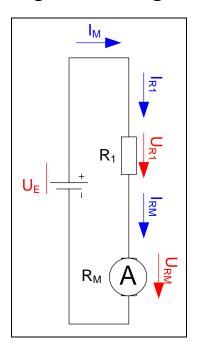
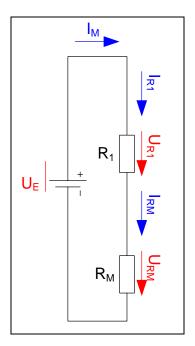


Übung und Seminar zur Vorlesung

"Grundlagen der Technischen Informatik 1"


4. Aufgabenkomplex



1. Aufgabe

Strommessung an einem Widerstand

Bei Strommessungen kann es auch wie bei Spannungsmessungen zu Fehlmessungen kommen. Verantwortlich dafür ist der Innenwiderstand des Messgerätes. Gegeben ist folgende Schaltung:

Werte: $U_E = 0.5V$ $R_1 = 5\Omega$	
Messbereich	Innenwiderstand R _M
100mA	2,5Ω
500mA	0,5Ω
1A	$0,25\Omega$
5A	$0,05\Omega$

 R_M ist der Innenwiderstand des Messgerätes im jeweiligen Messbereich. Hier wird ein Messwerk verwendet, das bei einem Strom von 100 μ A eine Spannung von 250mV misst. Es hat somit unbeschaltet einen Widerstand von 2,5 $k\Omega$.

1. Aufgabe

Strommessung an einem Widerstand

- 1.1. Welchen Strom I_{M-0} fließt ohne das Messgerät (Leerlauf)
- 1.2. Welchen Strom I_{M-1} misst das Messgerät im 100mA Messbereich
- 1.3. Welchen Strom I_{M-2} misst das Messgerät im 500mA Messbereich
- 1.4. Welchen Strom I_{M-3} misst das Messgerät im 1A Messbereich
- 1.5. Welchen Strom I_{M-4} misst das Messgerät im 5A Messbereich

Formeln und Maßeinheiten:

Formel	:

$$U = I \cdot R$$
$$P = U \cdot I$$

$$[U] = V$$


$$I = A$$

$$[R] = \Omega \left[= \frac{V}{A} \right]$$

2. Aufgabe

Beschaltung von Silizium- und Leuchtdioden (LED)

$$U_F = 10V$$

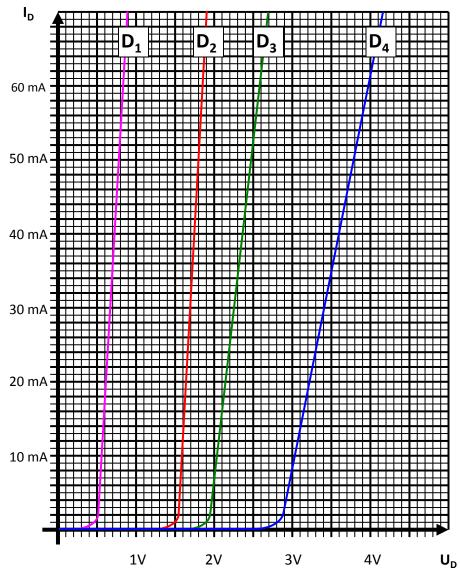
$$I_{AD1} = 38mA$$

$$I_{AD2} = 32mA$$

$$I_{AD3} = 34mA$$

$$I_{AD4} = 35mA$$

Die Dioden D_1 bis D_4 sollen an der Spannungsquelle U_E betrieben werden. Dabei fließen durch die Dioden D_1 - D_4 die Ströme I_{AD1} - I_{AD4} . D_1 ist die Silizium-Diode, D_2 ist die rote Leuchtdiode, D_3 ist die grüne Leuchtdiode, D_4 ist die blaue Leuchtdiode.



2. Aufgabe

Beschaltung von Silizium- und Leuchtdioden (LED)

- 1.1. Bestimmen Sie die Leerlaufspannungen $U_{LR1} U_{LR4}$ und für die Widerstände $R_1 R_4$
- 1.2. Bestimmen Sie die Spannungen $U_{AD1} U_{AD4}$ der Arbeitspunkte der Dioden für die Widerstände R_1 R_4
- 1.3. Bestimmen Sie die Widerstände R_1 R_4 mittels U_E , U_{AD} und I_{AD}
- 1.4. Bestimmen Sie die Ströme für die 4 Widerstandsgeraden I_{5V-1} I_{5V-4} (da die Leerlaufspannung nicht auf dem Blatt ist). Das Kennlinienblatt darf nicht verlängert werden
- 1.5. Bestimmen Sie die Kurzschlussströme I_{KR1} I_{KR4} für die Widerstände R₁ R₄
- 1.6. Konstruieren Sie die Widerstandsgeraden. Bestimmen Sie dazu, wenn notwendig, die Hilfsgrößen I_{5V} und U_{70mA}
- 1.7. Berechnen Sie die Leistung $P_{D1} P_{D4}$ der Dioden $D_1 D_4$
- 1.8. Berechnen Sie die Leistung $P_{R1} P_{R4}$ der Widerstände $R_1 R_4$
- 1.9. Berechnen Sie den Gesamtstrom I_{ges}
- 1.10. Berechnen Sie den Gesamleistung der Schaltung P_{ges}
- 1.11. Berechnen Sie die verbrauchte Gesamtenergie $W_{\rm ges}$ die in der Zeit von t=1h verbraucht wird

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

2. Aufgabe

Formeln und Maßeinheiten:

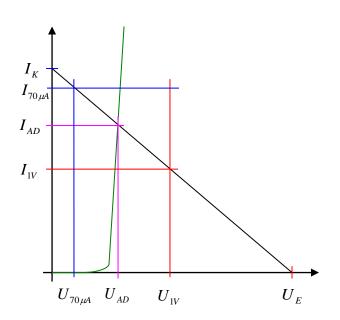
Formel:
$U = I \cdot R$
$P = U \cdot I$
$W = P \cdot t = U \cdot I \cdot t = F \cdot s$

Maßeinheit:

$$[U] = V$$

 $[I] = A$
 $[R] = \Omega \left[= \frac{V}{A} \right]$
 $[t] = s$
 $[P] = W = V \cdot A$
 $[W] = 1J = 1Ws = 1Nm = 1\frac{kgm^2}{s^2}$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009



2. Aufgabe

Hilfe:

Zeichnen der Widerstandsgeraden bei Überscheitung der Eckwerte U_E und I_K am Beispiel

des Randes von 70μA und 1V.

Grenzwerte für das Datenblatt
$$U_{1V} = 1V / I_{70\mu A} = 70 \mu A$$

$$I_K = \frac{U_E}{R_R}$$

$$R_B = \frac{U_E}{I_K} = \frac{U_E - U_{AD}}{I_{AD}} = \frac{U_E - U_{1V}}{I_{1V}} \quad \Rightarrow \quad I_{1V} = \frac{U_E - U_{1V}}{R_B}$$

$$R_{B} = \frac{U_{E} - U_{AD}}{I_{AD}} = \frac{U_{E} - U_{70\mu A}}{I_{70\mu A}} \implies U_{70\mu A} = U_{E} - I_{70\mu A}R_{B}$$

Beispiel für $U_E = 2V$ und $R_B = 25k\Omega$

Eingangskennlinie: $U_F = 2V$ $R_R = 25k\Omega$

$$U_E = 2V \quad I_K = \frac{U_E}{I_K} = \frac{2V}{25k\Omega} = 80\,\mu\text{A}$$

Eingangskennlinie: $U_F = 2V$ $U_{1V} = 1V$ $R_R = 25k\Omega$

$$I_{1V} = \frac{U_E - U_{1V}}{R_R} = \frac{2V - 1V}{25k\Omega} = 40\,\mu\text{A}$$

Eingangskennlinie: $U_E = 2V$ $I_{70\mu A} = 70\mu A$ $R_B = 25k\Omega$ $(I_K = 80\mu A)$

$$U_{70\mu A} = U_E - I_{70\mu A} R_B = 2V - 70\mu A \cdot 25k\Omega = 2V - 1.75V = 0.25V$$

Punkteverteilung:

Gesamtpunktzahl: 30 Punkte

Aufgabe 1.1-1.5 je 2 Punkte

Aufgabe 2.1-2.9 je 2 Punkte

Aufgabe 2.10-2.11 je 1 Punkt

Bemerkung:

- In allen Formeln mit Zahlen sind die Maßeinheiten mitzuschleifen.
- Bei den Endergebnissen sind die Maßeinheiten zu verwenden, die, wenn vorhanden, aus einem Buchstaben bestehen. Während der Rechnung können Sie nach eigenem Ermessen verfahren.
- Bei den Endergebnissen sind die 10^{±3} Präfixe konsequent zu verwenden. Während der Rechnung können Sie nach eigenem Ermessen verfahren.
 Präfixe nur verwenden, wenn eine Maßeinheit dahinter ist.
- Alle Aufgaben auf eine Mantissengenauigkeit von 4 Stellen genau berechnen, wenn in der Aufgabe nicht anders angegeben (Exponent-Mantissendarstellung).
- Die Aufgaben sind zu nummerieren, auch die Teilaufgaben.
- Der Rechenweg muß ersichtlich sein. Gegebenenfalls das Schmierblatt anheften.
- Jedes Blatt ist wie folgt zu nummerieren Seite/Gesamtzahl der Seiten (z.B. Seite 6/8)
- Spannungen mit der Masche sind positiv, umgekehrt negativ.
- Ströme zum Knoten sind positiv, umgekehrt negativ.

Nichtbeachtung wird mit Punktabzug geahndet!

Bemerkung zu den Kennlinien:

- Alle Werte sind auf 4 Stellen zu berechnen.
- Beim Ablesen aus den Kennlinienfeldern auf den halben Strich runden. Im Zweifelsfall auf den nächsthöheren. Die Genauigkeit ergibt sich hier aus der Ablesegenauigkeit.
- Bei den Basisströmen ist auf 0,5μA zu interpolieren.

Nichtbeachtung wird mit Punktabzug geahndet!

Präfixe zur Kennzeichnung des Vielfachen von gesetzlichen Einheiten (dezimal):

Präfix	Faktor	Bezeichnung	Präfix	Faktor	Bezeichnung
Υ	10 ²⁴	Yotta	m	10 ⁻³	Milli
Z	10 ²¹	Zetta	μ	10 ⁻⁶	Mikro
E	10^{18}	Exa	n	10 -9	Nano
Р	10 ¹⁵	Peta	р	10 ⁻¹²	Piko
T	1012	Tera	f	10 ⁻¹⁵	Femto
G	10 ⁹	Giga	а	10 ⁻¹⁸	Atto
M	10 ⁶	Mega	Z	10 ⁻²¹	Zepto
k	10 ³	Kilo	У	10 ⁻²⁴	Yokto

Umgang mit den Präfixen am Beispiel der Mantissengenauigkeit von 4 Stellen:

---,- Präfix Maßeinheit

--,-- Präfix Maßeinheit

-,--- Präfix Maßeinheit

Beispiele:

216,4μF; 33,45kHz; 2,456MΩ; 7,482A

Lösung - 1. Aufgabe

1. Aufgabe Lösung

Strommessung an einem Widerstand

- 1.1. Welchen Strom I_{M-0} fließt ohne das Messgerät (Leerlauf)
- 1.2. Welchen Strom I_{M-1} misst das Messgerät im 100mA Messbereich
- 1.3. Welchen Strom I_{M-2} misst das Messgerät im 500mA Messbereich
- 1.4. Welchen Strom I_{M-3} misst das Messgerät im 1A Messbereich.
- 1.5. Welchen Strom I_{M-4} misst das Messgerät im 5A Messbereich.

Lösung - 1. Aufgabe

1.1. Welchen Strom I_{M-0} fließt ohne das Messgerät (Leerlauf)

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{U_E}{R_1} \qquad R_M = 0\Omega$$

$$U_E = 0.5V$$
 $R_1 = 5\Omega$

$$I_{M-0} = \frac{0.5V}{5O} = 100mA$$

1.2. Welchen Strom I_{M-1} misst das Messgerät im 100mA Messbereich

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

100mA Messbereich

$$U_E = 0.5V$$
 $R_1 = 5\Omega$ $R_M = 2.5\Omega$

$$R_{1ers} = 5\Omega + 2,5\Omega = 7,5\Omega$$

$$I_{M-1} = \frac{0.5V}{7.5\Omega} = 66.67 mA$$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

Lösung - 1. Aufgabe

1.3. Welchen Strom I_{M-2} misst das Messgerät im 500mA Messbereich

$$R_{lers} = R_l + R_M \qquad I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{lers}}$$

100mA Messbereich

$$U_{E} = 0.5V$$

$$R_1 = 5\Omega$$

$$U_E = 0.5V$$
 $R_1 = 5\Omega$ $R_M = 0.5\Omega$

$$R_{lers} = 5\Omega + 0.5\Omega = 5.5\Omega$$

$$I_{M-1} = \frac{0.5V}{5.5\Omega} = 90.91mA$$

1.4. Welchen Strom I_{M-3} misst das Messgerät im 1A Messbereich.

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

100mA Messbereich

$$U_E = 0.5V$$

$$R_1 = 5\Omega$$

$$U_E = 0.5V$$
 $R_1 = 5\Omega$ $R_M = 0.25\Omega$

$$R_{1ers} = 5\Omega + 0.25\Omega = 5.25\Omega$$

$$I_{M-1} = \frac{0.5V}{5.25\Omega} = 95,24mA$$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

Lösung - 1. Aufgabe

1.5. Welchen Strom I_{M-4} misst das Messgerät im 5A Messbereich.

$$R_{lers} = R_l + R_M \qquad I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{lers}}$$

100mA Messbereich

$$U_E = 0.5V$$
 $R_1 = 5\Omega$ $R_M = 0.05\Omega$

$$R_1 = 5\Omega$$

$$R_M = 0.05\Omega$$

$$R_{lers} = 5\Omega + 0.05\Omega = 5.05\Omega$$

$$I_{M-1} = \frac{0.5V}{5.05\Omega} = 99.01 \text{mA}$$

ifi

Lösung - 2. Aufgabe

2. Aufgabe Lösung

Beschaltung von Silizium- und Leuchtdioden (LED)

- 1.1. Bestimmen Sie die Leerlaufspannungen $U_{LR1} U_{LR4}$ und für die Widerstände $R_1 R_4$
- 1.2. Bestimmen Sie die Spannungen $U_{AD1} U_{AD4}$ der Arbeitspunkte der Dioden für die Widerstände R_1 R_4
- 1.3. Bestimmen Sie die Widerstände R_1 R_4 mittels U_E , U_{AD} und I_{AD}
- 1.4. Bestimmen Sie die Ströme für die 4 Widerstandsgeraden I_{5V-1} I_{5V-4} (da die Leerlaufspannung nicht auf dem Blatt ist). Das Kennlinienblatt darf nicht verlängert werden
- 1.5. Bestimmen Sie die Kurzschlussströme I_{KR1} I_{KR4} für die Widerstände R₁ R₄
- 1.6. Konstruieren Sie die Widerstandsgeraden. Bestimmen Sie dazu, wenn notwendig, die Hilfsgrößen I_{5V} und U_{70mA}
- 1.7. Berechnen Sie die Leistung $P_{D1} P_{D4}$ der Dioden $D_1 D_4$
- 1.8. Berechnen Sie die Leistung $P_{R1} P_{R4}$ der Widerstände $R_1 R_4$
- 1.9. Berechnen Sie den Gesamtstrom I_{ges}
- 1.10. Berechnen Sie den Gesamleistung der Schaltung P_{ges}
- 1.11. Berechnen Sie die verbrauchte Gesamtenergie $W_{\rm ges}$ die in der Zeit von t=1h verbraucht wird

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

Lösung - 2. Aufgabe

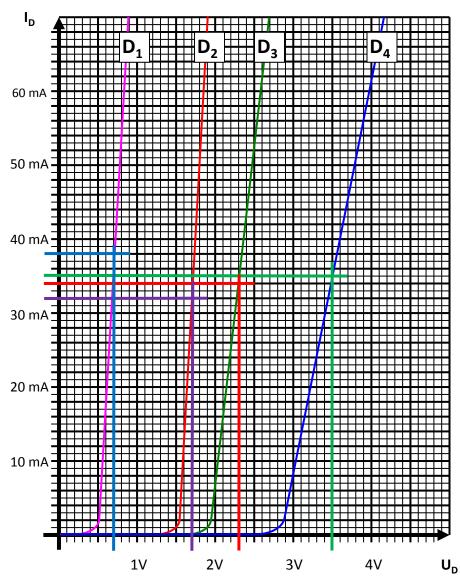
1.1. Bestimmen Sie die Leerlaufspannungen $U_{LR1} - U_{LR4}$ und für die Widerstände $R_1 - R_4$

$$U_{LR1} = U_{LR2} = U_{L31} = U_{LR4} = U_{E} = 10V$$

- 1.2. Bestimmen Sie die Spannungen $\rm U_{AD1} \rm U_{AD4}$ der Arbeitspunkte der Dioden für die Widerstände $\rm R_1$ $\rm R_4$
 - aus dem Kennlinien abgelesen:

$$I_{AD1} = 38mA \implies U_{AD1} = 0.7V$$

$$I_{AD2} = 32mA \implies U_{AD2} = 1.7V$$


$$I_{AD3} = 34mA \implies U_{AD3} = 2.3V$$

$$I_{AD4} = 35mA \implies U_{AD4} = 3.5V$$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

Lösung - 2. Aufgabe

$$I_{AD1} = 38mA \implies U_{AD1} = 0,7V$$

 $I_{AD2} = 32mA \implies U_{AD2} = 1,7V$
 $I_{AD3} = 34mA \implies U_{AD3} = 2,3V$
 $I_{AD4} = 35mA \implies U_{AD4} = 3,5V$

ifi

Lösung - 2. Aufgabe

1.3. Bestimmen Sie die Widerstände R_1 - R_4 mittels U_E , U_{AD} und I_{AD}

$$R = \frac{U_R}{I_R} = \frac{U_E - U_D}{I_D}$$

$$\begin{split} U_E &= 10V; \quad U_{AD1} = 0.7V; \quad I_{AD1} = 38mA \quad \Rightarrow \quad R_1 = \frac{10V - 0.7V}{38mA} = \frac{9.3V}{38mA} = 0.2447k\Omega = 244.7\Omega \\ U_E &= 10V; \quad U_{AD2} = 1.7V; \quad I_{AD2} = 32mA \quad \Rightarrow \quad R_2 = \frac{10V - 1.7V}{32mA} = \frac{8.3V}{32mA} = 0.2594k\Omega = 259.4\Omega \\ U_E &= 10V; \quad U_{AD3} = 2.3V; \quad I_{AD3} = 34mA \quad \Rightarrow \quad R_3 = \frac{10V - 2.3V}{34mA} = \frac{7.7V}{34mA} = 0.2265k\Omega = 226.5\Omega \\ U_E &= 10V; \quad U_{AD4} = 3.5V; \quad I_{AD4} = 35mA \quad \Rightarrow \quad R_4 = \frac{10V - 3.5V}{35mA} = \frac{6.5V}{35mA} = 0.1857k\Omega = 185.7\Omega \end{split}$$

ifi

Lösung - 2. Aufgabe

1.4. Bestimmen Sie die Ströme für die 4 Widerstandsgeraden I_{5V-1} – I_{5V-4} (da die Leerlaufspannung nicht auf dem Blatt ist). Das Kennlinienblatt darf nicht verlängert werden

$$\frac{U_E - U_{AD}}{I_{AD}} = \frac{U_E - U_{5V}}{I_{5V}} \quad \Rightarrow \quad I_{5V} = \frac{U_E - U_{5V}}{U_E - U_{AD}} \cdot I_{AD}$$

Diode 1:
$$U_E = 10V$$
 $U_{5V} = 5V$ $U_{AD1} = 0.7V$ $I_{AD1} = 38mA$

$$I_{5V-1} = \frac{10V - 5V}{10V - 0.7V} \cdot 38mA = \frac{5V}{9.3V} \cdot 38mA = 0.5376 \cdot 38mA = 20.43mA$$

Diode 2:
$$U_E = 10V$$
 $U_{5V} = 5V$ $U_{AD2} = 1,7V$ $I_{AD2} = 32mA$

$$I_{5V-2} = \frac{10V - 5V}{10V - 1,7V} \cdot 32mA = \frac{5V}{8,3V} \cdot 32mA = 0,6024 \cdot 32mA = 19.28mA$$

Diode 3:
$$U_E = 10V$$
 $U_{5V} = 5V$ $U_{AD3} = 2,3V$ $I_{AD3} = 34mA$
$$I_{5V-3} = \frac{10V - 5V}{10V - 2,3V} \cdot 34mA = \frac{5V}{7,7V} \cdot 34mA = 0,6494 \cdot 34mA = 22.08mA$$

Diode 4:
$$U_E = 10V$$
 $U_{5V} = 5V$ $U_{AD4} = 3,5V$ $I_{AD4} = 35mA$
$$I_{5V-4} = \frac{10V - 5V}{10V - 3,5V} \cdot 35mA = \frac{5V}{6,5V} \cdot 35mA = 0,7692 \cdot 35mA = 26,92mA$$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

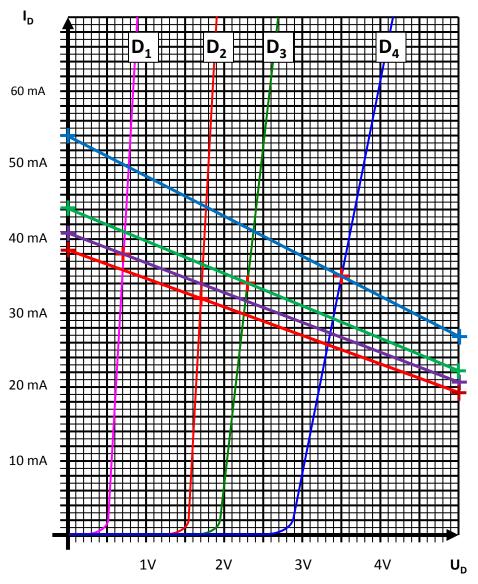
Lösung - 2. Aufgabe

1.5. Bestimmen Sie die Kurzschlussströme $I_{KR1} - I_{KR4}$ für die Widerstände $R_1 - R_4$

$$I_{KR} = \frac{U_E}{R}$$

$$U_E = 10V$$
 $R_1 = 244,7\Omega$ \Rightarrow $I_{KR1} = \frac{10V}{244,7\Omega} = 0,04087A = 40,87mA$

$$U_E = 10V$$
 $R_2 = 259,4\Omega$ \Rightarrow $I_{KR2} = \frac{10V}{259,4\Omega} = 0,03855A = 38,55mA$


$$U_E = 10V$$
 $R_3 = 226,5\Omega$ \Rightarrow $I_{KR3} = \frac{10V}{226,5\Omega} = 0,04415A = 44,15mA$

$$U_E = 10V$$
 $R_4 = 185,7\Omega$ \Rightarrow $I_{KR4} = \frac{10V}{185,7\Omega} = 0,05385A = 53,85mA$

4. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 1" Wintersemester 2009

Lösung - 2. Aufgabe

Diode 1:
$$U_E = 10V$$
 $U_{AD1} = 0.7V$ $I_{AD1} = 38mA$
 $U_{5V} = 5V$ $I_{5V-1} = 20.43mA$ $I_{KR1} = 40.87mA$

Diode 2:
$$U_E = 10V$$
 $U_{AD2} = 1,7V$ $I_{AD2} = 32mA$
 $U_{5V} = 5V$ $I_{5V-2} = 19.28mA$ $I_{KR2} = 38,55mA$

Diode 3:
$$U_E = 10V$$
 $U_{AD3} = 2,3V$ $I_{AD3} = 34mA$
 $U_{5V} = 5V$ $I_{5V-3} = 22.08mA$ $I_{KR3} = 44,15mA$

Diode 4:
$$U_E = 10V$$
 $U_{AD4} = 3.5V$ $I_{AD4} = 35mA$
 $U_{5V} = 5V$ $I_{5V-4} = 26.92mA$ $I_{KR4} = 53.85mA$

Lösung - 2. Aufgabe

1.7. Berechnen Sie die Leistung $P_{D1} - P_{D4}$ der Dioden $D_1 - D_4$

$$P_{AD} = U_{AD} \cdot I_{AD}$$

$$\begin{array}{lll} U_{AD1} = 0.7V & I_{AD1} = 38mA & \Rightarrow & P_{AD1} = 0.7V \cdot 38mA = 26.6mW \\ U_{AD2} = 1.7V & I_{AD2} = 32mA & \Rightarrow & P_{AD2} = 1.7V \cdot 32mA = 54.4mW \\ U_{AD3} = 2.3V & I_{AD3} = 34mA & \Rightarrow & P_{AD3} = 2.3V \cdot 34mA = 78.2mW \\ U_{AD4} = 3.5V & I_{AD4} = 35mA & \Rightarrow & P_{AD3} = 3.5V \cdot 35mA = 122.5mW \end{array}$$

1.8. Berechnen Sie die Leistung $P_{R1} - P_{R4}$ der Widerstände $R_1 - R_4$

$$U_R = U_E - U_{AD}$$
 $I_R = I_{AD}$ $P_R = U_R \cdot I_R$

$$\begin{array}{lll} U_{R1} = 10V - 0.7V = 9.3V & I_{R1} = I_{AD1} = 38mA & \Rightarrow & P_{AD1} = 9.3V \cdot 38mA = 353.4mW \\ U_{R2} = 10V - 1.7V = 8.3V & I_{R2} = I_{AD2} = 32mA & \Rightarrow & P_{AD1} = 8.3V \cdot 32mA = 265.6mW \\ U_{R3} = 10V - 2.3V = 7.7V & I_{R3} = I_{AD3} = 34mA & \Rightarrow & P_{AD1} = 7.7V \cdot 34mA = 261.8mW \\ U_{R4} = 10V - 3.5V = 6.5V & I_{R4} = I_{AD4} = 35mA & \Rightarrow & P_{AD1} = 6.5V \cdot 35mA = 227.5mW \end{array}$$

- 1.9. Berechnen Sie den Gesamtstrom I_{ges}
- 1.10. Berechnen Sie den Gesamleistung der Schaltung P_{ges}
- 1.11. Berechnen Sie die verbrauchte Gesamtenergie $W_{\rm ges}$ die in der Zeit von t=1h geleistet wird

Lösung - 2. Aufgabe

1.9. Berechnen Sie den Gesamtstrom I_{ges}

$$I_{ges} = I_{AD1} + I_{AD2} + I_{AD3} + I_{AD4} = I_{R1} + I_{R2} + I_{R3} + I_{R4}$$

$$I_{AD1} = I_{R1} = 38mA$$
 $I_{AD2} = I_{R2} = 32mA$ $I_{AD3} = I_{R3} = 34mA$ $I_{AD4} = I_{R4} = 35mA$

$$I_{ges} = 38mA + 32mA + 34mA + 35mA = 139mA$$

1.10. Berechnen Sie den Gesamleistung der Schaltung P_{ges}

$$P_{ges} = U_E \cdot I_{ges}$$

$$U_E = 10V$$
 $I_{ges} = 139mA$

$$P_{ges} = 10V \cdot 139mA = 1390mW = 1,39W$$

1.11. Berechnen Sie die verbrauchte Gesamtenergie $W_{\rm ges}$ die in der Zeit von t=1h verbraucht wird

$$W_{ges} = P_{ges} \cdot t$$

$$P_{ges} = 1,39W$$
 $t = 1h$

$$W_{ges} = 1,39W \cdot 1h = 1,39Wh = 0,00139kWh$$

= 1,39W \cdot 3600s = 5004Ws = 5,004kJ