GENERATIVE AND COMPUTATIONAL POWER
OF COMBINATORY CATEGORIAL GRAMMAR

Lena Katharina Schiffer

@) @)
July 10th, 2024 o/ QuantLA
Institute for Computer Science Q o

Universitat Leipzig

COMBINATORY CATEGORIAL GRAMMAR

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

noun verb article noun preposition noun

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

| |

. ! !
article noun ! !
| |

| |

\/ I I

noun verb noun phrase preposition noun

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

| |

. ! !
article noun ! !
| |

| |

\/ I I

noun phrase verb noun phrase preposition noun phrase

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N T~

noun phrase verb noun phrase prepositional phrase

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

noun phrase prepositional phrase

—

noun phrase verb noun phrase

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N ~

noun phrase prepositional phrase

—

verb noun phrase

| —

noun phrase verb phrase

CONSTITUENTS IN NATURAL LANGUAGE

Mary wrote a book about grammars

article noun preposition noun phrase

N ~

noun phrase prepositional phrase
verb noun phrase
noun phrase verb phrase

\/

sentence

CATEGORY REPRESENTATION OF CONSTITUENTS

article noun

o

noun phrase

CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N

7 NS

noun phrase NP

CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP

article category NP/N
“obtain a noun phrase if a noun is on the right side”

CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP
article category NP/N f:N— NP

“obtain a noun phrase if a noun is on the right side”

CATEGORY REPRESENTATION OF CONSTITUENTS

article noun NP/N N
noun phrase NP
article category NP/N f:N— NP
“obtain a noun phrase if a noun is on the right side”
NP,N atoms
NP target

/N argument

CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase

\\\\\\//////

sentence

CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase NP S\NP

T~ N

sentence S

CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase NP S\NP
sentence S

verb phrase category S\NP
“obtain a sentence if a noun phrase is on the left side”

CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase NP S\NP
sentence S
verb phrase category S\NP f:NP—>S

“obtain a sentence if a noun phrase is on the left side”

CATEGORY REPRESENTATION OF CONSTITUENTS

noun phrase verb phrase NP S\NP
sentence S
verb phrase category S\NP f:NP—>S
“obtain a sentence if a noun phrase is on the left side”
S,NP atoms
S target

\NP argument

CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP

CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)
S\NP/NP

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”

CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP f:NPxNP — S

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”

CATEGORY REPRESENTATION OF CONSTITUENTS

transitive verb category (example: likes)

S\NP/NP f:NPxNP —S or f: NP— (NP —S)

“obtain a sentence if there is
« a noun phrase on the right side and
« a noun phrase on the left side”

CONSTITUENCY TREE VS CCG DERIVATION TREE

Mary likes grammars

i \% NP

~_

NP VP

\/

S

CONSTITUENCY TREE VS CCG DERIVATION TREE

Mary likes grammars Mary likes grammars
3 Vv NP : ' '
; ~_ © S\NP/NP NP
NP VP NP S\NP

~_ S

S

CONSTITUENCY TREE VS CCG DERIVATION TREE

Mary likes grammars Mary likes grammars
3 Vv NP : ' '
; ~_ © S\NP/NP NP
NP VP NP S\NP

~_ S

S

CONSTITUENCY TREE VS CCG DERIVATION TREE

Mary likes grammars Mary likes grammars
3 Vv NP : ' '
; ~_ © S\NP/NP NP
NP VP NP S\NP

~_ S

S

CONSTITUENCY TREE VS CCG DERIVATION TREE

Mary likes grammars Mary likes grammars
| v NP : ' '
; ~_ © S\NP/NP NP
NP VP NP S\NP
\/ S
S

S initial category

APPLICATION RULES

forward application backward application
c/b b b c\b
— —

c/b, c\b primary category
b secondary category
¢ output category

APPLICATION RULES

forward application backward application
c/b b b c\b
— —

c/b, c\b primary category
b secondary category
¢ output category

S\NP/NP NP
S\NP

COMPOSITION RULES

forward rule backward rule

c/b bp b c\b
B B

B argument sequence
|B] rule degree

COMPOSITION RULES

degree o
c/b b
Cc

COMPOSITION RULES

degree o degree 1
c/b b c/b b\e
C c\e

COMPOSITION RULES

degree o degree 1
c/b b c/b b\e
C c\e

fre—=b g:b—>c
fog:e—c

COMPOSITION RULES

degree o degree 1 degree 2
c/b b c/b b\e c\b b\e/d
o c\e c\e/d

fre—-b g:b-oc
fog:e—c

COMPOSITION RULES

degree o degree 1 degree 2
c/b b c/b b\e c\b b\e/d
o c\e c\e/d

fre—=b g:b—>c
fog:e—c
In a rule we may restrict

« the secondary category to a concrete category
« the target of the primary category to a concrete atom

c/b b Sx/NP NP
C SX

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule setincludes
all application rules

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule setincludes
all application rules

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule set includes
all application rules E E

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule set includes . .
all application rules D/E E E

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule set includes . : :
all application rules D/E/D D/E E E

{c/b b b c\b}
R= ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}
« lexicon L with
L(a) = {D/E, D/E/D}
L(B) = {E}

* rule set includes . : :
all application rules D/E/D D/E E E

{c/b b b c\b}
R= ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}

« lexicon L with “ * ’B p
L(a) = {D/E, D/E/D}
L(B) = {E}

« rule set includes . D/E E
all application rules D/E/D D E

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}

« lexicon L with “ * ’B p
L(a) = {D/E, D/E/D}
L(B) = {E}

« rule set includes . D/E E
all application rules D/E/D D E

{c/b b b c\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}

« lexicon L with “ “ 'B p
L(a) = {D/E, D/E/D}
L(B) = {E}
D/E E
* rule set includes D/E/D D
all application rules D/E E

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}

« lexicon L with “ “ 'B p
L(a) = {D/E, D/E/D}
L(B) = {E}
D/E E
* rule set includes D/E/D D
all application rules D/E E

{c/b b b c\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}
« initial categories | = {D}

« lexicon L with “ “ ’B p
L(a) = {D/E, D/E/D} :
L(B) = {E} - DE B
D/E/D D
* rule set includes D/E E
all application rules D

{C/b b b C\b}
R = ,
c c

EXAMPLE CCG G = (Z,A,R, I, L)

« input alphabet X = {a, B}
+ atomic categories A = {D, E}

« initial categories | = {D}

« lexicon L with “ “ ’B p
L(a) = {D/E, D/E/D} :
L(B) = {E} - DEE
D/E/D D
* rule set includes D/E E
restricted rules D

Dx/D D Dx/E E
Dx ° Dx

CLASSICAL LANGUAGE CLASSES

/ context-sensitive \

CSG LBA

context-free

\ CFG PDA J

CSG Context-Sensitive Grammar
LBA Linear Bounded Automaton
CFG Context-Free Grammar
PDA Push-Down Automaton

. omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.
. because | Cecilia Henk the hippopotamuses saw help feed

[

|

.. because | saw Cecilia help Henk feed the hippopotamuses.

Example from Steedman (1985)

. omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.
. because | Cecilia Henk the hippopotamuses saw help feed

| |

.. because | saw Cecilia help Henk feed the hippopotamuses.

COPY ={ww |weX"}

Example from Steedman (1985)

MILD CONTEXT-SENSITIVITY

/ context-sensitive \

MCFG Multiple Context-Free Grammar
TAG Tree-Adjoining Grammar

TREE-ADJOINING GRAMMAR

MiILD CONTEXT-SENSITIVITY OF CCG

Math Systoms Theory 27, 511-546 (1994) Mathematical
Systems

o0 Srngervering

e s of Fou Extensions of TAG = CCG = LIG = HG

K. Vijay-Shanker! and D. J. Weir®

s i 5 Vijay-Shanker, Weir (1994)

Brighton, Sussex BN1 9QH, England

Abstract. There is currently considerable interest among computational
linguists in grammatical formalisms with highly restricted generative power.
This concerns the relationship between the class of string languages
generated by several such formalisms, namely, combinatory categorial gram.-
mars, head grammars, lincar indexed grammars, and tree adjoining grammars,
Each of these formalisms is known to generate a larger class of languages
than context-free grammars. The four formalisms under consideration were
developed mdcp:ndcm\) and appear superficaly 10 b quite it from

et i by et o LIG Linear Indexed Grammar
B o HG Head Grammar

kY
tical formalisms with highly restricted generative power. This is based on the
argument that a grammar formalism should not merely be viewed as a notation,
but as part of the linguistic theory [6]. It should make predictions about the
structure of natural language and its value is lessened to the extent that it supports
both good and bad analyses. In order for a grammar formalism to have such
predictive power its generative capacity must be constrained. This has led to

his work has been supparted by NSF Grants MCS-52-19116-CER, MCS.207294, DCR 34
10413, IRI$509810, ARG Grant DAA2-54.-003,and DARPA Grant NOOL£ 55 K015

MiILD CONTEXT-SENSITIVITY OF CCG

Parsing Some Constrained Grammar

Formalisms
K. Vijay-Shanker" David J. Weir'
University of Delaware University of Sussex

I this paper we present a scheme o extend a recognition algorithm for Context-Free Gram-

mars (CFG) that can be used o derive polynomial-time recognition algorithms for a set of for-

alans it gevere o spee o ngages evrted by G, We descrie e s by

developing a Ci () for Lin-

ar ndesd Gramars and show how it can be adapted to give algorithms for Tree Adjoining
b

ulxom/ym for (,mnhuumvry Categorial Grammars that we are axware of.

The deas pre-

CCG parsable in O(|w|®)

1. Introduction

peper Igorthms for ConextFree
Grammrs (CFG) i order t abtain ecogaiion agoithms for 3 lass of gramomatca o q
ool ht g s i perstof e = of g vt by O \Y -Sh | W (99)
i e s chene e s o Lo 1)ja anker, Weir (1994,
Grammars (LIG), Tree Adjining Grommars ¢ s vern o Combintory
Coegonal Gramimars (CCL). Thse formalins belong 0 the cae of iy et
orsoe amma fomalions dentifed by Joshi 198 oh the bais of some properies
heir generative <apacity: The paring setey tha we propose con be Appie 16
o A

below) in their derivational process. Some of the main ideas underlying our scheme
have been influenced by the observations that can be made about the constructions
used in the proofs of the equivalence of these formalisms and Head Grammars (HG)
Viy-Shanker 1967, Weir 198 Viay Shakerand Wele 199)

There are similarities between the TAG and HG derivation processes and that of
ContextFree Grammars (CFC). This is refecte in common fature of the parsing
algurithms for HG (Polad 1560 and TAG Wla-Shanker and fohl 1985 am! the
CKY algorithm for CFG (Kasami 1965; Younger 1967). In particular, what
3t cach tep in a dervation can depond only on which of a fite et of “sates” the
derivation is in (for C!

“This property, which we refer to as the context-freeness property, is important because
it allows one to keep only a limited amount of context during the recognition process,

 Department n’r‘vm’m[”:lld Information Sciences, University of Delaware, Newark, DE 19716,
Emai viay
5ot m»mm 73 Computin Scences,Universiy o s, Bihton DN) 01, UK. B

© 1994 Associaton for Computatonal Linguitis

COMPUTATIONAL COMPLEXITY

PARSING DECISION PROBLEMS

Membership Problem

* input: w
* question: we £(G)?

can be solved in O(|w|®) Vijay-Shanker, Weir (1994)

PARSING DECISION PROBLEMS

Membership Problem

* input: w
* question: w e £(G)?

can be solved in O(|w|®) vijay-Shanker, Weir (1994)

Universal Recognition Problem

s input: w, G
« question: w e £(G)?

EXPTIME-/NP-complete Kuhlmann, Satta, Jonsson (2018)

LEXICON ENTRIES FOR THE EMPTY WORD

e-entries

lexicon entries
for the

empty word &
B/D/C

LEXICON ENTRIES FOR THE EMPTY WORD

e-entries
. . &
lexicon entries]
for the
empty word &
B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on e-entries vijay-Shanker, Weir (199z)

LEXICON ENTRIES FOR THE EMPTY WORD

e-entries
. . &
lexicon entries]
for the
empty word &
B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on e-entries vijay-Shanker, Weir (199z)

universal recognition problem
 with e-entries EXPTIME-complete

 without them NP-complete
Kuhlmann, Satta, Jonsson (2018)

RESEARCH QUESTION

CCG variant complexity
with g-entries EXPTIME"
without e-entries | NP’

? PTIME

TKuhlmann, Satta, Jonsson (2018)

RESEARCH QUESTION

CCG variant complexity
with g-entries EXPTIME"
without e-entries | NP’

? PTIME

« Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

TKuhlmann, Satta, Jonsson (2018)

RESEARCH QUESTION

CCG variant complexity
with g-entries EXPTIME"
without e-entries | NP’

? PTIME

« Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

« Can we find a practically relevant formalism with this
property?

TKuhlmann, Satta, Jonsson (2018)

APPROACH

« inclusion of substitution rules
c/b/je bje
c/e

APPROACH

« inclusion of substitution rules
c/b/e bJe c/b/e b/e\d
c/e c/e\d

APPROACH

« inclusion of substitution rules
c/b/e bJe c/b/e b/e\d
c/e c/e\d

— generalized rule notation
c/ba bap bap c\ba
cap cap

with |a| < 1

APPROACH

« inclusion of substitution rules
c/b/e bJe c/b/e b/e\d
c/e c/e\d

— generalized rule notation
c/ba bap bap c\ba
cap cap

with |a| < 1

» new parsing algorithm based on Kuhlmann, Satta (2014)

APPROACH

« inclusion of substitution rules

c/b/e bJe c/b/e b/e\d
c/e c/e\d

— generalized rule notation

c/ba bap bap c\ba
cap cap

with |a| < 1

» new parsing algorithm based on Kuhlmann, Satta (2014)

« complexity in terms of grammar size:
new runtime exponential only in maximum rule degree k

PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

Shieber, Schabes, Pereira (1995)

PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

+ use inference rules of the form

A, ... A . e
1Tk (side conditions)

Shieber, Schabes, Pereira (1995)

PARSING AS DEDUCTION

Parsing is viewed as a deductive process:

- start from a set of axioms and derive new items

+ use inference rules of the form

A A . ..
! k (side conditions)

« input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)

ITEM TYPES

Tree Items

[c, i, J] wli,j]
represents a derivation tree ; ;
with root category c c

Kuhlmann, Satta (2014)

Tree Items

[c, i, J]
represents a derivation tree
with root category c

Context Items

[aa ﬁa i7 i,, j,’ j]
1< |a] €2
|| < maximum rule degree k

Kuhlmann, Satta (2014)

ITEM TYPES

wli,j]

N/

c

wli, i’} w(j’.j]

Ca

cp

PARSING ALGORITHM — AXIOMS AND GOAL

Axioms: Lexicon Entry — Tree

Wi

PARSING ALGORITHM — AXIOMS AND GOAL

Axioms: Lexicon Entry — Tree

Wi

GOAL: Tree over complete input with ¢, initial

w(o, |wl]

N/

Co

PARSING ALGORITHM - RULE 1

(1) Tree — Context

wli, j]

NV

bap

PARSING ALGORITHM - RULE 1

(1) Tree — Context

wli.j] vw[i’j]
H
c/ba bap

bap cap

PARSING ALGORITHM - RULE 1

(1) Tree — Context

wli.j] vw[i’j]
H
c/ba bap

bap

/\ cap

foot node

PARSING ALGORITHM - RULE 1

(1) Tree — Context

Wil wli, j] wll, [] wli,j]
; ; SN ; ; = C/bC(
c/ba bap

foot node

PARSING ALGORITHM - RULE 2

(2) Tree + Context — Tree

i J

N/

Ca

Ca

PARSING ALGORITHM - RULE 2

(2) Tree + Context — Tree

i J

N/

Ca

Ca

PARSING ALGORITHM - RULE 2

(2) Tree + Context — Tree

i J

N/
o -\ /

cp

Ca

PARSING ALGORITHM - RULE 3

@ Context + Context — Context

Ca

PARSING ALGORITHM - RULE 3

@ Context + Context — Context

Ca
Ca
cB
. . ﬁ
] J) Cﬁ
cB
cy

PARSING ALGORITHM - RULE 3

@ Context + Context — Context

Ca
ca
cB Ca
. . H :
1 J) Cﬂ C}/
cp
cy

WHAT IS NEw?

- generalization to substitution rules

WHAT IS NEw?

- generalization to substitution rules
- improve complexity by restricting the tree items

WHAT IS NEw?

- generalization to substitution rules
- improve complexity by restricting the tree items

secondary category o lexical category
Ca Ca

\ tree item category /

s

WHAT IS NEw?

- generalization to substitution rules
- improve complexity by restricting the tree items

secondary category o lexical category
Ca Ca

\ tree item category /
ith || <2

cpB w

and |B] < |a

WHAT IS NEw?

- generalization to substitution rules
- improve complexity by restricting the tree items

secondary category o lexical category
Ca Ca

\ tree item category /
ith || <2

cpB w

and |B] < |a

— number of items (and deduction rules!) exponential in R

COMPLEXITY RESULT

Theorem

The universal recognition problem for k-CCG with
e-entries and substitution rules can be solved in time
and space O(|G|**5 - |w]|®).

COMPLEXITY RESULT

Theorem

The universal recognition problem for k-CCG with
e-entries and substitution rules can be solved in time
and space O(|G|**5 - |w]|®).

CCG variant complexity
with e-entries EXPTIME"
without e-entries | NPT

TKuhlmann, Satta, Jonsson (2018)

GENERATIVE CAPACITY

STRONG GENERATIVE CAPACITY

weak
generative capacity

string languages
= sets of strings

STRONG GENERATIVE CAPACITY

weak
generative capacity

string languages
= sets of strings

strong
generative capacity

// C \\
/ / N\ \
/ \

/ C Cc \
// /0 /0 \\
i a b a b \
[|
l ¢ J
\ Cc /N I
\ /\ a b |
R c a /
\ / \ /

\ /7
N a b y

tree languages
= sets of trees

TREE LANGUAGE OF CCG

y S/B B .
/ / \ / \ \
/ S/B/C C B/C C \

\ S 7\ !
\ / N\
| B S\B S/B B /
\\ VRN //
. B/C C

CCG derivation tree set
(root category = initial)

TREE LANGUAGE OF CCG

/// / N N i ///) S . \\\

// S/B B \\ // a b \\
Y / A\ / \ '\ y/ / \ AN b
. S/B/C C B/C C \ i e cd c \
l S J > S :
| S . relabel | s / \b j
\ / N\ ! \ / \ a !
1 B s\g /B B/ \ b a /

\\ 7N // \\ SN //

‘. B/C C y d ¢ o

CCG derivation tree set generated

(root category = initial) tree language

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | R-CCG with e-entries

strings | = CFG? | = CFG = TAGS

trees | ¢ RTGY

RTG Regular Tree Grammar

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
Vijay-Shanker, Weir (1994)
dBuszkowski (1988)

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | R-CCG with e-entries

strings | = CFG? | = CFG = TAGS

trees | ¢ RTGY

RTG Regular Tree Grammar 8
aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)

Cvijay-Shanker, Weir (1994)

dBuszkowski (1988)

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | R-CCG with e-entries

strings | = CFG? | = CFG = TAGS

trees | ¢ RTGY

RTG Regular Tree Grammar 8
aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)

Cvijay-Shanker, Weir (1994)

dBuszkowski (1988)

B

RESEARCH QUESTIONS

What is the generative capacity of CCG without e-entries?

RESEARCH QUESTIONS

What is the generative capacity of CCG without e-entries?

What class of tree languages does CCG generate?

RESEARCH QUESTIONS

What is the generative capacity of CCG without e-entries?
What class of tree languages does CCG generate?

How does the rule degree affect the generative capacity?

STRONG EQUIVALENCE OF TAG AND CCG

"
TAG = sCFTG

simple monadic /

context-free tree grammar
Ut

RTG

TKepser, Rogers (2011)

STRONG EQUIVALENCE OF TAG AND CCG

+
TAG = sCFTG
/ u
simple monadic k-CCG
context-free tree grammar
Ut
RTG

TKepser, Rogers (2011)

STRONG EQUIVALENCE OF TAG AND CCG

2-CCG

Ul

"
TAG = sCFTG

S
simple monadic

k-CCG
context-free tree grammar
Ut

RTG

TKepser, Rogers (2011)

STRONG EQUIVALENCE OF TAG AND CCG

2-CCG

Ul

"
TAG = sCFTG = CCG

S
simple monadic

k-CCG
context-free tree grammar
Ut

RTG

TKepser, Rogers (2011)

STRONG EQUIVALENCE OF TAG AND CCG

2-CCG

¥/

"
TAG = sCFTG = CCG

S
simple monadic

k-CCG
context-free tree grammar
Ut

RTG

TKepser, Rogers (2011)

DECOMPOSITION INTO SPINES

a
/ N\
a a
/ N\
a B
VAN
Y n
/ \ /A
y v B B
/ \

DECOMPOSITION INTO SPINES

/ \
a (04
\
a P
/N
14 n
/ \ / N\
14 B B
/ \

DECOMPOSITION INTO SPINES

S—Y—Y—-B—-a-«a
B—n

(04

DECOMPOSITION INTO SPINES

S§—Y—Y—-B-a-a
B —n context-free
(0 4

DECOMPOSITION INTO SPINES

S§—Y—Y—-B-a-a
B —n context-free

/ l
. ﬁﬁﬁ/

Moore PDA

MooRE PDA

vl v
start %
v o1 w?
-

Jdo o)
g, Q2 Y
qs :B
9, 95

MooRE PDA

v v 1
start %R
vl o1 w1
-

Jo 16
g, Q2 Y
qs :B
9, 95

(Gos[@])
)

MooRE PDA

v v 1
start%ﬁ
vy 01 w1

9o 16
G, G2 Y
as B
s, 95

(Gos[@]y F (gi,[@])
6 14

MooRE PDA

v v 1
start %ﬁ
vl o1 w?

do 16
g, Q2 Y
qs :B
s, 95

(Gos @]y + (qu[@]y + <q2,>

6 14 14

MooRE PDA

v v 1
start%ﬁ
v 01 wl

9o 16
G,G> Y
a3 B
9w, 95

(Gos @]y + (qu[@]y + <q2,> (g3,)

6 14 14 B

MooRE PDA

v v
start — a @ dl @
@)

Jdo 16
g, Q2 Y
qs :B
9w, 95

(o, [@]) F (@0[@]y + (gl @]y F (g3,[9]) F (qu[@])

6 14 14 B a

MooRE PDA

vl v1
start —» @ @ al @
(=)

do 16
g, Q2 1Y
qs :B
9w, 95 &

(Gos[@]y + (qu[@]) F (g2.[@]) + (g5, [@]) + (qu.[@]) F (g5,)

o) Y 14 B o o

MooRE PDA

v v
start — pop(v) = g,
v w01 w?
- ;

do e}
g, Q2 Y
qs :B
9y, 95

G0, @]y ¥ (qu[@]y F (@2l@]) ¥ (g3.[@]) + (qu[@]) F (g5, _)

o) Y 14 B o o

MooRE PDA

start — al
pop(v) = q,
0/)
pop(w

do 16
g, q2 Y =(s
g3 :B
9y, 95

(Go. @]y ¥ (qu[@]y F (@2[@]) ¥ (g5.[@]) + (qu[@]) F (g5, _)

o) 4 Y B a a

SIMULATE MOORE PDA

 Moore PDA generates all spines (of length > 2)

SIMULATE MOORE PDA

 Moore PDA generates all spines (of length > 2)

« primary category length can grow unbounded
— simulate Moore PDA in primary spines of CCG
— store stack in the argument sequence

SIMULATE MOORE PDA

 Moore PDA generates all spines (of length > 2)

« primary category length can grow unbounded
— simulate Moore PDA in primary spines of CCG
— store stack in the argument sequence

- last argument of primary category stores
* current state
« topmost stack symbol

(0 4
/ \
a (04
\
a P
/N
14 n
/ \ / N\
14 B B
/ \

(P) primary category
(S) secondary category

(D) initial category

SIMULATE MOORE PDA

(Go.[@]y ¥ (qu@]y F (@2l@]) ¥ (@3.[9]) + (qu[@]) + (g5,)

SIMULATE MOORE PDA

(Go.L@]) ¥ (qu[@]y F (@21@]) ¥ (@3.[9]) + (qu[@]) + (g5)

SIMULATE MOORE PDA

Go.L@]y ¥ (qul@]y F (@2[@]) ¥ (@3.[9]) + (qu[@]) + (g5)

SIMULATE MOORE PDA

(P) A ()(%) pop(v) =as

G091y ¥ (qu[@]y F (@2l@]) F (gs.[@]) + (qu[@]) F (g5, _)

SIMULATE MOORE PDA

O
(P)
(P (S (%)
(P) A(2)/(%) popv)=as
©® c/(%)
© /(¥)

Go.L@]y ¥ (qu[@]y F (@2[@]) F (gs.[@]) + (qi[@]) F (g5, _)

SIMULATE MOORE PDA

O
'P) o\ (%)

(P) A ()(%) pop(v) =as
(® /(%)

Go.L@]y ¥ (qu[@]y F (@2[@]) ¥ (qs.[@]) + (qul@]) F (gs5._)

SIMULATE MOORE PDA

0 C
(P) \ (%)

(P) A ()(%) pop(v) =as
(® /(%)

Go.L@]y ¥ (qu[@]y F (@2[@]) F (q5.[@]) + (qu[@]) F (g5, _)

SIMULATE MOORE PDA

0 c
'P) o\ (%)
(P \(2)V()
(P) A (2)/(T) pop) =a.
@) /(%)
® ©) (07

Go.L@]y ¥ (qu[@]y F (@2[@]) F (q5.[@]) + (qu[@]) F (g5, _)

SIMULATE MOORE PDA

.
(o, [@]y F (gu[@]) F (gai|@ > F (s l@]) F (qu @]y F (s,)

SIMULATE MOORE PDA

(P) A ()(%) pop(v) =as
® © 2 MO
® ©) (2)(2)

.
(o, [@]y F (gu[@]) F (gai|@ > F (s l@]) F (qu @]y F (s,)

STRONG EQUIVALENCE RESULT

TAG = sCFTG
Ul

k-CCG

STRONG EQUIVALENCE RESULT

2-CCG
Ul

TAG = sCFTG
Ul

k-CCG

STRONG EQUIVALENCE RESULT

2-CCG
Ul

TAG = sCFTG
Ul

k-CCG with g-entries

STRONG EQUIVALENCE RESULT

2-CCG without e-entries
Ul
TAG = sCFTG
ul

k-CCG with g-entries

STRONG EQUIVALENCE RESULT

2-CCG without g-entries
ul
TAG = sCFTG = 2-CCG without g-entries
Ul

k-CCG with g-entries

STRONG EQUIVALENCE RESULT

2-CCG without g-entries
ul
TAG = sCFTG = 2-CCG without e-entries
Ul

k-CCG with g-entries

Theorem

2-CCG without e-entries generates the same class of
tree languages as TAG.

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | kR-CCG with e-entries

strings | = CFG? | = CFG® = TAGC

trees | ¢ RTGY

aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)
vijay-Shanker, Weir (1994)
dBuszkowski (1988)

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | kR-CCG with e-entries

strings | = CFG? | = CFG® = TAGC

trees | ¢ RTGY | = RTG

aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)
vijay-Shanker, Weir (1994)
dBuszkowski (1988)

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | kR-CCG with e-entries

strings | = CFG? | = CFG® = TAGC

trees | ¢ RTGY | = RTG = TAG

aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)
vijay-Shanker, Weir (1994)
dBuszkowski (1988)

OVERVIEW OF GENERATIVE CAPACITY

0-CCG | 1-CCG | 2-CCG | R-CCG | kR-CCG with e-entries

strings | = CFG? | = CFG® = TAG = TAGC

trees | ¢ RTGY | = RTG = TAG

aBar-Hillel, Gaifman, Shamir (1964)

bFowler, Penn (2010)
vijay-Shanker, Weir (1994)
dBuszkowski (1988)

OVERVIEW OF RESULTS

CCG variant rute e-entries string tree
degree languages languages

(pure) with application rules only k=0 yes/no = CFG ¢ RTG

pure with composition k=1 yes/no

composition k=1 yes/no = CFG

pure with composition k>2 yes/no C TAG

prefix-closed, no target restrictions k> 2 yes/no C TAG

prefix-closed k>2 yes =TAG

composition k>2 no

composition k>2 yes =TAG

composition and substitution k>2 yes =TAG

generalized composition unlimited no

generalized composition unlimited yes 2 TAG

OVERVIEW OF RESULTS

CCG variant rute e-entries string tree
degree languages languages

(pure) with application rules only k=0 yes/no = CFG ¢ RTG
pure with composition k=1 yes/no = CFG ¢ RTG
composition k=1 yes/no = CFG = RTG
pure with composition k>2 yes/no ¢ TAG ¢ TAG
prefix-closed, no target restrictions k> 2 yes/no C TAG c TAG
prefix-closed k>2 yes =TAG
composition k>2 no =TAG = TAG
composition k>2 yes =TAG = TAG
composition and substitution k>2 yes =TAG
generalized composition unlimited no 2 TAG 2 TAG
generalized composition unlimited yes 2 TAG 2 TAG

CCG variant complexity

with e-entries EXPTIME

without e-entries NP
bounded degree PTIME

PUBLICATIONS

B

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. THE
TREE-GENERATIVE CAPACITY OF COMBINATORY CATEGORIAL
GRAMMARS. FSTTCS, 2019.

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. THE
TREE-GENERATIVE CAPACITY OF COMBINATORY CATEGORIAL
GRAMMARS. Journal of Computer and System Sciences, 2022.

Lena K. Schiffer and Andreas Maletti. STRONG EQUIVALENCE OF
TAG AND CCG. Transactions of the Association for Computational
Linguistics, 2021.

Lena K. Schiffer, Marco Kuhlmann, and Giorgio Satta. TRACTABLE
PARSING FOR CCGS OF BOUNDED DEGREE. Computational
Linguistics, 2022.

Andreas Maletti and Lena K. Schiffer. COMBINATORY CATEGORIAL
GRAMMARS AS GENERATORS OF WEIGHTED FORESTS. Information and
Computation, 2023.

	Combinatory Categorial Grammar
	Computational Complexity
	Generative Capacity
	Appendix

