GENERATIVE AND COMPUTATIONAL POWER
OF COMBINATORY CATEGORIAL GRAMMAR

Lena Katharina Schiffer

@) @)
July 10th, 2024 o/ QuantLA
Institute for Computer Science Q o

Universitat Leipzig



COMBINATORY CATEGORIAL GRAMMAR



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

noun verb article noun preposition noun



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

| |

. ! !
article noun ! !
| |

| |

\/ I I

noun verb  noun phrase preposition noun



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

| |

. ! !
article noun ! !
| |

| |

\/ I I

noun phrase verb noun phrase preposition noun phrase



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N T~

noun phrase verb noun phrase prepositional phrase



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

noun phrase prepositional phrase

—

noun phrase verb noun phrase



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N ~

noun phrase prepositional phrase

—

verb noun phrase

| —

noun phrase verb phrase



CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N ~

noun phrase prepositional phrase
verb noun phrase
noun phrase verb phrase

\/

sentence



CATEGORY REPRESENTATION OF CONSTITUENTS

article noun

o

noun phrase



CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N

7 NS

noun phrase NP



CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP

article category NP/N
“obtain a noun phrase if a noun is on the right side”



CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP
article category NP/N f:N— NP

“obtain a noun phrase if a noun is on the right side”



CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP
article category NP/N f:N— NP
“obtain a noun phrase if a noun is on the right side”
NP,N atoms
NP target

/N argument



CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase

\\\\\\//////

sentence



CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase  verb phrase NP S\NP

T~ N

sentence S



CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase  verb phrase NP S\NP
sentence S

verb phrase category S\NP
“obtain a sentence if a noun phrase is on the left side”



CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase  verb phrase NP  S\NP
sentence S
verb phrase category S\NP f:NP—>S

“obtain a sentence if a noun phrase is on the left side”



CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase  verb phrase NP  S\NP
sentence S
verb phrase category S\NP f:NP—>S
“obtain a sentence if a noun phrase is on the left side”
S,NP atoms
S target

\NP argument



CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP



CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)
S\NP/NP

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”



CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP f:NPxNP — S

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”



CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP f:NPxNP —S or f: NP— (NP —S)

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”
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COMPOSITION RULES

degree o degree 1 degree 2
c/b b c/b b\e c\b b\e/d
o c\e c\e/d

fre—=b g:b—>c
fog:e—c
In a rule we may restrict

« the secondary category to a concrete category
« the target of the primary category to a concrete atom

c/b b Sx/NP NP
C SX
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EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}

« initial categories | = {D}

« lexicon L with “ “ ’B p
L(a) = {D/E, D/E/D} :
L(B) = {E} - DEE
D/E/D D
* rule set includes D/E E
restricted rules D

Dx/D D Dx/E E
Dx ° Dx



CLASSICAL LANGUAGE CLASSES

/ context-sensitive \

CSG LBA

context-free

\ CFG PDA J

CSG Context-Sensitive Grammar
LBA Linear Bounded Automaton
CFG Context-Free Grammar
PDA  Push-Down Automaton
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.. because | saw Cecilia help Henk feed the hippopotamuses.
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Example from Steedman (1985)
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MiILD CONTEXT-SENSITIVITY OF CCG

Math Systoms Theory 27, 511-546 (1994) Mathematical
Systems

o0 Srngervering

e s of Fou Extensions of TAG = CCG = LIG = HG

K. Vijay-Shanker! and D. J. Weir®

s i 5 Vijay-Shanker, Weir (1994)

Brighton, Sussex BN1 9QH, England

Abstract. There is currently considerable interest among computational
linguists in grammatical formalisms with highly restricted generative power.
This concerns the relationship between the class of string languages
generated by several such formalisms, namely, combinatory categorial gram.-
mars, head grammars, lincar indexed grammars, and tree adjoining grammars,
Each of these formalisms is known to generate a larger class of languages
than context-free grammars. The four formalisms under consideration were
developed mdcp:ndcm\) and appear superficaly 10 b quite it from

et i by et o LIG Linear Indexed Grammar
B o HG Head Grammar

kY
tical formalisms with highly restricted generative power. This is based on the
argument that a grammar formalism should not merely be viewed as a notation,
but as part of the linguistic theory [6]. It should make predictions about the
structure of natural language and its value is lessened to the extent that it supports
both good and bad analyses. In order for a grammar formalism to have such
predictive power its generative capacity must be constrained. This has led to

his work has been supparted by NSF Grants MCS-52-19116-CER, MCS.207294, DCR 34
10413, IRI$509810, ARG Grant DAA2-54.-003,and DARPA Grant NOOL£ 55 K015




MiILD CONTEXT-SENSITIVITY OF CCG

Parsing Some Constrained Grammar

Formalisms
K. Vijay-Shanker" David J. Weir'
University of Delaware University of Sussex

I this paper we present a scheme o extend a recognition algorithm for Context-Free Gram-

mars (CFG) that can be used o derive polynomial-time recognition algorithms for a set of for-

alans it gevere o spee o ngages evrted by G, We descrie e s by

developing a Ci () for Lin-

ar ndesd Gramars and show how it can be adapted to give algorithms for Tree Adjoining
b

ulxom/ym for (,mnhuumvry Categorial Grammars that we are axware of.

The deas pre-

CCG parsable in O(|w|®)

1. Introduction

peper Igorthms for ConextFree
Grammrs (CFG) i order t abtain ecogaiion agoithms for 3 lass of gramomatca o q
ool ht g s i perstof e = of g vt by O \Y -Sh | W ( 99 )
i e s chene e s o Lo 1)ja anker, Weir (1994,
Grammars (LIG), Tree Adjining Grommars ¢ s vern o Combintory
Coegonal Gramimars (CCL). Thse formalins belong 0 the cae of iy et
orsoe amma fomalions dentifed by Joshi 198 oh the bais of some properies
heir generative <apacity: The paring setey tha we propose con be Appie 16
o A

below) in their derivational process. Some of the main ideas underlying our scheme
have been influenced by the observations that can be made about the constructions
used in the proofs of the equivalence of these formalisms and Head Grammars (HG)
Viy-Shanker 1967, Weir 198 Viay Shakerand Wele 199)

There are similarities between the TAG and HG derivation processes and that of
ContextFree Grammars (CFC). This is refecte in common fature of the parsing
algurithms for HG (Polad 1560 and TAG Wla-Shanker and fohl 1985 am! the
CKY algorithm for CFG (Kasami 1965; Younger 1967). In particular, what
3t cach tep in a dervation can depond only on which of a fite et of “sates” the
derivation is in (for C!

“This property, which we refer to as the context-freeness property, is important because
it allows one to keep only a limited amount of context during the recognition process,

 Department n’r‘vm’m[”:lld Information Sciences, University of Delaware, Newark, DE 19716,
Emai viay
5ot m»mm 73 Computin Scences,Universiy o s, Bihton DN) 01, UK. B

© 1994 Associaton for Computatonal Linguitis
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can be solved in O(|w|®)  vijay-Shanker, Weir (1994)

Universal Recognition Problem

s input: w, G
« question: w e £(G)?

EXPTIME-/NP-complete  Kuhlmann, Satta, Jonsson (2018)
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e-entries
. . &
lexicon entries ]
for the
empty word &
B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on e-entries  vijay-Shanker, Weir (199z)

universal recognition problem
 with e-entries EXPTIME-complete

 without them NP-complete
Kuhlmann, Satta, Jonsson (2018)
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RESEARCH QUESTION

CCG variant complexity
with g-entries EXPTIME"
without e-entries | NP’

? PTIME

« Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

« Can we find a practically relevant formalism with this
property?

TKuhlmann, Satta, Jonsson (2018)
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APPROACH

« inclusion of substitution rules

c/b/e bJe c/b/e b/e\d
c/e c/e\d

— generalized rule notation

c/ba bap bap c\ba
cap cap

with |a| < 1

» new parsing algorithm based on Kuhlmann, Satta (2014)

« complexity in terms of grammar size:
new runtime exponential only in maximum rule degree k



PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

Shieber, Schabes, Pereira (1995)



PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

+ use inference rules of the form

A, ... A . e
1Tk (side conditions)

Shieber, Schabes, Pereira (1995)



PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

+ use inference rules of the form

A A . ..
! k (side conditions)

« input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)
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Tree Items

[c, i, J]
represents a derivation tree
with root category c

Context Items

[aa ﬁa i7 i,, j,’ j]
1< |a] €2
|| < maximum rule degree k

Kuhlmann, Satta (2014)

ITEM TYPES

wli,j]

N/

c

wli, i’} w(j’.j]

Ca

cp
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Axioms: Lexicon Entry — Tree

Wi

GOAL: Tree over complete input with ¢, initial

w(o, |wl]

N/

Co
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(1) Tree — Context

Wil wli, j] wll, [] wli,j]
; ; SN ; ; = C/bC(
c/ba bap

foot node
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WHAT IS NEw?

- generalization to substitution rules
- improve complexity by restricting the tree items

secondary category o lexical category
Ca Ca

\ tree item category /
ith || <2

cpB w

and |B] < |a

— number of items (and deduction rules!) exponential in R



COMPLEXITY RESULT

Theorem

The universal recognition problem for k-CCG with
e-entries and substitution rules can be solved in time
and space O(|G|**5 - |w]|®).
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Theorem

The universal recognition problem for k-CCG with
e-entries and substitution rules can be solved in time
and space O(|G|**5 - |w]|®).

CCG variant complexity
with e-entries EXPTIME"
without e-entries | NPT

TKuhlmann, Satta, Jonsson (2018)
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weak
generative capacity

string languages
= sets of strings

strong
generative capacity

// C \\
/ / N\ \
/ \

/ C Cc \
// /0 /0 \\
i a b a b \
[ |
l ¢ J
\ Cc /N I
\ /\ a b |
R c a /
\ / \ /

\ /7
N a b y

tree languages
= sets of trees




TREE LANGUAGE OF CCG

y S/B B .
/ / \ / \ \
/ S/B/C C B/C C \

\ S 7\ !
\ / N\
| B S\B S/B B /
\\ VRN //
. B/C C

CCG derivation tree set
(root category = initial)



TREE LANGUAGE OF CCG

/// / N N i /// ) S . \\\

// S/B B \\ // a b \\
Y / A\ / \ '\ y/ / \ AN b
. S/B/C C B/C C \ i e cd c \
l S J > S :
| S . relabel | s / \b j
\ / N\ ! \ / \ a !
1 B s\g /B B/ \ b a /

\\ 7N // \\ SN //

‘. B/C C y d ¢ o

CCG derivation tree set generated

(root category = initial) tree language
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0-CCG | 1-CCG | 2-CCG | R-CCG | R-CCG with e-entries

strings | = CFG? | = CFG = TAGS

trees | ¢ RTGY

RTG Regular Tree Grammar 8
aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)

Cvijay-Shanker, Weir (1994)

dBuszkowski (1988)

B
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RESEARCH QUESTIONS

What is the generative capacity of CCG without e-entries?
What class of tree languages does CCG generate?

How does the rule degree affect the generative capacity?
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 Moore PDA generates all spines (of length > 2)

« primary category length can grow unbounded
— simulate Moore PDA in primary spines of CCG
— store stack in the argument sequence

- last argument of primary category stores
* current state
« topmost stack symbol
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STRONG EQUIVALENCE RESULT

2-CCG without g-entries
ul
TAG = sCFTG = 2-CCG without e-entries
Ul

k-CCG with g-entries

Theorem

2-CCG without e-entries generates the same class of
tree languages as TAG.
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OVERVIEW OF RESULTS

CCG variant rute e-entries string tree
degree languages languages

(pure) with application rules only k=0 yes/no = CFG ¢ RTG
pure with composition k=1 yes/no = CFG ¢ RTG
composition k=1 yes/no = CFG = RTG
pure with composition k>2 yes/no ¢ TAG ¢ TAG
prefix-closed, no target restrictions k> 2 yes/no C TAG c TAG
prefix-closed k>2 yes =TAG
composition k>2 no =TAG = TAG
composition k>2 yes =TAG = TAG
composition and substitution k>2 yes =TAG
generalized composition unlimited no 2 TAG 2 TAG
generalized composition unlimited yes 2 TAG 2 TAG

CCG variant complexity

with e-entries EXPTIME

without e-entries NP
bounded degree PTIME
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