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“obtain a sentence if there is
• a noun phrase on the right side and
• a noun phrase on the left side”
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Classical Language Classes

context-free

context-sensitive
CSG LBA

CFG PDA

CSG Context-Sensitive Grammar
LBA Linear Bounded Automaton
CFG Context-Free Grammar
PDA Push-Down Automaton



Cross-Serial Dependencies

... omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

... because I Cecilia Henk the hippopotamuses saw help feed

’... because I saw Cecilia help Henk feed the hippopotamuses.’

COPY = {ww | w ∈ Σ∗ }

Example from Steedman (1985)



Cross-Serial Dependencies

... omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

... because I Cecilia Henk the hippopotamuses saw help feed

’... because I saw Cecilia help Henk feed the hippopotamuses.’

COPY = {ww | w ∈ Σ∗ }

Example from Steedman (1985)



Mild Context-Sensitivity

context-free
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TAG

MCFG Multiple Context-Free Grammar
TAG Tree-Adjoining Grammar
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Mild Context-Sensitivity of CCG

TAG = CCG = LIG = HG

Vijay-Shanker, Weir (1994)

LIG Linear Indexed Grammar
HG Head Grammar



Mild Context-Sensitivity of CCG

CCG parsable in O(|w|6)

Vijay-Shanker, Weir (1994)



Computational Complexity



Parsing Decision Problems

Membership Problem

• input: w
• question: w ∈ L(G) ?

can be solved in O(|w|6) Vijay-Shanker, Weir (1994)

Universal Recognition Problem

• input: w, G
• question: w ∈ L(G) ?

EXPTIME-/NP-complete Kuhlmann, Satta, Jonsson (2018)
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• without them NP-complete
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Research Question

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

? PTIME

• Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

• Can we find a practically relevant formalism with this
property?

†Kuhlmann, Satta, Jonsson (2018)
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Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)
• complexity in terms of grammar size:

new runtime exponential only in maximum rule degree k
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Parsing as Deduction

Parsing is viewed as a deductive process:

• start from a set of axioms and derive new items

• use inference rules of the form

A1 . . . Ak
B

⟨side conditions⟩

• input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)
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Item Types

Tree Items

[c, i, j]
represents a derivation tree
with root category c c

w[i, j]

Context Items

[α , β , i, i′, j′, j]
1 ≤ |α | ≤ 2
|β | ≤ maximum rule degree k

w[i, i′] w[j′, j]

cα
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Parsing Algorithm – Axioms and Goal

Axioms: Lexicon Entry → Tree
wi
....

c

=
c

w[i − 1, i]

Goal: Tree over complete input with c0 initial

c0

w[0, |w|]
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→
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w[i, j]

cαβ

=

w[l, l] w[i, j]

c/bα

cαβ

foot node
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Parsing Algorithm – Rule 2

2 Tree + Context → Tree

cα

i j
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What is New?

• generalization to substitution rules

• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ

with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k
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