) = ā for a
tuple ā of fresh constants with |ā| = |x̄|;

• if ρL′(h(y)) is undefined, then set ρL′(h(y)) = b̄ for a
tuple b̄ of fresh constants with |b̄| = |ȳ|;

R12 if h is a homomorphism from qr to FL for a role re-
finement L′:q(x̄, ȳ) refines L:qr(x, y) in O, ρL′(h(x))
and ρL′(h(y)) are defined, |x̄| = |ρL′(h(x))|, and |ȳ| =
|ρL′(h(y))|, then add q(ρL′(h(x)), ρL′(h(y))) to FL′ ; if
|x̄| 6= |ρL′(h(x))| or |ȳ| 6= |ρL′(h(y))|, then return ‘un-
satisfiable’;

R13 if h is a homomorphism from q toFL for a role abstraction
L′:r abstracts L:q(x̄, ȳ) in O then

• if there is no a ∈ dom(FL′) with ρL(a) = h(x̄), then
set ρL(a) = h(x̄) for a fresh constant a;

• if there is no b ∈ dom(FL′) with ρL(b) = h(ȳ), then
set ρL(b) = h(ȳ) for a fresh constant b;

R14 if h is a homomorphism from q to FL for any role ab-
straction L′:r abstracts L:q(x̄, ȳ) in O and there are
a, b ∈ dom(FL′) with ρL(a) = h(x̄) and ρL(b) = h(ȳ),
then add r(a, b) to FL′ .

Soundness. We prove the two directions of Lemma 2 sep-
arately, starting with soundness.

Lemma 9. Let O be an ELHabs
r -ontology in normal form

whose abstraction graph GO is a tree, C0 a concept name,
and L0 an abstraction level. If the L0-chase on C0 and O
does not abort, then C0 is L0-satisfiable w.r.t. O.

Let I∗ = (F ∗, ρ∗,∼∗) be the result of chasing C0 w.r.t.
L0 and O. To construct an L0-model I of C0 and O, define
I = (AI ,≺, (IL)L∈AI , ρ) where

∆IL = {[a] | a ∈ dom(F ∗L)}
AIL = {[a] | A(a′) ∈ F ∗L and a′ ∈ [a]}
rIL = {([a], [b]) | r(a′, b′) ∈ F ∗L and a′ ∈ [a], b′ ∈ [b]}
ρL = {([a], ([b1] · · · [bn])) | (a′, (b′1 · · · b′n) ∈ ρ∗L with

a′ ∈ [a], b′i ∈ [bi] for 1 ≤ i ≤ n}.

The remaining components AI and ≺ are defined as AO
and ≺O, respectively. We remark that if O contains no ab-
straction statements, then the equivalence relation ∼ in the
chase is just the identity function since rules R9, R10 and
R13 to R19 are never applicable. It follows that the filtration
step is not needed; in other words, the result I of filtrating
I∗ is simply I∗ viewed as an interpretation.

We first verify that I is actually an A-interpretation.

Lemma 10. I is an A-interpretation.

Proof. We need to show the following:

1. The directed graph (AI ,≺) is a tree.
Clear by definition of I.

2. ρ is a partial function.
Assume that ([a], ([b1], . . . , [bn])), ([a], ([c1], . . . , [cm]))
are in ρ. Then there are a1, a2 ∈ [a] such that ρ∗L(a1) =
(b′1, . . . , b

′
n), ρ∗L(a2) = (c′1, . . . , c

′
m), b′i ∼ bi for 1 ≤

i ≤ n, and c′i ∼ ci for 1 ≤ i ≤ m. By R15 and
since the chase does not abort, we have n = m. By
R17, we have b′i ∼ c′i for 1 ≤ i ≤ n. Consequently,
([b1], . . . , [bn]) = ([c1], . . . , [cm]), as required.

3. No element in ρ is part of two distinct ensembles.
Assume that ρL([a1]) = ([b1], . . . , [bn]) and ρL([a2]) =
([c1], . . . , [cm]) with [b`] = [ck]. Then there are a′1 ∈ [a1]
and a′2 ∈ [a2] such that ρ∗L(a′1) = (b′1, . . . , b

′
n), ρ∗L(a′2) =

(c′1, . . . , c
′
m), b′i ∼ bi for 1 ≤ i ≤ n, and c′i ∼ ci for

1 ≤ i ≤ m. From [b`] = [ck], we obtain b′` ∼ c′k. Conse-
quently, R16 yields a1 ∼ a2, thus [a1] = [a2] as required.

o

It remains to show the following.
Lemma 11. I is an L0-model of C0 and O.

Proof. The first interpretation candidate in any chase
sequence contains the fact C0(a0) on level L0, and thus
C0(a0) ∈ F ∗L. By construction of I and since C0 is a con-
cept name, this implies [a0] ∈ CIL0

0 .
What remains to be shown is that all inclusions, range

restrictions, abstractions and refinements of O are satisfied.
We first observe that the following is implied by R18.

Claim 1. For any L ∈ AO:
1. if A(a) ∈ F ∗L and a ∼ a′, then A(a′) ∈ F ∗L;
2. if r(a, b) ∈ F ∗L, a ∼ a′, and b ∼ b′, then r(a′, b′) ∈ F ∗L.
We now consider inclusions and range restrictions:
• if [a] ∈ ∆IL and > vL A ∈ O, then by definition of I

we have a ∈ dom(F ∗L). R2 then implies A(a) ∈ F ∗L and
thus [a] ∈ AIL by definition of I;

• if [a] ∈ (A1u· · ·uAn)IL and A1u· · ·uAn vL B ∈ O,
then by definition of I there are a1, . . . , an ∈ [a] with
A1(a1), . . . , An(an) ∈ F ∗L. Point 1 of Claim 1 now im-
plies A1(a), . . . , An(a) ∈ F ∗L. With R1 we get B(a) ∈
F ∗L and the definition of I lets us obtain [a] ∈ BIL ;

• if [a] ∈ AIL and A vL ∃r.B ∈ O, then by definition of
I there is a a′ ∈ [a] with A(a′) ∈ F ∗L. Point 1 of Claim 1
now implies A(a) ∈ F ∗L. With R3 we get B(b), r(a, b) ∈
F ∗L for some constant b ∈ dom(FL). The definition of I
lets us obtain ([a], [b]) ∈ rIL and [b] ∈ BIL , as required;

• if [a] ∈ (∃r.A)IL and ∃r.A vL B ∈ O, then by the
semantics there is a [b] ∈ AIL with ([a], [b]) ∈ rIL . By
definition of I there are a′ ∈ [a] and b′ ∈ [b] such that
r(a′, b′) ∈ F ∗L. Point 1 of Claim 1 yields A(b′) ∈ F ∗L.
From R4 we getB(a′) ∈ F ∗L. From the definition of I we
obtain [a] ∈ BIL , as required.

• if ([a], [b]) ∈ rIL and r vL s ∈ O, then by Claim 1
r(a, b) ∈ FL. R5 then implies s(a, b) ∈ FL and thus
([a], [b]) ∈ sIL by definition of I;



• if ([a], [b]) ∈ rIL and > vL ∀r.C ∈ O, then by Claim 1
r(a, b) ∈ FL. R6 then implies C(b) ∈ FL and thus [b] ∈
CIL by definition of I;

Next up are the refinement and abstraction statements. Let
FL be a set of facts of level L and q(x̄) a CQ. Similar to
normal interpretations, we call a tuple ē an answer to q on
FL, if there is a homomorphism h from q to FL with h(x̄) =
ē. We also use q(FL) to denote the set of answers to q on
FL.

First an intermediary claim.

Claim 2. Let ([a1], . . . , [an]) ∈ q(IL). Choose any a′1 ∈
[a1], . . . , a′n ∈ [an]. Then (a′1, . . . , a

′
n) ∈ q(F ∗L).

Proof of claim. Let A(xi) be a concept atom in q. Then
[ai] ∈ AIL . By definition of I, there is an bi ∈ [ai] such that
A(bi) ∈ F ∗L. By Point 1 of Claim 1 and since a′i ∼ bi, we
have A(a′i) ∈ F ∗L, as required. For role atoms r(xi, xj) ∈ q,
we can argue similarly based on Point 2 of Claim 1. This
finishes the proof the claim.

Now we are ready to prove that abstractions and refine-
ments are satisfied.

• Assume that [a] ∈ AIL and there is a concept refinement
L′: q(x̄) refines L:A in O. Then by definition of I, there
is an a′ ∈ [a] with A(a′) ∈ F ∗L. R7 then implies that
ρ∗L(a′) is defined and R8 that ρ∗L(a′) ∈ q(F ∗L′). Hence
ρL([a]) is defined by definition of ρL and ρL([a]) ∈ q(IL)
by definition of AIL and rIL .

• Assume that ([a1], . . . , [an]) is an answer to q on IL and
there is a concept abstraction L′:A abstracts L: q(x̄) in
O. By Claim 2, we have (a1, . . . , an) ∈ q(F ∗L). R9
guarantees that there is an a ∈ dom(F ∗L′) with ρ∗L(a) =
(a1, . . . , an) and R10 that A(a) ∈ F ∗L′ . Hence [a] ∈ AIL
and ρL([a]) = ([a1], . . . , [an]), by definition of I.

• Assume that ([a1], [a2]) ∈ qr(IL′) and there is a role re-
finement L′:q(x̄, ȳ) refines L:qr(x, y) in O. By Claim 2,
we have (a1, a2) ∈ qr(F

∗
L′). R11 guarantees that

ρ∗L(a1) = ā1 and ρ∗L(a2) = ā2 are defined and R12 that
(ā1, ā2) ∈ q(F ∗L). Hence ρL([a1]) and ρL([a1]) are de-
fined and an answer to q on IL, by definition of I.

• Assume that ([a1], . . . , [an], [b1, . . . , bm]) ∈ q(IL) and
there is a role abstraction L′:r abstracts L:q(x̄, ȳ) in
O with |x̄| = n and |ȳ| = m. By Claim 2, we have
(a1, . . . , an, b1, . . . , bn) ∈ q(F ∗L). R13 guarantees that
ρ∗L(a) = (a1, . . . , an) and ρ∗L(b) = (b1, . . . , bm) are de-
fined for some constants a, b ∈ dom(F ∗L′) and R14 that
r(a, b) ∈ F ∗L′ . Hence ρL([a]) and ρL([b]) are defined and
([a], [b]) ∈ rIL′ , by definition of I.

o

Completeness. We want to show the following.

Lemma 12. Let O be an ELHabs
r -ontology in normal form

whose abstraction graph GO is a tree, C0 a concept name,
and L0 an abstraction level. If C0 is L0-satisfiable w.r.t. O,
then the chase does not abort.

We start with defining the notion of a homomorphism
from an interpretation candidate to an A-interpretation.

These homomorphisms are very similar to the ones from A-
interpretation to A-interpretation defined in the main part of
the paper.

Let I = (F, ρ,∼) be an interpretation candidate. We use
AI to denote all the abstraction levels for which F is de-
fined and ≺I for the smallest relation such that L ≺I L′ if
ρL(a) = b and L(a) = L′. Let I = (AI ,≺, (IL)L∈AI , ρ

′)
be an A-interpretation. A function h : dom(F ) → ∆I is a
homomorphism from I to I if the following conditions are
satisfied for all L ∈ AI :

1. ≺I ⊆ ≺;
2. A(a) ∈ FL implies h(a) ∈ AIL for all A ∈ C;
3. A>(a) ∈ FL implies h(a) ∈ ∆IL ;
4. r(a, b) ∈ FL implies (h(a), h(b)) ∈ rIL for all r ∈ R;
5. ρL(a) = b̄ implies ρ′L(h(a)) = h(b̄);
6. a1 ∼ a2 implies h(a1) = h(a2).

We now show an intermediary lemma that captures the
most notable property of the chase, that is, the result of the
chase can be found inside any model that satisfies the given
concept.
Lemma 13. Let I0, I1, . . . be a (finite or infinite) non-
aborting chase sequence. Then for every L0-model I of C0

and O and every i ≥ 0, there is a homomorphism from Ii
to I.

Proof. Let I0, I1, . . . and I be as in the lemma. Fur-
ther, let Ii = (F i, ρi,∼i) for all i ≥ 0 and I =
(AI ,≺, (IL)L∈AI , ρ). We prove by induction on i that for
every i ≥ 0 there is a homomorphism hi from Ii to I.

For the induction start, we can define a homomorphism h0

from I0 to I by simply mapping the only constant a0 from
dom(F 0

L0
) to an element d ∈ CIL0 and for all other L ∈

AO \ {L0} mapping the only constant aL from dom(F iL) to
any d ∈ ∆IL .

For i > 0 assume that hi is a homomorphism from Ii to I.
We have to show that there is a homomorphism hi+1 from
Ii+1 to I. We do a case analysis according to the rule that
was applied to obtain Ii+1 from Ii:
• for R1, R2, R4 to R6, R8, R10, R12, R14, and R16 to R18

set hi+1 = hi. Using the definition of homomorphisms
it is straightforward to see that if any choice of elements
satisfies the preconditions of any of these rules in Ii, then
the hi-image of these elements satisfies the same condi-
tions in I. Using the fact that I is a model of O, we then
get that hi+1 is a homomorphism from Ii+1 to I.

• R3. Assume that the rule is applied to fact A(a) ∈ F iL
and CI A vL ∃r.B ∈ O. Let b be the constant introduced
by the rule application. We have hi(a) ∈ AI . Since I
is a model of O, there is thus a (hi(a), d) ∈ rIL with
d ∈ BIL . Set hi+1 = hi ] {(b, d)}.

• R7. Assume that the rule is applied to factA(a) ∈ F iL and
concept refinement L′: q(x̄) refines L:A ∈ O. Further-
more, let a1, . . . , an be the fresh constants generated by
the rule application and let hi(a) = d. We have d ∈ AIL .
Since I is a model of O, ρL′(d) must be defined and an



answer to q on IL′ . We set hi+1 = hi ] {(ai, di) | 1 ≤
i ≤ n} where ρL(d) = (d1, . . . , dn).

• R9. Assume that the rule is applied to the concept abstrac-
tion L′:A abstracts L: q(x̄) ∈ O and homomorphism h′

from q to F iL. Let a ∈ dom(F iL′) be the fresh constant in-
troduced by this application, implying ρi+1

L (a) = h′(x̄).
By the definition of homomorphisms, hi(h′(x̄)) is a ho-
momorphism from q to IL. Thus ē = hi(h

′(x̄)) is an
answer to q on IL. Since I is a model of O, there is
thus an element d ∈ ∆IL′ with ρL(d) = ē. We set
hi+1 = hi ] {(a, d)}.

• R11. Assume that the rule is applied to a tuple (a, b) ∈
qr(F

i
L) that is an answer to qr on F iL for a role re-

finement L′:q(x̄, ȳ) refines L:qr(x, y) in O. Let
a1, . . . , an, b1, . . . , bm be the fresh constants generated
by the rule application, implying ρi+1

L′ (a) = (a1, . . . , an)

and ρi+1
L′ (b) = (b1, . . . , bn). Furthermore let hi(a) = d

and hi(b) = e. By definition of homomorphisms, we have
(d, e) ∈ qr(IL). Since I is a model of O, ρL′(d) and
ρL′(e) have to be defined. We set hi+1 = hi ] {(ai, di) |
1 ≤ i ≤ n} ] {(bi, ei) | 1 ≤ i ≤ m} where ρL(d) =
(d1, . . . , dn) and ρL(e) = (e1, . . . , em).

• R13. Assume that the rule is applied to the role abstrac-
tion L′:r abstracts L:q(x̄, ȳ) inO and homomorphism h′

from q to F iL. Let a, b ∈ dom(F iL′) be the fresh constants
introduced by this application, implying ρi+1

L (a) = h′(x̄)

and ρi+1
L (b) = h′(ȳ). Furthermore let ā = h′(x̄, ȳ),

|x̄| = n and |ȳ| = m. By the definition of homo-
morphisms, hi(ā) ∈ q(IL). Since I is a model of O,
there are thus elements d, e ∈ ∆IL′ with (d, e) ∈ rIL′ ,
ρL(d) = (d1, . . . , dn), and ρL(e) = (e1, . . . , em). We set
hi+1 = hi ] {(a, d)} ] {(b, e)}.

• R15. Cannot be used to produce Ii+1 as it only aborts.

• R19. Assume that the rule is applied to constants
a1 and a2. Then ρL(a1) is defined, say ρL(a1) =
(c1, . . . , cn). Let b1, . . . , bn be the fresh constants intro-
duced by the rule application. We set hi+1(bi) = hi(ci)
for 1 ≤ i ≤ n.

It is straightforward to verify that this definition of hi+1 sat-
isfies all six conditions of homomorphisms. o

Now we return to proving Lemma 12 by proving its con-
trapositive which is captured by the following lemma.

Lemma 14. If the chase aborts and returns ‘unsatisfiable’,
then there is no L0-model I of C0 and O.

Proof. Let Ii = (F i, ρi,∼i) be the interpretation candi-
date such that in the construction of Ii+1 the chase aborts
and returns ‘unsatisfiable’. Assume to the contrary of
what we have to show that there exists an L0-model I =
(AI ,≺, (IL)L∈AI , ρ) of C0 and O. Then by Lemma 13
there is a homomorphism h from Ii to I. We make a case
distinction according to the rule that makes the chase abort:

• R8. Then there are A(a) ∈ F iL and concept refinement
L′: q(x̄) refines L:A ∈ O such that ρiL′(a) is defined
and |x̄| 6= |ρiL′(a)|. Definition of homomorphisms then

implies that h(a) ∈ AIL and |ρL(h(a))| = |ρiL′(a)| 6=
|x|. This is a contradiction to I being a model of O.

• R12. Then there are (a, b) ∈ qr(F
i
L) for a role re-

finement L′:q(x̄, ȳ) refines L:qr(x, y) in O such that
|x̄| 6= |ρiL′(a)| or |ȳ| 6= |ρiL′(b)|. Let us assume that
|x̄| 6= |ρiL′(a)|. By definition of homomorphisms, we
have (h(a), h(b)) ∈ qr(IL) and |ρL′(h(a))| = |ρiL′(a)|
and hence also |ρL(h(a))| 6= |x|. This is a contradiction
to I being a model of O. The case of |ȳ| 6= |ρiL′(b)| is
analogous.

• R15. Then there are a1, a2 such that ρiL(a1) = ē1 and
ρiL(a2) = ē2 with |ē1| 6= |ē2| and there are b1 ∈ ē1,
and b2 ∈ ē2 such that b1 ∼ b2. By definition of ho-
momorphisms, we then have ρL(h(a1)) = h(ē1) and
ρL(h(a1)) = h(ē2), which in particular implies |h(ē1)| 6=
|h(ē2)| and thus h(ē1) 6= h(ē2). The definition of homo-
morphisms also yields h(b1) = h(b2). This contradicts
the fact that I has no overlapping ensembles.

o

A.2 Proof of Lemma 1
We prove the existence of universal models for ELHabs

r by
using the chase defined in the previous section. More con-
cretely we want to prove Lemma 1 which we repeat here for
the reader’s convenience.

Lemma 1. Let C0 be an EL-concept, O an ELHabs
r -

ontology, and L0 ∈ A. If C0 is L0-satisfiable w.r.t. O, then
there exists a universal L0-model of C0 and O.

Proof. Since C0 is L0-satisfiable w.r.t. O, by Lemma 14
the chase of C0 w.r.t. L0 and O does not abort. Conse-
quently, the result I∗ = (F ∗, ρ∗,∼∗) of the chase exists.
Let I ′ be an L0-model of C0 and O. By Lemma 13, there
are homomorphisms hi from Ii to I ′, for all i ≥ 0. Clearly,
ĥ :=

⋃
i≥0 hi is a homomorphism from I∗ to I ′.

As part of the soundness proof above, we had constructed
from I∗ an L0-model I = (AI ,≺, (IL)L∈AI , ρ) of C0

and O. We prove that I is in fact the desired universal
model. For the reader’s convenience, we recall that

∆IL = {[a] | a ∈ dom(F ∗L)}
AIL = {[a] | A(a′) ∈ F ∗L and a′ ∈ [a]}
rIL = {([a], [b]) | r(a′, b′) ∈ F ∗L and a′ ∈ [a], b′ ∈ [b]}
ρL = {([a], [b1] · · · [bn]) | (a′, b′1 · · · b′n) ∈ ρ∗L and

a′ ∈ [a], b′i ∈ [bi]}

Due to rule R18, the following properties are satisfied:

1. if [a] ∈ AIL , then A(a′) ∈ F ∗L for all a′ ∈ [a];

2. if ([a], [b]) ∈ rIL , then r(a′, b′) ∈ F ∗L for all a′ ∈ [a] and
b′ ∈ [b].

Moreover, we observe the following.

Claim. If ρL([a]) = ([b1], . . . , [bk]), then for all a′ ∈ [a] we
have ρ∗L(a′) = (b′1, . . . , b

′
k) with b′i ∈ [bi] for 1 ≤ i ≤ k.

Proof of claim. Let ρL([a]) = ([b1], . . . , [bk]) and a′ ∈ [a].



By construction of I, there then exist â ∈ [a] and b̂1 ∈
[b1], . . . , b̂k ∈ [bk] such that ρ∗L(â) = (̂b1, . . . , b̂k). Due
to rule R19, also ρ∗L(a′) is defined. Due to R15 and since
the chase is not aborting, the tuple ρ∗L(a′) also has length
k. Let ρ∗L(a′) = (b′1, . . . , b

′
k). Rule R17 yields b′i ∼ b̂i for

1 ≤ i ≤ k and thus the claim is proved.

We define the desired homomorphism h from I to I ′ by
traversing the tree (AI ,≺−1) in a top-down fashion. This
boils down to choosing, for each [a] ∈ ∆I , an a′ ∈ [a] and
setting h([a]) = ĥ(a′).

We start at the root L0. For each [a] ∈ ∆IL0 , choose an
arbitrary a ∈ [a] and set h([a]) = ĥ(a).

Now assume that level L′ of the tree was already treated
and that L ≺ L′. Consider any [a] ∈ ∆IL′ with ρL([a])

defined. Let ρL([a]) = ([b1], . . . , [bk]) and h([a]) = ĥ(a′).
By the claim, there are b′1 ∈ [b1], . . . , b′k ∈ [bk] such that
ρ∗L(a′) = (b′1, . . . , b

′
k). Set h([bi]) = ĥ(b′i) for 1 ≤ i ≤ k.

Note that this is well-defined since every element of ∆IL

can occur in at most one ensemble. For every [b] ∈ ∆IL that
does not occur in any ensemble, choose an arbitrary b ∈ [b]

and set h([b]) = ĥ(b).
It is straightforward to see that h is a homomorphism from

I to I ′. In fact, ĥ must satisfy the six conditions from the
definition of homomorphisms from interpretation candidates
to interpretations, and together with Point 1 and Point 2 from
above, these conditions imply the five conditions that hmust
satisfy to be a homomorphism from I to I ′. o

B Proofs for Section 4.3
In this section we prove that the NP algorithm for checking
unsatisfiability in ELHabs

r [cr] as presented in Section 4.3 is
correct.

We start with some observations about the chase. A max-
imal connected component (MCC) of a set of facts E is a
maximal subset E′ ⊆ E such that the undirected graph

(dom(E), {{d, e} | r(d, e) ∈ E for some role name r})

is connected. An MCC of an interpretation candidate I =
(F, ρ,∼) is an MCC of F . An L-ensemble in F is any tuple
ē such that for some a ∈ dom(F ), we have ρL(a) = ē.

Let I0, I1, . . . , Ik be a chase sequence w.r.t. an
ELHabs

r [cr]-ontology in normal form with Ii = (F i, ρi,∼i)
for 1 ≤ i ≤ k. An easy analysis of the chase rule reveals that
there are three types of MCCs in F k:

1. the MCC in F kL0
that contains C0(a0);

2. MCCs in F kL , with L ∈ AO \{L0}, that containA>(aL);

3. MCCs that are introduced by an R7 application.

Note in particular that since there are no abstractions and
no role refinements in the ontology, Rules R9 to R19 of
the chase are never applicable and thus the only rule that
can introduce a new MCC is R7. MCCs of Type 1 and 2
do not contain any ensembles and MCCs of Type 3 con-
tain a single ensemble, that is, there is a unique a such

that ρk(a) = (b1, . . . , bn) with all (equivalently: some) of
b1, . . . , bn in the MCC. We call a the origin of the MCC.

For a set of facts F and an a ∈ dom(F ), we use CNF (a)
to denote the set CNF (a) = {A | A(a) ∈ F}. It is not
difficult to show that Lemma 13 implies the following.

Lemma 15.
1. If K is an MCC of Type 1 and a ∈ dom(K), then OL0

|=
C0 vL0

∃u.(uCNK(a));
2. If K is an MCC of Type 2 on level L and a ∈ dom(K),

then OL |= > vL ∃u.(uCNK(a));
3. If K is an MCC of Type 3 on level L and with origin
a ∈ dom(F kL′) and b ∈ dom(K), then

A,OL |= ∃u.(uCNK(b))

where A is the union of all queries in Qref
L′,L(CNFk

L′
(a)),

viewed as ABoxes.

Now we are ready to prove Lemma 3 which we repeat
here for the reader’s convenience.

Lemma 3. The algorithm accepts iff C0 is L0-unsatisfiable
w.r.t. O.

Proof. “⇒”. Assume that the algorithm accepts and that,
to the contrary of what we need to show, there is an L0-
model I of C0 and O.

Condition 1 of the NP algorithm and I being a model of
C0 and O imply that I contains an element d1 with d1 ∈
S
IL1
1 . Condition 2 implies that for each i ∈ {1, . . . , n −

1}, there is an element di ∈ ∆ILi with di ∈ S
ILi
i . By

Condition 3 and I being a model of O, dn would have to
refine to two tuples of distinct arities which is impossible in
A-interpretations. We have thus obtained a contradiction.

“⇐”. Assume that C0 is L0-unsatisfiable w.r.t. O. We
can assume that the abstraction graph of O is a tree since
otherwise our NP algorithm accepts right away. Since C0

is unsatisfiable, Lemma 9 implies that the L0-chase on C0

and O aborts and returns ‘unsatisfiable’. Assume that the
chase sequence constructed until abortion is I0, I1, . . . , Ik,
and that Ii = (F i, ρi,∼i) for 1 ≤ i ≤ k.

We guide our algorithm into accepting by identifying a
suitable sequence S1, L1, . . . , Sn, Ln to be guessed. Since
O does not contain any abstractions or role refinements,
Rules R9 to R19 of the chase will never be applied and thus
the only rule application that can make the chase abort is R8.
Let an be the element for which R8 aborted (called ‘a’ in the
formulation of R8). We set

Sn = {A | A(an) ∈ F kL(an)}

and Ln = L(an). To define the remaining sequence, we
work our way backwards through the chase.

If an is in an MCC of Type 1 or 2, then by Lemma 15,
Condition 1 of our NP algorithm is satisfied and we are
done. If an is in an MCC of Type 3, then let an−1 be the
origin of that MCC. We set Sn−1 = {A | A(an−1) ∈
F kL(an−1)} and Ln−1 = L(an−1). By Lemma 15, Condi-
tion 2 of our algorithm is satisfied. Now we repeat this pro-
cedure of determining Si and Li which results in a sequence



of at most linearly many Si and Li, at most one per abstrac-
tion level in O. This sequence will always reach an MCC
of Type 1 or 2 and thus satisfying Condition 1, since on the
root level of AO all MCCs are of Type 1 or 2.

It is easy to verify that all three conditions of our NP al-
gorithm are satisfied by this sequence of Si and LI and thus
it accepts, as required. o

C Proofs for Section 4.4
The main purpose of this section is to prove Lemma 5, that
is, the correctness of our algorithm. We repeat the lemma
here for the reader’s convenience.
Lemma 5. The algorithm accepts iff C0 is L0-satisfiable
w.r.t. O.

To prove the completeness (“if”) part of the lemma, we
first show that if C0 is L0-satisfiable w.r.t. O, then there is
a pseudo-model of C0 and O in which the maximally con-
nected components are of size polynomial in ||O||.

C.1 Uniform Universal Models
It turns out that the universal models used in the proof of
Lemma 1, being obtained from a filtration of the chase, are
very hard to analyze. To avoid such an analysis, we resort to
a different, ‘semantic’ definition of universal models. These
are constructed by starting from the universal models whose
existence is guaranteed by Lemma 1 and then ‘piecing them
together’ in a very uniform, tree-like way.

Let C0 be an EL-concept, O an ELHabs
r [cr, ca]-ontology,

and L0 ∈ AO such that C0 is L0-satisfiable w.r.t. O. We
aim to construct a certain, highly uniformized universal L0-
model I of C0 and O.

Let I be an A-interpretation. With an L-ensemble in I,
we mean any tuple ē over ∆I such that ρIL(d) = ē for some
d ∈ ∆I . For a tuple ē of elements over ∆IL , for some L, we
use I|ē to denote the EL-interpretation that is obtained from
IL by restricting the domain to the elements of ē. In what
follows, ē shall either be an ensemble or a single element
that is not part of any ensemble.

For every EL-concept C and L ∈ AO such that C is
L-satisfiable w.r.t. O, Lemma 1 allows us to fix a universal
L-model UC,L of C andO with distinguished element dC,L.
With ēC,L, we denote the unique ensemble in UC,L that con-
tains dC,L, if existent, and the trivial tuple (dC,L) otherwise.
As a shortcut, we use IC,L to denote the EL-interpretation
UC,L|ēC,L

.

We construct a sequence of A-interpretations along with
a list OA of abstraction obligations. Start with the following
A-interpretation I:
• for all L ∈ AO and for C = C0 if L = L0 and C = >

otherwise, IL is IC,L
• ρI is empty;
• AI = AO and ≺ = ≺O.
Regarding OA, we start with an empty list and then do the
following, for all L ∈ AO and for C = C0 if L = L0 and
C = > otherwise:

• if dC,L is part of an ensemble ē in UC,L, append
(C,L, ē, ē) to OA.

We may use dC0,L0 , the distinguished element of UC0,L0 ,
also as the distinguished element of I. For easier reference,
we denote it with dI .

For a role name r ∈ R and abstraction level L ∈ AO,
we use Rr,OL

to denote the set of role names Rr,OL
= {s |

O |= r vL s}. Similarly, we use Cr,OL
to denote the con-

cept Cr,OL
=

d
{A | > vL ∀s.A ∈ O and s ∈ Rr,OL

}.

Now apply the following rules in a fair way:

1. if d ∈ AIL , A vL ∃r.B ∈ O, and there is no e ∈ (B u
Cr,OL

)IL with (d, e) ∈ sIL for all s ∈ Rr,OL
, then do

the following:

(a) let D = B u Cr,OL
. Use an isomorphism ι to re-

name the elements of ID,L to fresh elements, add
the resulting interpretation to IL and extend sIL with
(d, ι(dD,L)) for all s ∈ Rr,OL

;
(b) if dD,L is part of an ensemble ē in UD,L, append

(D,L, ē, ι(ē)) to OA;

2. if d ∈ ∆IL , C = uCNIL(d), ρUC,L

L′ (dC,L) = ē is de-
fined and ρIL′(d) is undefined, then

(a) use an isomorphism ι to rename the elements of
(UC,L)|ē to fresh elements and disjointly add the re-
sulting interpretation to IL′ ;

(b) set ρIL′(d) = ι(ē);

3. if (C,L, ē, ē′) is the first tuple on the list OA, then re-
move it; if ρUC,L

L (f) = ē, LUC,L(f) = L′, and D =
uCNUC,L

(f), then do the following:

(a) use an isomorphism ι to rename the elements of ID,L′
to fresh elements and disjointly add the resulting inter-
pretation to IL′ ;

(b) set ρIL(ι(dD,L′)) = ē′;
(c) if dD,L′ is part of an ensemble f̄ in UD,L′ , append

(D,L′, f̄ , ι(f̄)) to OA.

Intuitively, Rule 1 deals with existential restrictions, Rule 2
with refinements, and Rule 3 with abstractions.

First, we prove that I is universal, and then that it is in-
deed an L0-model of C0 and O.

Lemma 16. Let J be a model of O with d0 ∈ C
IL0
0 .

Then there is a homomorphism h from I to J such that
h(dI) = d0.

Proof. Let I0, I1, . . . be the sequence of A-
interpretations encountered during the construction of I. We
show that for each i ≥ 0, there is a homomorphism hi from
Ii to J with hi(dIi) = d0. The desired homomorphism h
is then

⋃
i≥0 hi.

For I0, we start with an empty homomorphism h0 and ex-
tend it as follows:

• since I0
L0

= IC0,L0 , there must be a homomorphism h

from I0
L0

to JL0
with h(dI) = d0 by universality of

UC0,L0
. We add h to h0;



• for the other levels L ∈ AO \ {L0}, we have I0
L = I>,L

which again implies that there must be a homomorphism
h from I0

L to JL by universality of U>,L. We add h to h0.

For i > 0 assume that hi is a homomorphism from Ii
to J . We have to show that there is a homomorphism hi+1

from Ii+1 to J . We start with hi+1 = hi and do a case
analysis on the rule that was applied to obtain Ii+1 from Ii:
• in case of Rule 1, let d ∈ AIL and A vL ∃r.B ∈ O be

the element and CI it was applied on. By the IH, hi(d) ∈
AJL and since J is a model of O, there is an e′ ∈ DJL

with D = (B u Cr,OL
) and (hi(d), e′) ∈ sJL for all

s ∈ Rr,OL
.

Thus for the isomorphic (with isomorphism ι) copy of
ID,L added to Ii+1

L in Rule 1a, we set hi+1(ι(dD,L)) =
e′ and are clearly able to extend hi+1 to the (possibly) re-
maining elements in the copy of ID,L by the universality
of UD,L;

• in case of Rule 2, let d ∈ ∆IL and C = uCNIL(d) be
the element and concept it was applied on. By the IH,
hi(d) ∈ CJL and universality of UC,L implies that there
is a homomorphism h from UC,L to J with h(dC,L) =

hi(d). Since Rule 2 was applied, ρUC,L

L′ (dC,L) = ē must
be defined which implies that ρJL′(hi(d)) = h(ē) is de-
fined as well, by definition of homomorphisms.
Let ι be the isomorphism used in Part a of Rule 2. We can
thus extend hi+1 by setting hi+1(ι(ē)) = h(ē).

• in case of Rule 3, let (C,L, ē, ē′) ∈ OA be the tuple that
it was applied on. Further, let ρUC,L

L (f) = ē, LUC,L(f) =
L′, and D =uCNUC,L

(f).
By the construction of OA, we get that dC,L is part of ē
in UC,L. Remember that ē′ is an isomorphic copy of ē by
some isomorphism ι. Let d = hi(ι(dC,L)). By the IH, we
then have d ∈ CJL and by universality of UC,L, there is a
homomorphism h from UC,L toJ with h(dC,L) = d. The
definition of homomorphisms then implies that d is part of
the ensemble h(ē). We must also have ρJL (h(f)) = h(ē)
and h(f) ∈ DJL′ .
Let ι′ be the isomorphism used in Rule 3 to create a copy
of ID,L′ . We extend hi+1 by setting hi+1(ι′(dD,L′)) =
h(f). It is straightforward to see that we can extend hi+1

to (possibly) remaining elements in ID,L′ by universality
of UD,L′ .

o

In the following we often talk about isomorphic copies
of elements or ensembles so let us define what isomorphism
means in this context. Let I and I ′ be two A-interpretations,
and ē and ē′ tuples of n elements over ∆IL and ∆I

′
L re-

spectively. We call ē and ē′ isomorphic w.r.t. I and I ′, if
ē[i] 7→ ē′[i] for 1 ≤ i ≤ n is an isomorphism from IL|ē to
I ′L|ē′ . We call two elements d ∈ ∆I and e ∈ ∆I

′
isomor-

phic w.r.t. to their interpretations, if (d) in I and (e) in I ′
are isomorphic. We use ē 'I ē′ to denote that ē and ē′ are
isomorphic in I and similar for d 'I d′.

Note that this definition of isomorphisms implies that if a
tuple ē in some interpretation I is an answer to some CQ q,

then any tuple ē′ isomorphic to ē in some interpretation I ′
is also an answer to q.
Lemma 17. I is an L0-model of C0 and O.

Proof. For readability we will add o to the lower index
of elements or tuples from universal models, intuitively de-
noting them as the ‘original’ elements, while I consists of
copies of these elements. It is straightforward to see that
C
IL0
0 6= ∅ by the construction of I.
To prove that I is a model of O, let us first consider the

concept inclusions in O. Note that in the construction of I,
every element d ∈ ∆I is introduced as an isomorphic copy
of some element f ∈ UC,L where UC,L is a universal L-
model of C and O. This clearly implies that all CIs of the
form > vL A ∈ O and A1 u · · · u An vL B ∈ O are
satisfied for d. Similarly, CIs of the form A vL ∃r.B ∈ O
are satisfied by the fair application of Rule 1.

For CIs of the form ∃r.A vL B ∈ O, consider an element
d ∈ (∃r.A)IL . By the semantics there is an e ∈ AIL with
(d, e) ∈ rIL . First, let us consider the case that d and e
are part of the same ensemble in I. The construction of I
implies that every L-ensemble in I is an isomorphic copy
of an L-ensemble in a model I ′ of O which immediately
implies d ∈ BIL , as required.

Now assume that d and e are not part of the same en-
semble. Hence (d, e) ∈ rIL must have been introduced by
an application of Rule 1. This implies d ∈ A′ for some
A′ vL ∃r.B′ ∈ O such that e is an isomorphic copy of
dB′,L by some isomorphism ι. By construction of I, this
dB′,L must then also satisfy dB′,L ∈ AUB′,L , since it is iso-
morphic to e.

Let J = UC,L and do ∈ ∆J be the universal model
and element such that d was introduced as an isomorphic
copy of do. Since do is part of a model of O, there is an
eo with (do, eo) ∈ rJL and eo ∈ B′JL . Universality of
dB′,L implies that eo ∈ AJL . Finally, J being a model of
O implies do ∈ BJL and since d is an isomorphic copy of
do, we get d ∈ BIL , as required.

It is straightforward to see that all role inclusions and
range restrictions ofO are satisfied in any (UC,L)|ēC,L

, since
it is part of a model ofO. We always add isomorphic copies
of such interpretations in the rules, which implies that any
roles introduced by such a copy still satisfy all role inclu-
sions and range restrictions.

That roles introduced by a Rule 1 application also satisfy
role inclusions and range restrictions immediately follows
from the definition fo Cr,OL

and Rr,OL
.

Now we are ready to prove that refinement and abstraction
statements are satisfied.
• Assume that d ∈ AIL and there is a concept refinement
L′: q(x̄) refines L:A ∈ O.
If ρIL′(d) = ē was set by a Rule 3 application, then there
is a universal model UC,L with ρULL′ (do) = ēo and with d
an isomorphic copy of do and ē an isomorphic copy of ēo.
Since UC,L is a model of O, this implies that ēo and thus
also ē are an answer to q on their respective interpretation.
Otherwise, let C = uCNIL(d). Since UC,L is a model
of O, it is straightforward to see that ρUC,L

L′ (dC,L) = ēo



is defined and ēo is an answer to q on UC,L. Now the fair
application of Rule 2 implies that ρIL′(d) = ι(ēo) with ι
some isomorphism and thus ι(ēo) is an answer to q on I,
as required.

• Assume that ē is an answer to a CQ q on IL for some
concept abstraction L′:A abstracts L: q(x̄) ∈ O. We
differentiate between three cases. The ensemble ē might
coincide with an ensemble in I, it might partially overlap
with an ensemble in I, or it might not share any constants
at all with an ensemble in I. We will prove that only the
first case can occur and the other two lead to a contradic-
tion.

Case 1: ē (properly!) overlaps with an ensemble in I.
Then Condition 5 of homomorphisms and Lemma 16
would imply overlapping ensembles in every model ofO,
contradicting the L0-satisfiability of C0 w.r.t. O.

Case 2: ē coincides with an L-ensemble in I.
Then by the construction of I, there are two cases. Either
ē was introduced by Rule 2 or ē was part of a tuple in OA
in the construction of I.
If ē was introduced by an application of Rule 2 for an
element d ∈ ∆IL′ and C = uCNIL′ (d), then let J =
UD,L be the universal model such that d was introduced
as an isomorphic copy of some do ∈ CJL′ . By the rule
application ρUC,L

L′ (dC,L) = ēo is defined. Universality of
UC,L then implies that ρJL (do) = f̄ is defined and that f̄
is an answer to q on J .
Now J being a model ofO implies do ∈ AJL′ and finally
d being an isomorphic copy of do implies d ∈ AIL′ , as
required.

Otherwise, there must have been a Rule 3 application on
a tuple (C,L, ēo, ē) ∈ OA. Let J = UC,L be the uni-
versal L-model of C and O. The Rule 3 application on
this tuple sets ρIL(d) = ē with d an isomorphic copy of
an do ∈ ∆JL′ such that ρJL (do) = ēo. Recall that by the
construction of I, ē is an isomorphic copy of ēo, which
implies that ēo is an answer to q on J . Since J is a model
ofO, we then obtain do ∈ AJL′ and due to d being an iso-
morphic copy of do, it follows that d ∈ AIL′ , as required.

Case 3: ē does not share a constant with any L-ensemble
in I.
We call an element of an A-interpretation free if it is not
part of any ensemble. Note that Rules 1 and 3 may intro-
duce free elements, and also the initial step may. An easy
analysis of the construction of I shows that

(∗) if some element d ∈ ∆I was introduced as an isomor-
phic copy of an element do from an interpretation UC,L,
then d being free implies that do is free.

We next observe that any tuple f̄ of free and connected
elements in ∆I forms a tree T = (V,E) with

V = {d | d ∈ ∆I is part of f̄}
E = {(d, e) ∈ V × V | (d, e) ∈ rIL for some r ∈ R}.

This is the case since roles outside of ensembles are only
introduced by Rule 1 which always introduces a fresh el-
ement as an endpoint.
Since CQs in abstraction statements are connected and the
elements in ē are all free, these elements must form a tree
T = (V,E).
Claim. Let dR ∈ V be the root of T and J = UC,L
the universal model such that dR was introduced as an
isomorphic copy of dC,L. Then there is a homomorphism
h from IL|V to JL with h(dR) = dC,L.

Proof of the claim. We define h step by step, traversing T
from the root to the leaves. We start with setting h(dR) =
dC,L which is a (partial) homomorphism since dR is an
isomorphic copy of dC,L.
Now assume that h(d) is already defined and (d, e) ∈ E.
Since e was introduced by a Rule 1 application, there is
an A vL ∃r.B ∈ O with d ∈ AIL and (d, e) ∈ sIL for
all s ∈ Rr,OL

such that e is an isomorphic copy of dC,L
with C = (B u Cr,OL

). We have h(d) ∈ AJL and J
being a model ofO implies that there is an f ∈ CJL with
(hi(d), f) ∈ sJL for all s ∈ Rr,OL

. We set h(e) = f .
This finishes the proof of the claim.

By the claim, there is a homomorphism h from IL|V to
JL with h(dR) = dC,L. Hence h(ē) is an answer to q on
UC,L with dC,L part of that answer. By (∗), this contra-
dicts our assumption that dR is free.

o

This concludes the proof that I is a uniformized univer-
sal model. What follows is some further analysis of the
structure of I which allows us to confirm the concrete upper
bound used in Line 3 of the algorithm (size of the XL).

We call an ensemble ē in I an abstraction ensemble
if there was a Rule 3 application that set ρI(f, L) = d̄
for some f . Otherwise, we call ē a refinement ensem-
ble. Intuitively, we will show that there are only polyno-
mially many abstraction ensembles that are pairwise non-
isomorphic. Additionally, if two abstraction ensembles ē
and f̄ are isomorphic in I, then they abstract to two ele-
ments that satisfy the same concept names in I.

A difficulty that arises when trying to prove the second
point is the following. Let ē be an ensemble in I that is a
copy of ēC,L and f̄ an ensemble in I that is a copy of f̄D,L
with ē 'I f̄ and C 6= D. What we would need to show now
is that in UC,L and UD,L, the ensembles ēC,L and f̄D,L ab-
stract to elements that satisfy the same concept names. This
implies analyzing how the chase constructs these models, in-
cluding the filtration step. As we already pointed out in the
main part of the paper, this is rather complex. Thus instead
we will inspect the construction of I, in particular the set of
abstraction obligations.

Recall that I was constructed by the union of a sequence
of interpretations I0, I1, . . . and with each of them a list of
abstraction obligations O0

A, O
1
A, . . . .

4 Let O∗A =
⋃
i≥0O

i
A

4In the algorithm we use only OA but we can easily define Oi
A

to be the OA used for Ii.



be the union of all abstraction obligations encountered dur-
ing the construction of I. Recall that a tuple ō ∈ OA with
ō = (C,L, ē, f̄) consists of a concept C, abstraction level
L, tuple ē that the distinguished element of UC,L is part of
and isomorphic copy f̄ of that tuple in I. We may use C ō to
denote the concept C of ō and Lō to denote the level L of ō.

Note that a simple analysis of I implies that for every
tuple (C,L, ē, f̄) ∈ O∗A, Rule 3 sets ρIL(d) = f̄ for some
d ∈ ∆I . Hence the set of all abstraction ensembles in I is
exactly the set of all ensembles f̄ with (C,L, ē, f̄) ∈ O∗A.
We say a tuple ō ∈ O∗A was introduced by some Rule i
application, if ō ∈ OjA, ō 6∈ Oj−1

A , and Ij was obtained
from Ij−1 by a Rule i application. Note that there can be no
duplicate tuples introduced to O∗A since the last component
in ō is always constructed using fresh elements.

An easy analysis of the construction of I reveals the fol-
lowing.

Lemma 18. For every tuple (C,L, ē, ē′) ever added to O∗A,
ē is the ensemble in UC,L that contains dC,L and ē′ is an
isomorphic copy of ē in IL.

Intuitively, this means that C and L uniquely determine
the ensemble ē and up to isomorphism also ē′. We can thus
classify these tuples by just the concept and level, which
helps to give an upper bound on the number of such concepts
per level.

Lemma 19. Let L ∈ AO and SL = {C | (C,L, ē, ē′) ∈
O∗A}. Then |SL| ≤ ||O||2 + ||O||.

Proof. For every level L ∈ AO, let d(L) denote the num-
ber of descendants of L in GO (not including L). The fol-
lowing is easy to see.

Claim 1. Let L ∈ AO be a level with d(L) = n such that L
has the children L1, . . . , Lm in GO. Then

d(L) = m+

m∑
i=1

d(Li).

We next prove the following central claim.

Claim 2 For any level L ∈ AO, if d(L) ≤ n, then |SL| ≤
(n+ 1) · (||O||+ 1).

Proof of claim. We do an induction on n.
Base case: n = 0. Assume that there is a level L ∈ AO

with d(L) = 0. Thus L has no child in GO. By construction
of I, it is clear that the abstraction graph (I,≺−1) of I is
a subgraph of GO. Thus L is also a leaf abstraction level
in (I,≺−1). Then all tuples ō ∈ O∗A with Lō = L must
be introduced by Rule 1 applications plus one entry for the
initial I>,L or IC0,L. It cannot be that Rule 3 introduces
such a ō since there is no abstraction level that elements of
L refine to. For every tuple ō ∈ O∗A with Lō = L that is
introduced by Rule 1, it is clear by definition of Rule 1, that
C ō depends only on some CI of the form A v ∃r.B in O.
Since there are of course at most ||O|| such CIs in O, we
obtain an upper bound of |SL| ≤ ||O||+ 1 which proves the
IH for n = 0.

Induction step: n = i. Assume that the IH holds for
n = i− 1. We want to prove that it is then also satisfied for

n = i. Let L ∈ AO be such that d(L) ≤ i. If d(L) < i,
then we can apply the IH to obtain |SL| ≤ i · (||O||+ 1) and
are done. Hence let us assume that d(L) = i. Let us also
assume that L has children L1, . . . , Lm in GO.

We want to find an upper bound on the size of SL so let
us again consider how tuples ō ∈ O∗A with Lō = L are
introduced to O∗A. For the same reasons as in the base case,
there can be at most ||O||+1 concepts in SL that come from
tuples inO∗A introduced by Rule 1 and the initial tuple inO∗A
for level L.

In contrast to the base case, there can now also be tuples
ō ∈ O∗A with Lō = L that have been introduced by a Rule 3
application on some tuple ō′ ∈ O∗A with Lō

′
= Li for some

i ∈ {1, . . . ,m}. Let k be the number of concepts C ∈ SL
such that there is such a tuple ō with C ō = C. It is clear that
|SL| ≤ ||O||+ 1 + k and thus it remains to analyze k.

If Rule 3 is applied on a tuple (C,Li, ē, ē
′) ∈ O∗A and

introduces a tuple (D,L, f̄ , f̄ ′) to O∗A, then D depends only
on C and L. Recall that SLi is the set of concepts C such
that there is a tuple ō′ ∈ O∗A with C ō

′
= C and Lō

′
= Li.

In the worst case (upper bound) each of these tuples (for
each of the children of L) induces a Rule 3 application that
generates a tuple with a fresh concept for level L. Thus k ≤∑m
i=1 SLi . This is the starting point of the following chain

of inequalities.

k ≤
m∑
i=1

SLi
(1)

≤
m∑
i=1

(
(d(Li) + 1) · (||O||+ 1)

)
(2)

= (||O||+ 1) ·
m∑
i=1

(d(Li) + 1) (3)

= (||O||+ 1) ·
(
m+

m∑
i=1

(d(Li))
)

(4)

= (||O||+ 1) ·
(
m+ d(L)−m

)
(5)

≤ (||O||+ 1) · i (6)

From 1 to 2 we use the IH on SLi
. From 4 to 5 we apply

Claim 1 on the sum. From 5 to 6, we apply the assumption
that d(L) ≤ i since we are in the case that n = i. We obtain:

|SL| ≤ ||O||+ 1 + k

≤ ||O||+ 1 + (||O||+ 1) · i
= (||O||+ 1) · (i+ 1)

which finishes the induction step for n = i and concludes
the proof of the claim.

We have d(L) ≤ |AO| ≤ ||O|| for all L ∈ AO. Thus
Claim 2 implies |SL| ≤ ||O|| · (||O|| + 1) for all L ∈ AO,
as required. o

We call an element d ∈ ∆I an abstraction element if
ρIL(d) = ē and ē is an abstraction ensemble in I. Recall that
in the PSPACE algorithm we guess (in Line 3) a set of sets
of concept names that represent these abstraction elements.



Now we are ready to prove the upper bound for the size of
those sets.

Lemma 20. For all L ∈ AO, the set

YL = {CNI(d) | d ∈ ∆IL and d is abstraction element}

satisfies |YL| ≤ ||O||3 + ||O||2.

Proof. Let d, d′ ∈ ∆IL be abstraction elements. Then
there are tuples ō1 = (C,L′, ē, ē′) and ō2 = (C,L′′, f̄ , f̄ ′)
in O∗A, such that ρIL′(d) = ē′ and ρIL′′(d

′) = f̄ ′. We show
that if L′ = L′′, then CNI(d) = CNI(d′).

We have ρIL′(d) = ē′ and ρIL′(d
′) = f̄ ′, and this must

have been set by applications of Rule 3. An analysis of
this rule shows that then there must be f, f ′ such that
ρ
UC,L

L′ (f) = ē and ρUC,L

L′ (f ′) = f̄ . By Lemma 18, we have
ē = f̄ and thus also f = f ′. Again considering the defini-
tion of Rule 3, we must have CNI(d) = CNI(d′) as desired.

To |YL|, it thus suffices to count the number of distinct
pairs (C,L) in tuples (C,L, ē, ē′) ever added to O∗A, and
this is bounded from above by ||O|| · (||O||2 + ||O||) due to
Lemma 19. o

For an abstraction ensemble ē, we call an element d ∈ ē
the origin of ē, if there is a role edge (f, d) ∈ rIL(d) such
that f is not part of ē. The construction of I implies that
there is at most one origin per abstraction ensemble.

As outlined in the main part of the paper, we want to con-
struct pseudo-models with MCCs of polynomial size by us-
ing a uniformized universal model. In the following section,
we have to prove that tame matches of abstraction CQs to
such a pseudo-model imply a match to a standard model.
We next prove an intermediary lemma that helps with this.

Intuitively, if an abstraction ensemble has an origin o, then
the concept names that o satisfies determine the whole en-
semble that o is part of.

Lemma 21. Let d̄ be an abstraction ensemble in IL for
some L ∈ AO, and d the origin of d̄. If CNI(d) = CNI(e)
for some e ∈ ∆IL , then e is part of an ensemble ē such that
there is a homomorphism h from I|d̄ to I|ē with h(d) = e.

Proof. Since d̄ is an abstraction ensemble, there was an
application of Rule 3 that sets ρI(f, L) = d̄ for some f . Say
that this application has processed the tuple (C,L, ḡ, d̄). By
Lemma 18, ḡ is the ensemble of UC,L that contains dC,L and
d̄ is an isomorphic copy thereof. Moreover, the construction
of I ensures that the origin d of d̄ is a copy of dC,L, and
C =

d
S for some S ⊆ CNI(d). To see this, note that if

(C,L, ḡ, d̄) was added to O∗A initially or by Rule 3, then no
element of d̄ has a role predecessor outside of d̄, and thus
d̄ has no origin. This is because roles outside of ensem-
bles are only introduced by Rule 1 applications, and Rule 1
always introduces fresh elements as role successors. Thus
(C,L, ḡ, d̄) was added to O∗A by Rule 1 and an easy analysis
of this rule shows that d is a copy of dC,L and C =

d
S for

some S ⊆ CNI(d).
By the universality of UC,L, there is a homomorphism h

from UC,L to I with h(dC,L) = e. Since ḡ is an ensemble
in UC,L, there is a g such that ρUC,L(g, L) = ḡ for some
g. By Point 5 of the definition of homomorphisms, we have

ρI(h(g), L) = h(ḡ). From h(dC,L) = e and dC,L being
part of ḡ, we know that e is part of the ensemble ē = h(ḡ).
Points 3 and 4 of the definition of homomorphisms (be-
tween A-interpretations) yields the desired homomorphism
(between EL-interpretations) from I|d̄ to I|ē. o

C.2 Pseudo-Models with Small Component Size
The aim of this section is to prove:
Lemma 4. If C0 is L0-satisfiable w.r.t. O, then there is an
L0-pseudo-model I of C0 and O such that each MCC of I
has at most 2 · (||O||2 + ||O||) elements.

Let U be the uniform universal L0-model of C0 and O
with dU ∈ C

UL0
0 . We construct a sequence of A-

interpretations I0, I1, . . . . The A-interpretation that we are
interested in is then obtained as the limit of the sequence
I0, I1, . . . .

The construction of I0, I1, . . . is such that for all i ≥ 0

and all L ∈ AO, we have ∆I
i
L ⊆ ∆UL .

We start with some preliminaries. For every tuple of ele-
ments ē over ∆UL , for some L ∈ AO, we use S(ē) to denote
a smallest subset of ∆UL that satisfies the following proper-
ties:

1. all elements of ē are in S(ē);
2. if e ∈ S(ē) and there is a CI A vL ∃r.B ∈ O such

that the MCC of ∆UL that contains e has elements d, er,B
such that (d, er,B) ∈ rUL , er,B ∈ BUL , there is no en-
semble in U that contains both d and er,B , and er,B is
the element satisfying the fewest concept names in addi-
tion to the other conditions, then choose such an er,B and
include it in S(ē);

3. if d ∈ S(ē) is part of the ensemble ē′ in U , then include
in S(ē) all elements of ē′.

For every element e ∈ S(ē), introduce a fresh element e†
and set S†(ē) := {e† | e ∈ S(ē)}.

For every L ∈ AO and tuple of elements ē over ∆UL , we
define an EL-interpretation Jē. This proceeds in two steps.
In the first step, we set

∆Jē = S(ē) ∪ S†(ē)
AJē = {e, e† | e ∈ AUL ∩ S(ē)}
rJē = {(d, e), (d†, e†) | (d, e) ∈ rUL ∩ (S(ē)× S(ē))}.

In the second step, we further extend rJē as follows, for
each role name r. Consider every element d ∈ S(ē) and
CI A vL ∃r.B ∈ O such that d ∈ AJē \ (∃r.B)Jē . Then
d ∈ AUL and since UL is a model of OL, there is a (d, e) ∈
rUL with e ∈ BUL . There is no ensemble in U that contains
both d and e, as then we would have e ∈ S(ē), implying
(d, e) ∈ rJē and e ∈ BJē , contradicting d /∈ (∃r.B)Jē . It
follows that an element er,B was chosen in Step 2 above and
we can set

sJē = sJē ∪ {(d, e†r,B), (d†, er,B)} for all s ∈ Rr,OL
.

It is easy to verify that every EL-interpretation Jē is a model
ofOL. Note that we use the copies d† of elements d to avoid



adding edges to ensembles in the second step that do not
exist in UL.

We now construct the interpretation I0. Set ρI0 to be
empty, AI0 = AO and ≺I0 = ≺O. It remains to populate
the EL-interpretations I0

L, for all L ∈ AO. Let L ∈ AO.
We choose an initial element dL ∈ ∆UL and then set I0

L =
JS(dL). To make precise the choice of dL, recall that we
have built U by starting with UL = IC,L where C = C0 if
L = L0 and C = > otherwise. Further, recall that IC,L is
a restriction of the universal model UC,L with distinguished
element dC,L. We choose dL to be dC,L (and consequently
dL = dU if L = L0).

The rest of the sequence of A-interpretations I0, I1, . . .
is obtained by repeatedly satisfying abstraction and refine-
ment statements in O, guided by U , each time adding an
MCC in essentially the same way as described above. This
is done in a fair way, that is, we do not defer the satisfaction
of any abstraction and refinement statement forever so that
in the A-interpretation I obtained in the limit of I0, I1, . . . ,
all abstractions and refinements are satisfied. We now give
details.

There are two rules for obtaining Ii+1 from Ii and
we assume that they are applied in a fair way to obtain
the sequence I0, I1, . . . . For a tuple of elements ē =

(e1, . . . , en), we may write ē† to denote (e†1, . . . , e
†
n).

Rule 1. Choose a d ∈ ∆I
i

such that ρUL(d) = ē and ρI
i

L (d)
is undefined.

Consider the EL-interpretation Jē. Using the construc-
tion and structure of U and Ii and our choice of initial el-
ements, it can be verified that none of the elements of ∆Jē

occur in ∆I
i

.5
Now define Ii+1 to be Ii, modified as follows:

• ρI
i+1

L (d) = ē and ρI
i+1

L (d†) = ē†;

• Ii+1
L is the disjoint union of IiL and Jē.

Rule 2. Choose a tuple ē over ∆I
i
L , for some L ∈ AO, such

that ρUL(d) = ē and there is no d′ such that ρI
i

L (d′) = ē.
Consider the EL-interpretation Jd. It can be verified that

none of the elements of ∆Jd occur in ∆I
i

. Now define Ii+1

to be Ii, modified as follows:

• ρI
i+1

L (d) = ē and ρI
i+1

L (d†) = ē†;

• Ii+1
L is the disjoint union of IiL and Jd.

The following lemma is a straightforward implication of the
construction of I.
Lemma 22. I has the following properties:
1. ∆I ⊆ {d, d† | d ∈ ∆U};
2. CNI(d) = CNI(d†) = CNU (d) for all d ∈ ∆I;
3. ρIL(d) = ρUL(d) and ρIL(d†) = ρUL(d)† for all L ∈ AO

and d ∈ ∆I;
5And even if they did, we could easily deal with this issue by

renaming elements; we thus refrain from analyzing this in great
depth.

4. I|ē and I|ē† are isomorphic to U|ē, for all ensembles ē
in I.

Now we prove that I is in fact the desired pseudo-model.
Recall that for tameness, we need to consider the graphGh,I
for a homomorphism h from some CQ q to I. For readabil-
ity, we often index h with the interpretation it maps to (for
example hI) and will in such cases omit the I from the lower
index of Gh,I .
Lemma 23. I is a L0-pseudo-model of C0 and O.

Proof. We have C
I0
L0

0 6= ∅ and thus also CIL0
0 6= ∅. In

the construction of I, we already argued that each of the Jē,
with ē a tuple over ∆UL , is a model of OL. Hence it is easy
to verify that I satisfies all concept inclusions, role inclu-
sions, and range restrictions in O. What remains to show is
that concept refinements and abstractions are also satisfied.
For simplicity, we consider only the elements of ∆I that are
also elements of ∆U , but not their ·†-companions. For the
latter, all arguments are identical.

Assume that d ∈ AIL and there is a concept refinement
L′: q(x̄) refines L:A in O. Lemma 22 implies d ∈ AUL

and since U is a model of O, ρUL′(d) = ē is defined and ē
is an answer to q on U . The construction of I then implies
that either Rule 1 or Rule 2 set ρIL′(d) = ē and Lemma 22
implies that ē is an answer to q on I, as required.

Assume that ē is a tame (w.r.t. OL) answer to a CQ q(x̄)
on IL for some concept abstraction L′:A abstracts L: q(x̄)
in O. Let hI be the tame homomorphism with hI(x̄) = ē.

We differentiate between three cases. The ensemble ē
might coincide with an ensemble in I, it might not share
any constants at all with an ensemble in I, or it might par-
tially overlap with an ensemble in I. We will show that only
the first case occurs and satisfies the concept abstraction, the
other two lead to a contradiction.
• Case 1: ē coincides with an existing L-ensemble in I.

Then by the construction of I, Rule 1 or Rule 2 have set
ρIL(d) = ē for some d ∈ ∆I . For both rule applications,
this implies ρUL(d) = ē. By Lemma 22, ē is an answer to
q on UL and since U is a model ofO we obtain d ∈ AUL′ .
Lemma 22 then implies d ∈ AIL′ , as required.

• Case 2: ē consists of only free elements in IL. By def-
inition of tameness, GhI is then a tree and each node is
a singleton class. Hence we assume for simplicity that
the nodes are the variables themselves (instead of equiva-
lence classes containing one variable). Let xR be the root
of GhI . We argue that there is a homomorphism hU from
q to UL with hU (xR) = hI(xR).
First, we prove a claim about the existence of roles in U
that are similar to roles that span across ensembles in I.
It will be helpful here and in the next case.

Claim 1. Let e, e′ ∈ ∆IL be two elements and S = {r |
(e, e′) ∈ rIL} the set of role names that go from e to
e′. If e and e′ are not part of the same L-ensemble in I,
then for any f ∈ ∆UL with CNI(e) = CNU (f), there is
an f ′ ∈ ∆UL such that (f, f ′) ∈ rUL for all r ∈ S and
CNI(e′) = CNU (f ′).

Proof of the claim. By construction of I, there is a tuple



ē of elements such that e, e′ ∈ ∆Jē . Since e and e′ are
not part of the same ensemble in I, e′ must have been
introduced by Property 2 in the construction of Jē (also
in the case where e = e′). Consequently, there is a CI
A vL ∃r.B ∈ O such that e ∈ AIL , r ∈ S and e′ = er,B
with er,B the distinguished element chosen for r andB in
Jē.
All edges in S must have then been set in the second step
of the construction of Jē. This implies S = Rr,OL

. What
remains is to find an f ′ such that CNI(e′) = CNU (f ′).
For this, we need to argue that e′ is ‘universal’.
We call an element d ∈ ∆I concept-name-universal for a
concept C, abstraction level L and ontology O, if in any
model J of O and element e ∈ CJL , we have CNI(d) ⊆
CNJ (e). Note that we do not use the standard universality
definition here, since I might contain reflexive edges. In
the following we prove that e′ is concept-name-universal
for B u Cr,OL

, L, and O.
By Lemma 22, we have e ∈ AUL . It is relatively straight-
forward to see that there cannot be an r-successor g of e
in UL that satisfies B and is part of the same ensemble
as e. If there were such a g, then Property 3 of S(ē) and
the definition of Jē would have introduced (e, g) ∈ rIL
instead of (e, e′) ∈ rIL .
But since UL is a model of O, there still must be an r-
succesor ê of e that satisfiesBuCr,OL

(and is thus not part
of the same ensemble as e). The construction (uniformity)
of U then implies that ê is universal for B uCr,OL

and L.
Property 2 of S(ē) indicates that we choose as er,B an
element satisfying the fewest concept names (in addition
to the other conditions). Since we just showed that there
is an element that satisfies the necessary conditions for
Property 2 and is also universal for B u Cr,OL

, L, and
O, we obtain concept-name-universality of er,B for B u
Cr,OL

, L, and O.
Remember that for proving the claim, we need to prove
that there exists an f ′ ∈ ∆UL such that (f, f ′) ∈ sUL for
all s ∈ S and CNI(e′) = CNU (f ′). This has now become
straightforward. First, CNI(e) = CNU (f) implies that
f ∈ AUL . Then, U being a model of O implies that there
is an r-successor f ′ of f that satisfies D = B u Cr,OL

(we showed that A vL ∃r.B ∈ O). The construction
of U implies that f is universal for D and L, and we al-
ready proved that e′ = er,B is concept-name universal for
D, L, and O. Hence CNI(e′) = CNU (f ′). And finally
since S = Rr,OL

, U being a model of O implies that
(f, f ′) ∈ sUL for all s ∈ S. This finishes the proof of the
claim.

Now let us get back to defining the homomorphism hU
from q to UL. We define it step by step, traversing GhI
from the root xR to its leaves while also proving that for
all x ∈ var(q), we have CNI(hI(x)) = CNU (hU (x)).
We set hU (xR) = hI(xR). This is a partial homomor-
phism, since by Lemma 22, they satisfy the same concept
names and by tameness there are no reflexive atoms in q.
It is trivial to show that CNI(hI(xR)) = CNU (hU (xR)).
Now assume that hU (x) is already defined,

CNI(hI(x)) = CNU (hU (x)), (x, y) an edge in GhI and
hU (y) is undefined. Then we can directly use Claim 1
on hI(x), hI(y), S = {r | (hI(x), hI(y)) ∈ rI}, and
hU (x) to define hU (y). Hence we obtain a homomor-
phism hU from q to UL.
Obtaining hU is, however, a contradiction to U being a
model of O. By assumption hI(xR) was free, making
hU (x̄) free by construction of I and hence contradicting
U being a model ofO. Thus we have proven that ē cannot
consist of only free elements in I.

• Case 3: ē partially overlap with an least one ensemble in
I. This means that ē contains at least one element that
is part of an ensemble and another element that is free or
part of another ensemble.
Recall that we call an ensemble ē in U an abstraction en-
semble if it was introduced by a Rule 3 application. Oth-
erwise, we call ē a refinement ensemble. Let cR be the
root of GhI .
We define hU step by step, traversing GhI from its root
cR to its leaves while also proving that for all x ∈ var(q),
we have CNI(hI(x)) = CNU (hU (x)). Start by setting
hU (x) = hI(x) for all x ∈ cR. Lemma 22 implies that
this is a partial homomorphism. It is trivial to show that
CNI(hI(x)) = CNU (hU (x)) for all x ∈ cR.
Now assume that (c1, c2) is an edge in GhI , hU (x1) is
already defined for all x1 ∈ c1 and hU is undefined for
the elements in c2. Let x1 ∈ c1 and x2 ∈ c2 be variables
such that r(x1, x2) ∈ q.
The construction of U implies that either hI(x2) is free or
it is the origin of an abstraction ensemble in I. Let C =
CNI(hI(x2)) and S = {r | (hI(x1), hI(x2)) ∈ rIL}.
Applying Claim 1 on hI(x1), hI(x2), S, and hU (x1) lets
us obtain an f ′ ∈ ∆UL such that (hU (x1), f ′) ∈ sUL for
all s ∈ S and CNI(hI(x2)) = CNU (f ′). Hence setting
hU (x2) = f ′ is a partial homomorphism. If hI(x2) is
free, then we are done.
Otherwise, hI(x2) is the origin of an abstraction ensem-
ble f̄ in I. The construction of GhI implies that all
hI(x′2) with x′2 ∈ c2 are then part of f̄ . By Lemma 22,
hI(x2) is then also the origin of an abstraction ensemble
f̄ ′ in U that is isomorphic to f̄ . Hence we can extend hU
to the variables in c2 by applying Lemma 21 on f̄ ′ as d̄,
hI(x2) as d, and hU (x2) as e respectively.
Condition 2 of tameness ensures that there are no role-
atoms in q that go from variables in c1 to c2 but map to
different elements than hI(x1) and hI(x2).
We have thus obtained a homomorphism hU from q to UL.
What remains to prove is that this contradicts U being a
model of O. We do this by proving that hU spans across
multiple ensembles in U .
By construction, hU overlaps with the ensemble of the
elements in cR. Our assumption was that hI(x̄) spans
across multiple ensembles and hence GhI contains at
least two nodes. Let c be a successor of cR and r(x, y) ∈
q with x ∈ cR and y ∈ c the role atom that exists by
definition of GhI . Also let e = hI(x) and e′ = hI(y).



By construction of I, the element e′ must satisfy some
concept name B not satisfied by any r-successor of e that
is part of the L-ensemble of e. Lemma 22 then implies
that hU (x) does not have an r-successor that is part of
the same ensemble and satisfies B. Hence hU (y) must be
part of a different ensemble (including no ensemble at all)
than hU (x). This contradicts U being a model of O.

o

We analyze the size of I componentwise since our algo-
rithm guesses these components in the form of mosaics.

Lemma 24. Each MCC in I has at most 2 · (||O||2 + ||O||)
elements.

Proof. By construction of I, for every MCC J of I there
is an ensemble ē in I such that ∆J ⊆ S(ē), with S(ē) de-
fined as in the construction of J . The ensemble ē may con-
tain at most ||O|| elements. S(d̄) might introduce an element
er,B for every role name r and concept name B that appear
in O. Each of these er,B might also be part of an ensemble.
This results in adding at most ||O|| · ||O|| elements. for a
total of ||O||2 + ||O|| elements. Finally, we also introduce
·† copies of each of these elements hence doubling the total
number. o

Now we are ready to prove the correctness of our PSPACE
algorithm.

C.3 Soundness
Assume that the algorithm returned ‘true’. We need to prove
that there is an L0-model I of C0 and O.

We construct I in two steps. First, we define an unravel-
ing of individual mosaics and then we add the refinements
and abstractions to these unravelings. Let M = (I, L,E, ē)
be a mosaic. We use E+ to denote E extended with all
length one tuples (d) such that d ∈ ∆I is not part of any
ensemble in E. Note that ē ∈ E unless ē is the empty tuple.
A path in M is a sequence

p = ē1 d2r2f2ē2 d3r3f3ē3 · · · dkrkfkēk

where k ≥ 1 and for 1 ≤ i ≤ k, ēi ∈ E+, di is an element
in ēi−1, fi is an element in ēi, and each ri is a role name
such that the following conditions are satisfied:

1. (di, fi) ∈ rIi for 1 ≤ i < k;

2. if ēi = ēi+1, then ēi /∈ E.

The last condition ensures that we do not unravel edges in-
side of ensembles. We cannot generally demand ēi 6= ēi+1

because reflexive loops of non-ensemble elements must be
unraveled. We use headE(p) to denote the ensemble ē1 and
likewise for tailE(p) and ēk. Now the unraveling of M at a
tuple d̄ ∈ E+ is the interpretation J defined by setting

∆J = {(p, d) | p path in M with headE(p) = d̄

and d ∈ tailE(p)}
AJ = {(p, d) | d ∈ AI}
rJ = {(p, d), (p, e) | (d, e) ∈ rI and tailE(p) ∈ E}∪

{((p, d), (p′, f)) | p′ = p drf ē for some ē}.

The condition tailE(p) ∈ E is there to prevent reflexive
loops of non-ensemble elements to be included.

LetM be the set of all mosaics that our algorithm guessed
during its successful run.

Lemma 25. Any unravelingJ of a mosaicM ∈M at some
tuple is a model of OLM .

Proof. Let M ∈ M with M = (I, L,E, ē) be such a
mosaic. By definition of mosaics, I is a model ofOL. What
remains to be proved is that the same holds for J . We first
consider the different forms of CIs that any element d ∈ ∆J

has to satisfy:

• it is straightforward to see that CIs of the form > vL
A ∈ O and A1 u . . . ,uAn vL A ∈ O are satisfied, by
definition of J and the fact that I is a model of OL;

• if (p, d) ∈ AJL and A vL ∃r.B ∈ O, then there is an
e ∈ BIL and (d, e) ∈ rIL by I being a model of OL.
If both d and e are part of the same ensemble in E, then
((p, d), (p, e)) ∈ rJ and (p, e) ∈ BJ by definition of J .
If d = e and d is not part of an ensemble in E, then
((p, d), (pdrd(d), d)) ∈ rJ and (pdrd(d), d) ∈ BJ by
definition of J .
If d and e are not part of the same ensemble in E and
d 6= e, then let f̄ ∈ E+ be the tuple with e in f̄ . Again
the definition of J implies that ((p, d), (pdref̄ , e)) ∈ rJ
and (pdref̄ , e) ∈ BJ , as required;

• if (p, d) ∈ (∃r.A)J and ∃r.A vL B ∈ O, then by seman-
tics, there is an (p′, e) ∈ AJ with ((p, d), (p′, e)) ∈ rJ .
The definition of J and paths then imply that (d, e) ∈ rI
and e ∈ AI . Since I is a model of OL, we have d ∈ BI
and thus (p, d) ∈ BJ , as required.

What remains to be proved is that role inclusions and range
restrictions are satisfied. Let ((p, d), (p′, f)) ∈ rJ . By defi-
nition of J , there are two cases. If p = p′, then (d, f) ∈ rI .
Since I is a model of O, it is then easy to see that any role
inclusion and range restriction with regards to r is satisfied
in J .

Otherwise, we have p′ = pdrfē for some ē ∈ E+. The
definition of paths implies that (d, f) ∈ rI and clearly any
role inclusion and range restriction is again satisfied. o

Next, we show that for homomorphisms of connected
CQs into the unraveling, we can find tame homomorphisms
that match into the pseudo-model.

Lemma 26. Let J be the unraveling of any M ∈ M at
some tuple and with M = (I, L,E, ē). For every connected
CQ q and homomorphism hJ from q to J , there is a tame
homomorphism hI from q to I.

Proof. For all x ∈ var(q) and hJ (x) = (p, d), we set
hI(x) = d. The definition of J implies that if (p, d) ∈
AJ , then d ∈ AI and that if ((p, d), (p′, e)) ∈ rJ , then
(d, e) ∈ rI . Thus hI is an answer to q on I.

What remains to be proved is that hI is tame. We first
prove that hJ is tame and then use this to show that hI
must be tame as well. Note, however, that currently J is
not equipped with a set of ensembles. Hence let EJ be the



set of ensembles of J , defined by

EJ = {((p, d1), . . . , (p, dn)) | (p, di) ∈ ∆J for 1 ≤ i ≤ n
and (d1, . . . , dn) ∈ E}.

Let us consider the directed graph GhJ ,J as defined in
the main part of the paper. We must show that Conditions 1
and 2 of tameness are satisfied. For Condition 1, we have
to show that GhJ ,J is a tree, possibly with self-loops on
ensemble nodes.

By assumption, q is connected which implies that GhJ ,J
is connected. Now take any edge (c1, c2) in GhJ ,J with
c1 6= c2. Then q contains an atom r(x1, x2) with x1 ∈ c1
and x2 ∈ c2, and we have (hJ (x1), hJ (x2)) ∈ rJ . By
construction of GhJ ,J , c1 6= c2 implies that hJ (x1) and
hJ (x2) are not part of the same ensemble in J . Conse-
quently, if hJ (x1) = (p1, d1) and hJ (x2) = (p2, d2), then
p1 6= p2. From (hJ (x1), hJ (x2)) ∈ rJ and the definition
of J we obtain that p2 is a longer path than p1. Clearly, this
property precludes the existence of cycles in GhJ ,J .

Regarding self-loops, consider any edge (c, c) in GhJ ,J .
We have to show that c is an ensemble node. Assume that
it is not. As mentioned in the main part of the paper, then
c = {x} is a singleton. Thus q contains an atom r(x, x) with
x ∈ c. We have (hJ (x), hJ (x)) ∈ rJ . By definition of J ,
this implies that hJ (x) = (p, d) with tailE(p) ∈ E. But this
means that c is an ensemble node, which is a contradiction.

Now for Condition 2. Let (c1, c2) be an edge in GhJ ,J .
Then there are ensembles ē1, ē2 ∈ EJ such that for all
x ∈ ci, we have hJ (x) ∈ ēi, for i ∈ {1, 2}. By defi-
nition of EJ , there are thus paths p1, p2 such that for all
x ∈ ci, hJ (x) is of the form (pi, d) for some d and for
i ∈ {1, 2}. Since (c1, c2) is an edge in GhJ ,J , q must con-
tain an atom r(x1, x2) with x1 ∈ c1 and x2 ∈ c2. Thus
p2 has the form p1drfē. To see that Condition 2 is satis-
fied, take any r(x1, x2) ∈ q with x1 ∈ c1 and x2 ∈ c2.
Then r(hJ (x1), hJ (x2)) ∈ rJ and by definition of J we
must have hJ (x1) = (p1, d) and hJ (x2) = (p2, f). Con-
sequently d1 = d and d2 = f are the elements required to
witness Condition 2.

At this point, we have shown that hJ is tame and now
prove that also hI is. To show that Condition 1 is sat-
isfied, it suffices to prove that GhI ,I = GhJ ,J . For
this, in turn, it is enough to show that x ∼hI y if and
only if x ∼hJ y for all x, y ∈ var(q). Assume that
x ∼hI y. Then Gq contains a path x = z1, . . . , zn = y
such that hI(z1), . . . , hI(zn) are all part of the same en-
semble in E. Now consider hJ (z1), . . . , hJ (zn) and recall
that q contains an atom ri(zi, zi+1) for 1 ≤ i < n. We
have (hJ (zi), hJ (zi+1)) ∈ rJi . If hJ (zi) = (p, d) and
hJ (zi+1) = (p′, d′), then the definition of rJi yields p = p′:
otherwise p′ takes the form pdrfē and Condition 2 of the
definition of paths ensures that tailE(p) 6= ē. This con-
tradicts the assumption that hI(zi) and hI(zi+1) are part
of the same ensemble in E, since by definition of paths,
d ∈ tailE(p) and d′ ∈ ē. By definition of EJ , p = p′

implies that hJ (zi) and hJ (zi+1) are in the same ensemble
in EJ and by transitivity so are all of hJ (z1), . . . , hJ (zn).
Consequently, x ∼hJ y.

The converse direction is similar but simpler, using the
definition of EJ .

Now for Condition 2. Take any edge (c1, c2) in GhJ ,J
and let (p1, d1) and (p2, d2) be the elements of ∆J which
witness that Conditions 2 is satisfied. Then for the edge
(c1, c2) in GhI ,I we can take d1 and d2 as witnesses. o

In the following, we only need one specific unraveling for
each mosaic M ∈ M, depending on the part of the algo-
rithm in which M was guessed:

• if M was guessed in Line 4, we choose d ∈ CI
M

0 and
unravel at (d);

• if M was guessed in Line 7 for some T ∈ XL, then we
choose d ∈ (

d
T )I

M

and unravel at (d);

• if M was guessed in Line 13, then we unravel at ēM .

Note that each M ∈ M is guessed at only one of these
places: mosaics guessed at Line 4 have level L0 while the
mosaics guessed at Line 7 have a level L 6= L0; moreover,
eM is the empty tuple for mosaics guessed at Lines 4 and 7,
but not for mosaics guessed at Line 13. When we speak
about the unraveling of a mosaic M ∈ M, we mean the
unraveling at the tuple defined above.

We use the unraveled mosaics to construct an L0-model
I of C0 and O. More precisely, we construct a sequence
of A-interpretations I0, I1, I2, . . . in which more and more
concept abstractions and refinements from O are satisfied.
The desired model I is obtained in the limit. Along with the
sequence I0, I1, . . . , we define mappings M0,M1, . . . and
ω0, ω1, . . . such that Mi associates with every d ∈ ∆Ii a
mosaic Mi(d) ∈ M and ωi associates with every d ∈ ∆Ii

an element ω(d) ∈ ∆I
M(d)

. For the sake of readability,
we treat the functions from the sequence M0,M1, . . . as a
single function M with growing domain, and likewise for
ω0, ω1, . . . . Additionally we may write M(d̄) or ω(d̄) to
mean M(d̄) = M iff M(d) = M for all d ∈ d̄ and likewise
for ω.

Now for constructing I, we start with defining I0 by tak-
ing, for every L ∈ AO, the interpretation I0

L to be the dis-
joint union of the unravelings of all mosaics M ∈ M with
LM = L. The refinement function ρ of I0 is empty. We set
M(d) = M if d is an element of the unraveling of M and
ω(d) = e if the element d in the unraveling of M originated
from the element e ∈ ∆I

M

, that is, if d has the form (p, e).
In the following we might use ρ−1

L (d̄) to denote the d ∈
∆I with ρL(d) = d̄. Note that inversing ρ returns a dis-
tinct value or is undefined since we make sure that it is an
injective function.

To obtain Ii+1, we start from Ii and apply the following
two rules (in all possible ways):

R1 If d ∈ AI
i
L , Qref

M(d),L′(ω(d)) 6= ∅, and ρL′(d) is unde-
fined, then, for the mosaic M ′ that our algorithm guesses
for this choice of M = M(d), d, and L′ in Line 12, do
the following:

1. add a disjoint copy J of the unraveling of M ′ to IL′ ;



2. set ρL′(d) to be the tuple ē over J with ω(ē) = ēM
′
.6

For all elements d ∈ ∆J , set M(d) = M ′ and ω(d) = e
if d is a copy of an element f in the unraveling ofM ′ such
that f that originated from e ∈ ∆I

M′

.

R2 If d̄ ∈ IiL, T abs
M(d̄),L′

(ω(d̄)) 6= ∅, ω(d̄) 6= ēM(d̄), and

ρ−1
L (d̄) is undefined, then, for the set of concept names
T ′ that our algorithm chooses for this choice of M =
M(d), d̄, and L′ in Line 17, and for the mosaic M ′ that
our algorithm guesses for the choice of L = L′ and T =
T ′ in Line 7, do the following:

1. add a disjoint copy J of the unraveling of M ′ to IL′ ;
2. set ρL(d) = d̄ with d ∈ ∆J the element such that the

unraveling of M ′ unravels at ω(d).
For all elements d ∈ ∆J , set M(d) = M ′ and ω(d) = e
if d is a copy of an element f in the unraveling ofM ′ such
that f that originated from e ∈ ∆I

M′

.
In the limit of this sequence of interpretations, we ob-
tain the A-interpretation I∗ =

⋃
i≥0 Ii where the union

J = (AO,≺, (JL)L∈AO , ρ
∪) of two A-interpretations I =

(AO,≺, (IL)L∈AO , ρ) and I ′ = ((AO,≺, (I ′L)L∈AO , ρ
′))

is defined as:
∆J = ∆IL ∪∆I

′
L ;

AJ = AIL ∪AI
′
L ;

RJ = RIL ∪RI
′
L ;

ρ∪L(d) = ē, if ρL(d) = ē or ρ′L(d) = ē

with the added condition that if both ρL(d) and ρ′L(d) are
defined, then ρL(d) = ρ′L(d). Our chase satisfies this con-
dition since the rules only apply to elements where ρ was
undefined.
Lemma 27. I∗ is an A-interpretation.

Proof. We need to show the following:
1. The directed graph (AI ,≺) is a tree.

Clear by definition of I∗.
2. ρ is a partial function. Both R1 and R2 only define ρ for

elements for which it was undefined previously.
3. No element in ρ is part of two distinct ensembles.

First, we argue that if ē is an L-ensemble in I∗, then
ω(ē) ∈ EM(ē). When we achieve this we are done, since
overlapping ensembles are of course from the same mo-
saic M and the definition of mosaics does not allow for
overlapping ensembles in EM .
Now assume that ρL(d) = ē. By the construction of I∗,
it was either R1 or R2 that set ρL(d). R1 specifies that
ω(ē) = ēM

′
for the mosaic M ′ ∈ M with M(ē) = M ′.

The definition of mosaics then implies ēM
′ ∈ EM

′
, as

required.
If R2 set ρL(d) = ē, then let M be the mosaic with
M(ē) = M and f̄ the tuple over IM with ω(ē) = f̄ .
Since T abs

M,L′(ω(ē)) 6= ∅, Line 16 in the algorithm imme-
diately implies f̄ ∈ E.
6Note that ēM

′
is preserved by the unraveling

o

What remains for proving the soundness is to show that
I∗ is indeed the desired model.

Lemma 28. I∗ is an L0-model of C0 and O.

Proof. All concept inclusions, role inclusions, and range
restrictions in O are satisfied because of Lemma 25 and the
fact that we only add disjoint copies of unraveled mosaics in
the construction of I∗.

Let d ∈ AI∗L be an element such that there is a concept re-
finement L′: q(x̄) refines L:A ∈ O. Then Qref

M(d),L′(d) 6= ∅
and thus either R1 or R2 must have defined ρL(d) in the con-
struction of I∗. If ρL(d) = ē was set by some R1 (resp. R2)
application, then Line 13 (resp. Line 18) in the algorithm
implies that ē is an answer to q.

Let h : x̄ 7→ ē be a homomorphism from q to IL for some
concept abstraction L′:A abstracts L:q(x̄) inO. Lemma 26
implies that there is then also a tame homomorphism h′ from
q to M(ē). Hence T abs

M(ē),L′(ω(ē)) 6= ∅ and now there are
two cases.

Case 1: ω(ē) = ēM(ē). By the definition of our algorithm
we then know that M(ē) and ē were guessed in Line 12
to satisfy some refinement statements and hence R1 defined
ρ−L (ē). Line 13 together with the definition of unravelings
then guarantees that ρ−L (ē) satisfies A.

Case 2: ω(ē) 6= ēM(ē). This implies R2 defined ρ−L (ē).
Line 18 together with the definition of unravelings then guar-
antees that ρ−L (ē) satisfies A.

What remains to be shown is that C
I∗L0
0 6= ∅. This is

straightforward to see since our algorithm guesses a mosaic
M with CI

M

0 6= ∅ in Line 4, and the unraveling of that
mosaic is of course part of I∗. o

C.4 Completeness
Assume that C0 is L0-satisfiable w.r.t. O. We prove that
our algorithm accepts by showing how to take the non-
deterministic choices towards a successful run. Recall that
these choices are as follows: the algorithm guesses sets of
concept names XL in Line 3, mosaics in Lines 4, 7, and 12,
and a T ′ ∈ XL′ in Line 17.

Since C0 is L0-satisfiable w.r.t. O, by Lemma 4 there is
an L0-pseudo-model I of C0 and O. We use I to guide the
non-deterministic choices of the algorithm.

• For Line 3, recall that that I is constructed out of a uni-
versal model U that satisfies Lemma 20. This lemma pro-
vides us a set YL of sets of concept names for the abstrac-
tion elements of level L. It also gives the upper bound of
|YL| ≤ ||O||3+||O||2 and thus we use YL asXL in the al-
gorithm. This bound then also holds for I by Lemma 22.

• For Line 4, choose an MCC J of IL0
with CIL0

0 6= ∅ and
such that J does not contain a refinement ensemble. A
straightforward analysis of the construction of I implies
that such an MCC exists. By Lemma 24, any MCC we
choose contains at most 2 · (||O||2 + ||O||) elements and
hence it is straightforward to convert J to a mosaic M :



Recall that ∆ is the domain of mosaics. Let J ′ be an
isomorphic copy of J such that ∆J

′ ⊆ ∆ by some iso-
morphism ι : ∆J → ∆J

′
. We define M as follows:

M = (J ′, L0, {ι(ē) | ē is L-ensemble in I|∆J }, ());

• For Line 7, let L ∈ AO and T ∈ XL be the abstrac-
tion level and set of elements chosen in Line 6. We
choose an MCC J of IL with (

d
T )IL 6= ∅ which ex-

ists by definition of XL. Let ι : ∆J → ∆J
′

be an iso-
morphism to an isomorphic copy J ′ of J , as before.
We then convert J to a mosaic M = (J ′, L, {ι(ē) |
ē is L-ensemble in I|∆J }, ());

• For Line 12, let M , d ∈ ∆I
M

, and L′ ∈ AO be the mo-
saic, element, and abstraction level chosen in Lines 10 and
11. Let ι be the isomorphism that was used to construct
IM from some MCC of I.
Line 11 implies that Qref

M,L′(d) 6= ∅ and hence
ρIL′(ι

−1(d)) = ē is defined since I is a pseudo-model
of O. Let J be the MCC containing ē and J ′ the iso-
morphic copy of J by some isomorphism ι′. Note that
ē is the one and only refinement ensemble in J . We
then convert this to a mosaic M = (J ′, L′, {ι′(f̄) |
f̄ is L-ensemble in I|∆J }, ι′(ē));

• For Line 17, let M , L′:A abstracts L:q(x̄) ∈ O, and d̄
be the mosaic, concept abstraction, and tame answer to
q on I chosen in Lines 10 and 15. Let ι be the isomor-
phism that was used to construct IM from some MCC of
I. Since I is a pseudo-model of O, ρIL(d) = ι−1(d̄) is
defined such that d ∈ AIL′ .
What remains to be shown is that ι−1(d̄) is an abstraction
ensemble in I, since then we can choose a T ∈ YL with
CNI(d) = T , by Lemma 20. This is trivial since our
choice of mosaics implies that if ι−1(d̄) were a refinement
ensemble, then ēM = d̄ and the check d̄ 6= ēM in Line 15
ensures that this cannot be the case.

What remains to be shown is our algorithm does not re-
turn false in Lines 13, 16 or 18. Since I is a pseudo-model,
concept refinements and concept abstractions are of course
satisfied (w.r.t. to tame answers). Hence our choice of mo-
saics implies that Line 13 does not return false, since we
choose the MCC that satisfies the concept refinement of d
and convert it to a mosaic. Line 16 is similar in that ev-
ery tame answer d̄ to a CQ of a concept abstraction must be
an abstraction ensemble in I, and hence d̄ ∈ EM by our
choice of mosaics. For Line 18, I being a pseudo-model
implies that there must be an abstraction element d for the
abstraction ensemble d̄ satisfying all the concept refinement
and concept abstraction statements. We chose as T the set
of concept names satisfied by d in I and thus Line 18 does
also not return false.

D Proofs for Section 5
In this section we will give more details on the proof of The-
orem 3 and Theorem 4. Let us first consider Theorem 3
which we repeat there for the reader’s convenience.

Theorem 3. Satisfiability is

1. CONP-hard in ELabs[cr] and
2. PSPACE-hard in ELabs[cr, ca].

In the main part of the paper we presented a reduction
from unsatisfiability in propositional logic to satisfiability in
ELabs[cr] which resulted in Lemma 6 and proves the first
point of the theorem. Let us first present a proof of this
lemma.
Lemma 6. ϕ is unsatisfiable iff > is L0-satisfiable w.r.t. O.

Proof. “⇒”. Assume that ϕ is unsatisfiable. Recall that
ϕ contains the variables p1, . . . , pn. We use words of length
m ≤ n over the alphabet {0, 1} to represent valuations for
the first m of these variables. For a word w ∈ {0, 1}m and
i ≤ m, we use w[i] to denote the i-th symbol in w. Define
an AR-interpretation I = (AI ,≺, (IL)L∈AI , ρ) of O with
AI = {Li | 1 ≤ i ≤ n} and ≺ = {(Li, Li+1) | 1 ≤ i <
n}, and with ILi

and ρLi
defined as follows, for 0 ≤ i ≤ n:

∆ILi = {diw | w ∈ {0, 1}i};

P
ILi
j = {diw | w[j] = 1} for 1 ≤ j ≤ i;

P
ILi
j = {diw | w[j] = 0} for 1 ≤ j ≤ i;

ρLi+1
(diw) = (di+1

w0 , d
i+1
w1 ) for all diw ∈ ∆ILi .

On abstraction level Ln, we additionally set

T
ILn

ψ = {dnw | w |= ψ} for all ψ ∈ sub(ϕ);

F
ILn

ψ = {dnw | w 6|= ψ} for all ψ ∈ sub(ϕ).

It is straightforward to see that this satisfies the Refine-
ments (1) to (3) in O and thus > is L0 satisfiable w.r.t. O.

“⇐”. Assume that > is L0 satisfiable w.r.t. O. Take any
valuation w for ϕ. We have to show that w 6|= ϕ. Due to
Refinements (1) to (3) in O, we find a d ∈ ∆ILn such that
d ∈ P

ILn
i if and only if w[i] = 1, for 1 ≤ i ≤ n. As a

consequence of CIs (4) to (6) in O, d ∈ T ILn

ψ if and only if
w |= ψ, for all ψ ∈ sub(ϕ). It now follows from CI (7) inO
that w 6|= ϕ, as required. o

Next, we give the proof for Point 2 of Theorem 3 which
was captured by Lemma 7 in the main part of the paper.
Lemma 7. ϕ0 is valid iff > is L0-satisfiable w.r.t. O.

Proof. “⇒”. Assume that ϕ0 is valid. We need to con-
struct a model I of O. We start with an interpretation I
constructed as in the proof of Lemma 6 and extend it as fol-
lows. We add the following to I for 1 ≤ i ≤ n:

sILi = {(diw0, d
i
w1) | w ∈ {0, 1}i−1}.

It is clear that the Statements (1) to (6) of O are now satis-
fied. Statement (7) is not part ofO and for CI (8) we add the
following to I:

F ILn = {dnw | w 6|= ϕ}

For the Abstractions (9) and (10) we add the following to I
for each i ∈ {0, . . . , n− 1} if Qi = ∀:

F ILi = {diw | di+1
w0 ∈ F

ILi+1 or di+1
w1 ∈ F

ILi+1 }



and for i ∈ {0, . . . , n− 1} with Qi = ∃ we add the follow-
ing:

F ILi = {diw | di+1
w0 ∈ F

ILi+1 and di+1
w1 ∈ F

ILi+1 }.

It is straightforward to see that dε 6∈ F and thus > is L0-
satisfiable w.r.t. O.

“⇐”. Assume that > is L0-satisfiable w.r.t. O. We want
to prove that ϕ0 is valid. By assumption, there is a model
I of O. To prove that ϕ0 is valid, we construct a boolean
circuit. (Papadimitriou 2003) Let T = (V,E, `) be this
boolean circuit with V the set of nodes, E the set of edges
and ` : V → {0, 1} a labeling function that assigns a truth
value to each node.

Choose any element d ∈ ∆IL0 as the root. We now ob-
tain a full binary tree of depth 2n by taking the maximally
connected component of d, viewing the refinement function
as an edge relation and domain elements as nodes. Assume
w.l.o.g. that the names of the elements reflect their position
in the tree (the root is ε and has children 0 and 1 and so on).
Then our circuit T can be defined as follows:

V = {w | w ∈ {0, 1}i} for 0 ≤ i ≤ n
E = {(w,w0), (w,w1) | w ∈ {0, 1}i} for 0 ≤ i < n

` = {(w, 1) | w ∈ V and w 6∈ F IL|w|}∪

{(w, 0) | w ∈ V and w ∈ F IL|w|}.

As part of the proof for previous reduction we have shown
that there is a input gatew (leaf node in the tree) correspond-
ing to each valuation of ϕ, and that w ∈ T ILn

ϕ iff w |= ϕ.
Due to the CI (8) and the Abstractions (9) and (10), the inner
gates in T get assigned the correct truth value (correspond-
ing to the quantifiers in ϕ0). Finally, the CI (11) implies that
`(ε) = 1 which proves that ϕ0 is valid. o

Now we will prove Theorem 4 which we repeat here for
the reader’s convenience.

Theorem 4. Satisfiability in ELabs[rr] is 2EXPTIME-hard.

This proof is a slight variation of the one for the
2EXPTIME-lower bound of ALCabs[rr] presented in (Lutz
and Schulze 2023). The main difference is that since we are
in EL we do not have disjunction or ∀-quantification avail-
able. Hence we always have to add ‘inverse’-roles for any
role we introduce so that we can use them to simulate ∀-
concepts.

For the definition of ATMs used in the reduction, we refer
to (Lutz and Schulze 2023). Only note here that our ATMs
have a one-side infinite tape and a dedicated accepting state
qa and rejecting state qr, no successor configuration if its
state is qa or qr, and exactly two successor configurations
otherwise.

It is well-known that there is an exponentially space-
bounded alternating Turing machine (ATM) that decides a
2EXPTIME-complete problem and on any input w makes at
most 2|w| steps (Chandra et al. 1981).

Let M = (Q,Σ,Γ, q0,∆) be a concrete such ATM with
Q = Q∃ ] Q∀ ] {qa, qr}. We may assume w.l.o.g that M
never attempts to move left when the head is positioned on

the left-most tape cell. Let w = σ1 · · ·σn ∈ Σ∗ be an input
for M . We want to construct an ALCabs[rr]-ontology O and
choose a concept name S and abstraction level L1 such that
S is L1-satisfiable w.r.t. O iff w ∈ L(M). Apart from S,
which indicates the starting configuration, we use the fol-
lowing concept names:
• Aσ , for each σ ∈ Γ, to represent tape content;
• Aq , for each q ∈ Q, to represent state and head position;
• Bq,σ,M for q ∈ Q, σ ∈ Γ,M ∈ {L,R}, serving to choose

a transition;
• H�, H� indicating whether a tape cell is to the right or

left of the head.
plus some auxiliary concept names whose purpose shall be
obvious. We use the role name t for next tape cell c1, c2
for successor configurations, and ĉ1, ĉ2 and t̂ as inverses of
c1, c2 and t.

The ontology O uses the abstraction levels A =
{L1, . . . , Ln}withLi+1 ≺ Li for i ∈ {1, . . . , n−1}. While
we are interested in L1-satisfiability of S, the computation
of M is simulated on level Ln. We start with generating an
infinite computation tree on level L1:

S vL1
∃c1.N u ∃c2.N N vL1

∃c1.N u ∃c2.N.
In the generated tree, each configuration is represented by
a single object. On levels L2, . . . , Ln, we generate similar
trees where, however, configurations are represented by t-
paths. The length of these paths doubles with every level
and each node on a path is connected via c1 to the corre-
sponding node in the path that represents the first successor
configuration, and likewise for c2 and the second successor
configuration. This is illustrated in Figure 3 where for sim-
plicity we only show a first successor configuration and three
abstraction levels.

To generate this kind of structure, we introduce the fol-
lowing role refinements for 0 ≤ i < n and j ∈ {1, 2}:

Li+1: q1(x̄, ȳ) refines Li: t(x, y)

Li+1: q2(x̄, ȳ) refines Li: cj(x, y)

for x̄ = x1x2, ȳ = y1y2, and

q1(x̄, ȳ) = t(x1, x2) ∧ t(x2, y1) ∧ t(y1, y2)∧
t̂(x2, x1) ∧ t̂(y1, x2) ∧ t̂(y2, y1)

q2(x̄, ȳ) = t(x1, x2) ∧ t(y1, y2) ∧ cj(x1, y1) ∧ cj(x2, y2)∧
t̂(x2, x1) ∧ t̂(y2, y1) ∧ ĉj(y1, x1) ∧ cj(y2, x2)

These two types of refinement statements are depicted in
Figure 2, where we for simplicity only show the refinement
for the first successor configuration. Note that whenever we
refine to a role t or ci, we also add t̂ and ĉi as the inverse of
t and ci.

To make more precise what we want to achieve, let the
m-computation tree, for m > 0, be the interpretation Im
with

∆Im = {c0, c1}∗ · {1, . . . ,m}
tIm = {(wi,wj) | w ∈ {c0, c1}∗, 1 ≤ i < m, j = i+ 1}
cIm` = {(wj,wcij) | w ∈ {c0, c1}∗, 1 ≤ j ≤ m, i ∈ {0, 1}}
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<latexit sha1_base64="jr+/cKssYZGgD2awdhZU/vJFhxg="></latexit>

L0 <latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t

<latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t
<latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t
<latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t
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bt
<latexit sha1_base64="sNNh8NLfmiZDvgQkCdYa9bUSfUE="></latexit>

bt
<latexit sha1_base64="sNNh8NLfmiZDvgQkCdYa9bUSfUE="></latexit>

bt

<latexit sha1_base64="yX0RiVEg5pkupLBOBwn9iT/dkGI=">AAAChnicbVFNa9tAEF2rX6775TSXQC+iTqEnSwo0KT259JJjCrUTiIxZjUbx4v0Qu7OJhXB/Ta/t/+m/yTpxD3Y6sPB483be8KaopXCUpn870aPHT54+6z7vvXj56vWb/t7biTPeAo7BSGMvCu5QCo1jEiTxorbIVSHxvFh8W/fPr9E6YfQPamqcKn6lRSWAU6Bm/YNcG6FL1NQ7zG9EiXNOMcyyw1l/kA7Tu4ofgmwDBmxTZ7O9ziQvDXgVZoHkzl1maU3TllsSIHHVy73DmsOCX2F7t/gq/hCoMq6MDU8H3zW7pePKuUYVQak4zd1ub03+t1cUasvw0lP1edoKXXtCDffOlZcxmXgdS1wKi0CyCYCDFWHlGObccqAQXi+3qPEGjFJcl21ecSVkU2LFvaRVm7vqH95aYo7yGne4pQtoJ4xk7IJJAtInhMtkgY02hF/9MlHCwSpcItvN/SGYHA2z4+Hx96PB6MvmJl32jr1nH1nGTtiInbIzNmbAfrJf7Df7E3WjYfQpOrmXRp3Nn322VdHoFtELx7Y=</latexit>

bc1

<latexit sha1_base64="XlVDFtv/sJriBvnEWPMpy2DT08I="></latexit>c1

<latexit sha1_base64="auLemaZY/2A2ot4s7cF5Mr3kyZs="></latexit>

L

<latexit sha1_base64="jr+/cKssYZGgD2awdhZU/vJFhxg=">AAACenicbVFNT9tAEN0YSmkoX+2xF4uACkKKbYRKxQnUSw8cQCIBCadovR6TVfbD2p2FWFb+R6/wr/gvPXQTwiGBkVZ6em923uhNVgpuMY6fG8HC4oelj8ufmiufV9fWNza/dK12hkGHaaHNdUYtCK6ggxwFXJcGqMwEXGWDX2P96h6M5VpdYlVCT9I7xQvOKHrqT6o0VzkobG6ffd++3WjF7XhS4VuQTEGLTOv8drPRTXPNnPQTmKDW3iRxib2aGuRMwKiZOgslZQN6B/Vk2VG446k8LLTxT2E4YWf6qLS2kpnvlBT7dl4bk+9qWSZnDG8cFj97NVelQ1DsxblwIkQdjqMIc26Aoag8oMxwv3LI+tRQhj6wZmpAwQPTUlKV12lBJRdVDgV1Akd1aotXPLNEH8Q9zHFD69FcGFHHepOICRchDKMBVEojnLphJLllI3+JZD73t6B70E5+tA8vDlonx9ObLJNvZIvskoQckRPym5yTDmHEkL/kkTw1/gVbwV6w/9IaNKZ/vpKZCg7/A8rQxDw=</latexit>

L0

<latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t
<latexit sha1_base64="XRgHnCmFg8inWZbGNvt+Z6HBHG0="></latexit>

t

<latexit sha1_base64="sNNh8NLfmiZDvgQkCdYa9bUSfUE="></latexit>

bt
<latexit sha1_base64="sNNh8NLfmiZDvgQkCdYa9bUSfUE=">AAAChHicbVFNTxsxEHW2lEL6QQCpFy5WQ6UequwuVSnqAVFx4UglEpDYKPJ6Z4kVf6zsMWS1zZ/ptf1D/Td1QnpI6EiWnt4bzxu9ySspHCbJn1b0bOP55out7fbLV6/f7HR29wbOeMuhz4009iZnDqTQ0EeBEm4qC0zlEq7zyflcv74H64TRV1hXMFTsTotScIaBGnXeZtoIXYDG9mH2IAoYM6R4OOp0k16yKPoUpEvQJcu6HO22BllhuFdhEpfMuds0qXDYMIuCS5i1M++gYnzC7qBZrD2j7wNV0NLY8DTSBbvSx5RztcpDp2I4duvanPyvludqxfDWY3kybISuPILmj86llxQNnYdCC2GBo6wDYNyKsDLlY2YZxxBdO7Og4YEbpZgumqxkSsi6gJJ5ibMmc+U/vLLEGOQ9rHFTF9BaGHHfBZOYSx8jTOMJ1NogfPPTWAnHZ+ES6XruT8HgqJce946/H3XPvi5vskUOyDvygaTkCzkjF+SS9AknP8hP8ov8jjajj9Gn6PNja9Ra/tknKxWd/gVy5ccj</latexit>

bt
<latexit sha1_base64="XlVDFtv/sJriBvnEWPMpy2DT08I="></latexit>c1

<latexit sha1_base64="XlVDFtv/sJriBvnEWPMpy2DT08I="></latexit>c1

<latexit sha1_base64="yX0RiVEg5pkupLBOBwn9iT/dkGI="></latexit>

bc1

Figure 2: Two types of refinement statements. Dotted lines indicate
refinement.

<latexit sha1_base64="OZdfYPE888h4fHf9b2Mlyl6CTy0=">AAACfXicbVFNT9tAEN2YltK0hQDHXqwGpB6q2I5QQZxAXDhwAKkJSDiK1usxWWU/rN1ZiGXll3ClP6q/BjYhHBI60kpP783OG73JSsEtxvG/RrD24eP6p43PzS9fv21utbZ3+lY7w6DHtNDmJqMWBFfQQ44CbkoDVGYCrrPx2Uy/vgdjuVZ/sCphIOmd4gVnFD01bG2lSnOVg8Lm3sUw2Ru22nEnnlf4HiQL0CaLuhxuN/pprpmTfgQT1NrbJC5xUFODnAmYNlNnoaRsTO+gnu87Dfc9lYeFNv4pDOfsUh+V1lYy852S4siuajPyv1qWySXDW4fF0aDmqnQIir06F06EqMNZGmHODTAUlQeUGe5XDtmIGsrQZ9ZMDSh4YFpKqvI6LajkosqhoE7gtE5t8YaXlhiBuIcVbmI9Wgkj6llvEjHhIoRJNIZKaYRTN4kkt2zqL5Gs5v4e9Lud5Hfn4KrbPjle3GSDfCc/yE+SkENyQs7JJekRRhx5JE/kb+M52A9+BZ3X1qCx+LNLlio4fAFS78Tg</latexit>

L1

<latexit sha1_base64="TFzoYCBvApQetAslp7QWTFzEQTg="></latexit>

L2

<latexit sha1_base64="QVpvwW3wJNgv6lpb8nn92g1UP9g="></latexit>

L3

<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t

<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0="></latexit>

bt, t
<latexit sha1_base64="DclApKhb5pB0hQnu5AZi8wDuKi0=">AAACh3icbVFNTxsxEHW2tIXQj0BPVS8WoVIPVXaXQ4p6AnHpEaQmILFR5PXOEiv+WNljyGoV8Wt6bX8P/6ZOCIcERrL09N543uhNXknhMEkeWtGrrddv3m7vtHffvf/wsbO3P3TGWw4DbqSxVzlzIIWGAQqUcFVZYCqXcJlPzxb65S1YJ4z+jXUFI8VutCgFZxiocedzpo3QBWhsH2Z3ooAJQ4rfKR6OO92klyyLPgfpCnTJqs7He61hVhjuVRjGJXPuOk0qHDXMouAS5u3MO6gYn7IbaJabz+nXQBW0NDY8jXTJrvUx5Vyt8tCpGE7cprYgX9TyXK0ZXnssj0eN0JVH0PzRufSSoqGLXGghLHCUdQCMWxFWpnzCLOMY0mtnFjTccaMU00WTlUwJWRdQMi9x3mSufMJrS0xA3sIGN3MBbYQRD1wwibn0McIsnkKtDcKpn8VKOD4Pl0g3c38Ohke9tN/rXxx1T36ubrJNvpAD8o2k5Ac5Ib/IORkQTu7JH/KX/It2ojjqR8ePrVFr9ecTWavo9D+DVMgB</latexit>

bt, t

<latexit sha1_base64="XlVDFtv/sJriBvnEWPMpy2DT08I=">AAACfnicbVFNTxsxEHWWttCUlkCPvViEol6a3eUAiBNVLz2CRAISG0Ve7yyx4o+VPQ5ZrfJPuLb/qf+mTkgPCYxk6em98bzRm7ySwmGS/G1FW2/evtveed/+sPvx015n/2DgjLcc+txIY+9y5kAKDX0UKOGussBULuE2n/xc6LdTsE4YfYN1BUPFHrQoBWcYqFGnk2kjdAEa20eUj9KjUaeb9JJl0ZcgXYEuWdXVaL81yArDvQozuGTO3adJhcOGWRRcwrydeQcV4xP2AM1y4Tn9GqiClsaGp5Eu2bU+ppyrVR46FcOx29QW5Ktanqs1w3uP5fmwEbryCJo/O5deUjR0EQcthAWOsg6AcSvCypSPmWUcQ2jtzIKGR26UYrpospIpIesCSuYlzpvMlf/x2hJjkFPY4GYuoI0w4r4LJjGXPkaYxROotUH44WexEo7PwyXSzdxfgsFJLz3tnV6fdC8vVjfZIV/IIflGUnJGLskvckX6hJMpeSK/yZ+IRMfR9yh+bo1aqz+fyVpF5/8AxvzEJA==</latexit>c1

<latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit>

bc1, c1
<latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit>

bc1, c1

<latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit>

bc1 , c1
<latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit>

bc1 , c1
<latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit> bc1, c1 <latexit sha1_base64="8kxOwYN109ykQHyw9u5f+Yk+9OU="></latexit>

bc1, c1

Figure 3: Example interpretation. Edge labels t̂, t indicate that
there is a t̂-edge pointing left and a t-edge pointing right, see Fig-
ure 2. Same for ĉ1, c1-edges.

for ` ∈ {1, 2}. It can be shown that for any model I of
theALCabs[rr]-ontologyO constructed so far and for all i ∈
{1, . . . , n}, we must find a (homomorphic image of a) 2i-
computation tree in the interpretation ILi . This crucially
relies on the fact that ensembles cannot overlap. In Figure 3,
for example, the role refinements for t and c1 both apply on
levelL2, and for attaining the structure displayed on levelL3

it is crucial that in these applications each object on level L2

refines into the same ensemble on level L3.
On levelLn, we thus find a 2n-computation tree which we

use to represent the computation of M on input w. To start,
the concept name S is copied down from the root of the 1-
computation tree on level L1 to that of the 2n-computation
tree on level Ln. To achieve this, we add the following role
refinement to O for 0 ≤ i < n, x̄ = x1x2 and ȳ = y1y2:

Li+1: q(x̄, ȳ) refines Li:S(x) ∧ c1(x, y) where
q(x̄, ȳ) = S(x1) ∧ >(x2) ∧ >(y1) ∧ >(y2).

We next describe the initial configuration:
S vLn Aq0 uAσ1

∃t̂.S vLn
Aσ2

∃t̂.Aσ2
vLn

Aσ3

...

∃t̂.Aσn−1
vLn

Aσn

∃t̂.Aσn
vLn

A�

∃t̂.A� vLn
A�

We add the transitions for successor configurations by first
adding marker concepts:

∃ĉ1.(Aq uAσ) vLn Bq′,σ′,M ′

∃ĉ2.(Aq uAσ) vLn Bq′′,σ′′,M ′′

for all q ∈ Q and σ ∈ Γ such that ∆(q, σ) = {(q′, σ′,M ′),
(q′′, σ′′,M ′′)}.

Next, we implement the correct configuration by using
these marker concepts:

Bq,σ,M vLn
Aσ

∃t.Bq,σ,L vLn Aq

∃t̂.Bq,σ,R vLn
Aq

for all q ∈ Q, σ ∈ Γ, and M ∈ {L,R}. Next, we want
to evaluate the existential and universal states of the ATM.
First, we mark configurations that are rejecting:

Aqr v Crej

Now we propagate computation results through the compu-
tation tree. For existential states, one of the successor states
has to be accepting:

Aq u ∃c1.Crej u ∃c2.Crej vLn
Crej

for all q ∈ Q∃. For universal states, both successor states
have to be accepting:

Aq u ∃c1.Crej vLn
Crej

Aq u ∃c2.Crej vLn Crej

for all q ∈ Q∀. Lastly, we have to prohibit illegal configura-
tions or changes in the configuration. We mark cells that are
not under the head:

∃t.Aq vLn
H� ∃t̂.Aq vLn

H�

∃t.H� vLn
H� ∃t̂.H� vLn

H�

for all q ∈ Q. Cells not under the head do not change:

∃ĉi.(H� uAσ) vLn Aσ

∃ĉi.(H� uAσ) vLn
Aσ

for all σ ∈ Σ. State, content of tape, and head position must
be unique:

Aq uAq′ vLn
⊥ Aσ uAσ′ vLn

⊥
H� uAq vLn ⊥ H� uAq vLn ⊥

for all q, q′ ∈ Q and σ, σ′ ∈ Γ with q 6= q′ and σ 6= σ′.
Finally, we want an accepting computation:

S u Crej vLn ⊥

This finishes the construction ofO and it is not hard to verify
the following.

Lemma 29. S is L1-satisfiable w.r.t. O iff w ∈ L(M).



E Proofs for Section 6
We want to prove Lemma 8 which we repeat here for the
reader’s convenience.

Lemma 8. C0 is L0-satisfiable w.r.t. O under set ensemble
semantics iff C0 u L0 is satisfiable w.r.t. O′.
Soundness (“⇒”). We prove the two directions of Lemma 8
separately starting with soundness.

Assume that C0 is L0-satisfiable w.r.t. O under set en-
semble semantics. We want to show that C0 u L0 is then
satisfiable w.r.t. O′ (with O′ as defined in the main part
of the paper). By our assumption, there is an L0-model
I = (AI ,≺, (IL)L∈AI , ρ) of C0 and O. We will use it
to construct a model I ′ of C0 u L0 and O′.

W.r.t. O, we call a CQ q an L-CQ if q is part of a con-
cept refinement L:q(x̄) refines L′:A in O or role refinement
L:q(x̄, ȳ) refines L′:qr(x, y) in O that refine to level L. We
further call q active, if AIL′ 6= ∅ in the case that q is from
the concept refinement or qr(IL′) 6= ∅ if q is from the role
refinement.

When constructing a model for O′, by semantics we can
ignore nominals that are part of a CI, where the left side
is never satisfied. Hence we use ANom(O′) = {ax |
x ∈ var(q) and q is an active L-CQ for some L} to denote
the active nominals.

We define a function f : ∆I ∪ ANom(O′) → ∆I , that
maps ∆I and the active nominals in O′ to elements in ∆I

as follows:

• f(d) = d, for all d ∈ ∆I ;

• for all concept refinements L:q(x̄) refines L′:A inO with
q being active, choose an d ∈ AIL′ . Then ρL(d) = ē is
defined, since I is a model ofO. We set f(axi

) = ē[i] for
all xi ∈ x̄; 7

• for all role refinements L:q(x̄, ȳ) refines L′:qr(x, y) in O
with q being active, choose d, d′ ∈ ∆IL′ such that x 7→ d
and y 7→ d′ is an answer to qr. Then ρL(d) = ē and
ρL(d′) = ē′ are defined, since I is a model of O. We set
f(axi

) = ē[i] for all xi ∈ x̄ and f(ayi) = ē′[i] for all
yi ∈ ȳ.

Intuitively, nominals represent the variables of a CQ, and we
map active nominals to an answer of that CQ in I. Note that
f is a function since we assumed that the variables in all
CQs have distinct names.

Now we define our model I ′ of O.

∆I
′

= ANom(O′) ∪∆I

LI
′

= {d | f(d) ∈ ∆IL}
uI
′

= ∆I
′ ×∆I

′

AI
′

= {d | f(d) ∈ AIL(f(d))}
rI
′

L = {(d, e) | (f(d), f(e)) ∈ rIL} for all L ∈ AO

Lemma 30. I ′ is a model of C0 u L0 and O′.

7Recall that we always assume a naming scheme of
x1, x2, . . . , xn for the variables in x̄

Proof. I being an L0-model of C0 and O implies that
there is an element d0 ∈ C

IL0
0 . The definition of I ′ then

yields d0 ∈ (C0 u L0)I
′
. Next, we go through the CIs of

O′:
• It is straightforward to see that the > v ∃u.L is satisfied

for any L since u works like a universal role in I ′;
• let there be an element d ∈ (∃rL.A)I

′
andLu∃rL.A v B

in O′. Semantics imply that there is an e ∈ AI
′

and
(d, e) ∈ rI

′

L . The definition of I ′ implies that then
(f(d), f(e)) ∈ rIL and f(e) ∈ AIL and consequently
f(d) ∈ (∃r.A)IL . If L u ∃rL.A v B in O′ then
∃r.A vL B in O by construction of O′. Since I is a
model ofO, we hence obtain f(d) ∈ BIL . Thus d ∈ BI′

by definition of I ′, as required.
A similar argument can be made for CIs of the form L u
A1u · · ·uAn vL B and LuA vL ∃rL.(LuB), as well
as role inclusions and range restrictions.

• let there be an element d ∈ (L′uAI′) for a concept refine-
ment L:q(x̄) refines L′:A in O. Hence f(d) ∈ AIL by
definition of I ′. Since I is a model of O, ρL(f(d)) = ē
is defined and an answer to q on IL.
Assume that there is a concept atom B(x) ∈ q for some
x ∈ x̄. Then for every answer ē to q on I by some
homomorphism h, we have h(x) ∈ BIL . The defini-
tion of f(·) then implies that f(ax) ∈ BIL and thus
ax ∈ (LuB)I

′
, as required for CIs of the form L′ uA v

∃u.(L uB u {ax}).
Recall that f(·) chooses for each active L-CQ q one an-
swer to that CQ on I and then maps the nominals cor-
responding to the variables of the CQ to that answer.
Hence if r(x, y) ∈ q, then (ax, ay) ∈ rI

′

L . It is then
straightforward to see that CIs of the form L′ u A v
∃u.(L u {ax} u ∃rL.(L u {ay})) are satisfied.

• let there be an element d ∈ (A1 u ∃rL′ .A2)I
′

for a role
refinement L:q(x̄, ȳ) refines L′:qr(x, y) in O with qr =

A1(x)∧r(x, y)∧A2(y). By semantics, there is an e ∈ AI′2

and (d, e) ∈ rI′L′ . Hence (f(d), f(e)) ∈ rIL and f(e) ∈
AIL2 , by definition of I ′. Now we can argue in the same
way as for concept refinements that CIs of the form A1 u
∃rL′ .A2 v ∃u.(LuBu{ax}) for concept atoms B(x) ∈
q and CIsA1u∃rL′ .A2 v ∃u.(Lu{ax}u∃sL.(Lu{ay}))
for role atoms r(x, y) ∈ q in O are satisfied.

o

Completeness (“⇐”). For the other direction assume that

C0 u L0 is satisfiable w.r.t. O′. We want to show that then
C0 is L0 satisfiable w.r.t. O. By our assumption, there is a
model I ′ of C0 u L0 and O′. We will use it to construct an
L0-model I of C0 and O.

Recall that the nominals in O′ represent an answer to L-
CQs of a refinement statement. For example, for a con-
cept refinement L:q(x̄) refines L′:A, we have the nom-
inals ax for all x ∈ x̄. When constructing a model of
O, this poses a slight difficulty. If there are multiple ele-
ments d, e ∈ AI′ , then we use the same nominals to satisfy



the CIs in O′ regarding concept refinements (for example
L′ uA v ∃u.(L uB u {ax})) for d and for e.

If we were to naively construct I from I ′ by just copying
the elements and setting the refinements in the obvious way,
we would thus violate the condition that each element is part
of at most one ensemble. Hence we use unraveling to define
I.

For a CQ q and level L ∈ AO, we use q[L] to denote
the CQ obtained from q by replacing every role atom r(x, y)
with rL(x, y) for all role names r ∈ R. This will be helpful
when considering matches of q in models of O′.

A path in I ′ is a sequence:

p = d1d2 · · · dk

where k ≥ 1, and for 1 ≤ i ≤ k, di ∈ ∆I
′

and for 1 ≤ i <
k, di and di+1 satisfy one of the following conditions:

1. (di, di+1) ∈ rI′L for some r ∈ R and L ∈ AO, or
2. there is a concept refinement L:q(x̄) refines L′:A in O

with di ∈ AI
′

and di+1 = ax with x ∈ x̄, or
3. there is a role refinement L:q(x̄, ȳ) refines L′:qr(x, y) in
O and homomorphism h from qr[L

′] to I ′ such that one
of the following holds:
• h(x) = di and di+1 = ax with x ∈ x̄ or
• h(y) = di and di+1 = ay with y ∈ ȳ.
For a path p, we use t(p) to denote the last element (tail)

of p. We can now define I.

∆IL = {(p, L) | p path in I ′ and t(p) ∈ LI′}
AIL = {(p, L) | t(p) ∈ AI′}
rIL = {((p, L), (p′, L)) | (t(p), t(p′)) ∈ rI′L }

ρL′((p, L)) = {(p′, L′) | p′ = pd and
t(p) and d satisfy Condition 2 or 3 of paths}

Lemma 31. I is an A-interpretation.
Proof. We need to show the following:

1. The directed graph (AI ,≺) is a tree. The definition of
ρ and paths implies that if (AI ,≺) were not a tree, then
GO is also not a tree. This is a contradiction, since then
O′ would be unsatisfiable as explicitly stated in our re-
duction.

2. ρ is a partial function. Clear by definition of I.
3. No element in ρ is part of two distinct ensembles.

Follows from (AI ,≺−1) being a tree and the definition
of ρ.

o

Lemma 32. I is an L0-model of C0 and O.
Proof. The first set of CIs introduced to O′ ensures that

for each L ∈ AO, there is an element d ∈ LI′ , and hence
(d, L) ∈ ∆IL by construction of I, making it non-empty.
Additionally, since there is an element d0 ∈ (C0 u L0)I

′
,

we have (d0, L0) ∈ IL0
, as required.

Next, let us consider the CIs, role inclusions and range
restrictions in O (recall that O is normalized).

• let there be an element (p, L) ∈ (A1 u · · · u An)IL and
A1 u · · · uAn vL B inO. The construction of I implies
that t(p) ∈ (A1 u · · · u An)I

′
and t(p) ∈ LI′ . By CI 2

in O′, we then obtain t(p) ∈ BI
′
. And then again by

construction of I we have (p, L) ∈ BIL , as required;
This also proves the case for CIs of the form > vL A in
O.

• let there be an (p, L) ∈ (∃r.A)IL and ∃r.A vL B
in O. Semantics imply that there is an (p′, L) ∈ AIL

with ((p, L), (p′, L)) ∈ rIL . The construction of I then
implies that t(p) ∈ (L u ∃rL.A)I

′
. Hence we have

t(p) ∈ BI′ by CI 3 and hence (p, L) ∈ BIL , as required;
• let there be an element (p, L) ∈ AIL andA vL ∃r.B. By

construction of I, we have t(p) ∈ (L u A)I
′
. CI 4 then

implies that there is an d ∈ (LuB)I
′

with (t(p), d) ∈ rI′L .
Hence (pd, L) ∈ BIL and ((p, L), (pd, L)) ∈ rIL , as
required;

• it is straightforward to see that any role inclusion is sat-
isfied by our construction of I and Point 7 in the con-
struction of O′ and analogously for range restrictions and
Point 8 in the construction of O′.

Now, we consider the refinement statements in O:

• let (p, L′) ∈ AIL′ be an element such that there is a con-
cept refinement L: q(x̄) refines L′:A in O. As always let
x̄ = x1 · · ·xn. Then t(p) ∈ (L′ u A)I

′
. It is easy to

see that then Point 5 in the construction ofO′ implies that
ax1
· · · axn

is an answer to q[L] on I ′ and that axi
∈ LI′

for 1 ≤ i ≤ n.
Condition 2 of paths ensures that, for 1 ≤ i ≤ n, paxi

is a path and consequently (paxi , L) ∈ ∆IL . The defini-
tion of ρ then implies that {(pax1

, L), . . . , (paxn
, L)} ⊆

ρL((p, L′)), as required;
• let ((p1, L

′)(p2, L
′)) ∈ qr(IL′) for a role refinement

L:q(x̄, ȳ) refines L′:qr(x, y) in O. The proof follows the
same structure as with concept refinements.
Let x̄ = x1 · · ·xn and ȳ = y1 · · · ym. The definition of I
implies that then (t(p1)t(p2)) ∈ qr[L′](I ′). It is easy to
see that then Point 6 in the construction ofO′ implies that
ax1
· · · axn

ay1
· · · aym is an answer to q[L] on I ′ and that

axi
, ayj ∈ LI

′
for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

By Condition 3 of paths, we obtain that for 1 ≤
i ≤ n, p1axi is a path and for 1 ≤ j ≤ m,
p2ayj is a path. Consequently (p1axi , L) ∈ ∆IL

and (p2ayj , L) ∈ ∆IL . The definition of ρ then im-
plies that {(p1ax1 , L), . . . , (p1axn , L)} ⊆ ρL((p1, L

′))
and {(p2ay1 , L), . . . , (p2aym , L)} ⊆ ρL((p2, L

′)), as re-
quired.

o

This finishes the completeness direction and thus we are
done proving Lemma 8.
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