
QuantLA

Generative and Computational Power
of Combinatory Categorial Grammar

Lena Katharina Schiffer
July 10th, 2024

Institute for Computer Science
Universität Leipzig



Combinatory Categorial Grammar



Constituents in Natural Language

noun

Mary

verb

wrote

article

a

noun

book

preposition

about

noun

grammars



Constituents in Natural Language

noun

Mary

verb

wrote

article

a

noun

book

preposition

about

noun

grammars



Constituents in Natural Language

noun

Mary

verb

wrote

noun phrase

article

a

noun

book

preposition

about

noun

grammars



Constituents in Natural Language

noun phrase

Mary

verb

wrote

noun phrase

article

a

noun

book

preposition

about

noun phrase

grammars



Constituents in Natural Language

noun phrase

Mary

verb

wrote

noun phrase

article

a

noun

book

prepositional phrase

preposition

about

noun phrase

grammars



Constituents in Natural Language

noun phrase

Mary

verb

wrote

noun phrase

noun phrase

article

a

noun

book

prepositional phrase

preposition

about

noun phrase

grammars



Constituents in Natural Language

noun phrase

Mary

verb phrase

verb

wrote

noun phrase

noun phrase

article

a

noun

book

prepositional phrase

preposition

about

noun phrase

grammars



Constituents in Natural Language

sentence

noun phrase

Mary

verb phrase

verb

wrote

noun phrase

noun phrase

article

a

noun

book

prepositional phrase

preposition

about

noun phrase

grammars



Category Representation of Constituents

noun phrase

article noun

NP

NP/N N

article category NP/N

f : N → NP

“obtain a noun phrase if a noun is on the right side”

NP,N atoms
NP target
/N argument



Category Representation of Constituents

noun phrase

article noun

NP

NP/N N

article category NP/N

f : N → NP

“obtain a noun phrase if a noun is on the right side”

NP,N atoms
NP target
/N argument



Category Representation of Constituents

noun phrase

article noun

NP

NP/N N

article category NP/N

f : N → NP

“obtain a noun phrase if a noun is on the right side”

NP,N atoms
NP target
/N argument



Category Representation of Constituents

noun phrase

article noun

NP

NP/N N

article category NP/N f : N → NP
“obtain a noun phrase if a noun is on the right side”

NP,N atoms
NP target
/N argument



Category Representation of Constituents

noun phrase

article noun

NP

NP/N N

article category NP/N f : N → NP
“obtain a noun phrase if a noun is on the right side”

NP,N atoms
NP target
/N argument



Category Representation of Constituents

sentence

noun phrase verb phrase

S

NP S\NP

verb phrase category S\NP

f : NP → S

“obtain a sentence if a noun phrase is on the left side”

S,NP atoms
S target

\NP argument



Category Representation of Constituents

sentence

noun phrase verb phrase

S

NP S\NP

verb phrase category S\NP

f : NP → S

“obtain a sentence if a noun phrase is on the left side”

S,NP atoms
S target

\NP argument



Category Representation of Constituents

sentence

noun phrase verb phrase

S

NP S\NP

verb phrase category S\NP

f : NP → S

“obtain a sentence if a noun phrase is on the left side”

S,NP atoms
S target

\NP argument



Category Representation of Constituents

sentence

noun phrase verb phrase

S

NP S\NP

verb phrase category S\NP f : NP → S
“obtain a sentence if a noun phrase is on the left side”

S,NP atoms
S target

\NP argument



Category Representation of Constituents

sentence

noun phrase verb phrase

S

NP S\NP

verb phrase category S\NP f : NP → S
“obtain a sentence if a noun phrase is on the left side”

S,NP atoms
S target

\NP argument



Category Representation of Constituents

transitive verb category (example: likes)

S\NP/NP

f : NP×NP → S or f : NP → (NP → S)

“obtain a sentence if there is
• a noun phrase on the right side and
• a noun phrase on the left side”



Category Representation of Constituents

transitive verb category (example: likes)

S\NP/NP

f : NP×NP → S or f : NP → (NP → S)

“obtain a sentence if there is
• a noun phrase on the right side and
• a noun phrase on the left side”



Category Representation of Constituents

transitive verb category (example: likes)

S\NP/NP f : NP×NP → S

or f : NP → (NP → S)

“obtain a sentence if there is
• a noun phrase on the right side and
• a noun phrase on the left side”



Category Representation of Constituents

transitive verb category (example: likes)

S\NP/NP f : NP×NP → S or f : NP → (NP → S)

“obtain a sentence if there is
• a noun phrase on the right side and
• a noun phrase on the left side”



Constituency Tree VS CCG Derivation Tree

S

VP

NP

grammars

V

likes

NP

Mary

Mary
.......

NP

likes
....

S\NP/NP

grammars
....

NP
S\NP

S

S initial category



Constituency Tree VS CCG Derivation Tree

S

VP

NP

grammars

V

likes

NP

Mary Mary
.......

NP

likes
....

S\NP/NP

grammars
....

NP
S\NP

S

S initial category



Constituency Tree VS CCG Derivation Tree

S

VP

NP

grammars

V

likes

NP

Mary Mary
.......

NP

likes
....

S\NP/NP

grammars
....

NP
S\NP

S

S initial category



Constituency Tree VS CCG Derivation Tree

S

VP

NP

grammars

V

likes

NP

Mary Mary
.......

NP

likes
....

S\NP/NP

grammars
....

NP
S\NP

S

S initial category



Constituency Tree VS CCG Derivation Tree

S

VP

NP

grammars

V

likes

NP

Mary Mary
.......

NP

likes
....

S\NP/NP

grammars
....

NP
S\NP

S

S initial category



Application Rules

forward application

c/b b
c

backward application

b c\b
c

c/b , c\b primary category
b secondary category
c output category

S\NP/NP NP
S\NP



Application Rules

forward application

c/b b
c

backward application

b c\b
c

c/b , c\b primary category
b secondary category
c output category

S\NP/NP NP
S\NP



Composition Rules

forward rule backward rule

c/b bβ
cβ

bβ c\b
cβ

β argument sequence
|β | rule degree



Composition Rules

degree 0

degree 1 degree 2

c/b b
c

c/b b\e
c\e

c\b b\e/d
c\e/d

f : e→ b g : b→ c
f ◦ g : e→ c

In a rule we may restrict

• the secondary category to a concrete category
• the target of the primary category to a concrete atom

c/b b
c

→
S x/NP NP

S x



Composition Rules

degree 0 degree 1

degree 2

c/b b
c

c/b b\e
c\e

c\b b\e/d
c\e/d

f : e→ b g : b→ c
f ◦ g : e→ c

In a rule we may restrict

• the secondary category to a concrete category
• the target of the primary category to a concrete atom

c/b b
c

→
S x/NP NP

S x



Composition Rules

degree 0 degree 1

degree 2

c/b b
c

c/b b\e
c\e

c\b b\e/d
c\e/d

f : e→ b g : b→ c
f ◦ g : e→ c

In a rule we may restrict

• the secondary category to a concrete category
• the target of the primary category to a concrete atom

c/b b
c

→
S x/NP NP

S x



Composition Rules

degree 0 degree 1 degree 2

c/b b
c

c/b b\e
c\e

c\b b\e/d
c\e/d

f : e→ b g : b→ c
f ◦ g : e→ c

In a rule we may restrict

• the secondary category to a concrete category
• the target of the primary category to a concrete atom

c/b b
c

→
S x/NP NP

S x



Composition Rules

degree 0 degree 1 degree 2

c/b b
c

c/b b\e
c\e

c\b b\e/d
c\e/d

f : e→ b g : b→ c
f ◦ g : e→ c

In a rule we may restrict

• the secondary category to a concrete category
• the target of the primary category to a concrete atom

c/b b
c

→
S x/NP NP

S x



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
..........

D/E

β
..........

E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
.......

D/E

β
.......

E
D

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
..........

D/E/D

α
.......

D/E

β
.......

E
D

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
.......

D/E/D

α
....

D/E

β
....

E
D

D/E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
.......

D/E/D

α
....

D/E

β
....

E
D

D/E

β
..........

E



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
all application rules

R =

{
c/b b
c
,
b c\b
c

}

α
....

D/E/D

α
.

D/E

β
.

E
D

D/E

β
.......

E
D



Example CCG G = (Σ, A,R, I, L)

• input alphabet Σ = {α , β }
• atomic categories A = {D, E}
• initial categories I = {D}

• lexicon L with
L(α) = {D/E, D/E/D}
L(β ) = {E}

• rule set includes
restricted rules

R =

{
Dx/D D
Dx

,
Dx/E E
Dx

}

α
....

D/E/D

α
.

D/E

β
.

E
D

D/E

β
.......

E
D



Classical Language Classes

context-free

context-sensitive
CSG LBA

CFG PDA

CSG Context-Sensitive Grammar
LBA Linear Bounded Automaton
CFG Context-Free Grammar
PDA Push-Down Automaton



Cross-Serial Dependencies

... omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

... because I Cecilia Henk the hippopotamuses saw help feed

’... because I saw Cecilia help Henk feed the hippopotamuses.’

COPY = {ww | w ∈ Σ∗ }

Example from Steedman (1985)



Cross-Serial Dependencies

... omdat ik Cecilia Henk de nijlpaarden zag helpen voeren.

... because I Cecilia Henk the hippopotamuses saw help feed

’... because I saw Cecilia help Henk feed the hippopotamuses.’

COPY = {ww | w ∈ Σ∗ }

Example from Steedman (1985)



Mild Context-Sensitivity

context-free

context-sensitive

MCFG

TAG

MCFG Multiple Context-Free Grammar
TAG Tree-Adjoining Grammar



Tree-Adjoining Grammar

*
=⇒



Tree-Adjoining Grammar

*

=⇒



Tree-Adjoining Grammar

*
=⇒



Mild Context-Sensitivity of CCG

TAG = CCG = LIG = HG

Vijay-Shanker, Weir (1994)

LIG Linear Indexed Grammar
HG Head Grammar



Mild Context-Sensitivity of CCG

CCG parsable in O(|w|6)

Vijay-Shanker, Weir (1994)



Computational Complexity



Parsing Decision Problems

Membership Problem

• input: w
• question: w ∈ L(G) ?

can be solved in O(|w|6) Vijay-Shanker, Weir (1994)

Universal Recognition Problem

• input: w, G
• question: w ∈ L(G) ?

EXPTIME-/NP-complete Kuhlmann, Satta, Jonsson (2018)



Parsing Decision Problems

Membership Problem

• input: w
• question: w ∈ L(G) ?

can be solved in O(|w|6) Vijay-Shanker, Weir (1994)

Universal Recognition Problem

• input: w, G
• question: w ∈ L(G) ?

EXPTIME-/NP-complete Kuhlmann, Satta, Jonsson (2018)



Lexicon Entries for the Empty Word

ε-entries

lexicon entries
for the
empty word ε

ε
....

B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on ε-entries Vijay-Shanker, Weir (1994)

universal recognition problem
• with ε-entries EXPTIME-complete
• without them NP-complete

Kuhlmann, Satta, Jonsson (2018)



Lexicon Entries for the Empty Word

ε-entries

lexicon entries
for the
empty word ε

ε
....

B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on ε-entries Vijay-Shanker, Weir (1994)

universal recognition problem
• with ε-entries EXPTIME-complete
• without them NP-complete

Kuhlmann, Satta, Jonsson (2018)



Lexicon Entries for the Empty Word

ε-entries

lexicon entries
for the
empty word ε

ε
....

B/D/C

classical proof for equivalence of TAG and CCG
heavily relies on ε-entries Vijay-Shanker, Weir (1994)

universal recognition problem
• with ε-entries EXPTIME-complete
• without them NP-complete

Kuhlmann, Satta, Jonsson (2018)



Research Question

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

? PTIME

• Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

• Can we find a practically relevant formalism with this
property?

†Kuhlmann, Satta, Jonsson (2018)



Research Question

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

? PTIME

• Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

• Can we find a practically relevant formalism with this
property?

†Kuhlmann, Satta, Jonsson (2018)



Research Question

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

? PTIME

• Can we restrict CCG such that parsing becomes
polynomial in the grammar size?

• Can we find a practically relevant formalism with this
property?

†Kuhlmann, Satta, Jonsson (2018)



Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)
• complexity in terms of grammar size:

new runtime exponential only in maximum rule degree k



Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)
• complexity in terms of grammar size:

new runtime exponential only in maximum rule degree k



Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)
• complexity in terms of grammar size:

new runtime exponential only in maximum rule degree k



Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)

• complexity in terms of grammar size:
new runtime exponential only in maximum rule degree k



Approach

• inclusion of substitution rules

c/b/e b/e
c/e

c/b/e b/e\d
c/e\d

→ generalized rule notation

c/bα bαβ
cαβ

bαβ c\bα
cαβ

with |α | ≤ 1

• new parsing algorithm based on Kuhlmann, Satta (2014)
• complexity in terms of grammar size:

new runtime exponential only in maximum rule degree k



Parsing as Deduction

Parsing is viewed as a deductive process:

• start from a set of axioms and derive new items

• use inference rules of the form

A1 . . . Ak
B

⟨side conditions⟩

• input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)



Parsing as Deduction

Parsing is viewed as a deductive process:

• start from a set of axioms and derive new items

• use inference rules of the form

A1 . . . Ak
B

⟨side conditions⟩

• input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)



Parsing as Deduction

Parsing is viewed as a deductive process:

• start from a set of axioms and derive new items

• use inference rules of the form

A1 . . . Ak
B

⟨side conditions⟩

• input is accepted if goal item is derived

Shieber, Schabes, Pereira (1995)



Item Types

Tree Items

[c, i, j]
represents a derivation tree
with root category c c

w[i, j]

Context Items

[α , β , i, i′, j′, j]
1 ≤ |α | ≤ 2
|β | ≤ maximum rule degree k

w[i, i′] w[j′, j]

cα

cβ

Kuhlmann, Satta (2014)



Item Types

Tree Items

[c, i, j]
represents a derivation tree
with root category c c

w[i, j]

Context Items

[α , β , i, i′, j′, j]
1 ≤ |α | ≤ 2
|β | ≤ maximum rule degree k

w[i, i′] w[j′, j]

cα

cβ

Kuhlmann, Satta (2014)



Parsing Algorithm – Axioms and Goal

Axioms: Lexicon Entry → Tree
wi
....

c

=
c

w[i − 1, i]

Goal: Tree over complete input with c0 initial

c0

w[0, |w|]



Parsing Algorithm – Axioms and Goal

Axioms: Lexicon Entry → Tree
wi
....

c

=
c

w[i − 1, i]

Goal: Tree over complete input with c0 initial

c0

w[0, |w|]



Parsing Algorithm – Rule 1

1 Tree → Context

bαβ

w[i, j]

→
c/bα bαβ

w[i, j]

cαβ

=

w[l, l] w[i, j]

c/bα

cαβ

foot node



Parsing Algorithm – Rule 1

1 Tree → Context

bαβ

w[i, j]

→
c/bα bαβ

w[i, j]

cαβ

=

w[l, l] w[i, j]

c/bα

cαβ

foot node



Parsing Algorithm – Rule 1

1 Tree → Context

bαβ

w[i, j]

→
c/bα bαβ

w[i, j]

cαβ

=

w[l, l] w[i, j]

c/bα

cαβ

foot node



Parsing Algorithm – Rule 1

1 Tree → Context

bαβ

w[i, j]

→
c/bα bαβ

w[i, j]

cαβ

=

w[l, l] w[i, j]

c/bα

cαβ

foot node



Parsing Algorithm – Rule 2

2 Tree + Context → Tree

cα

i j

i j

cα

cβ

→ cα

cβ

=
cβ



Parsing Algorithm – Rule 2

2 Tree + Context → Tree

cα

i j

i j

cα

cβ

→ cα

cβ

=
cβ



Parsing Algorithm – Rule 2

2 Tree + Context → Tree

cα

i j

i j

cα

cβ

→ cα

cβ

=
cβ



Parsing Algorithm – Rule 3

3 Context + Context → Context

i j

cα

cβ
i j

cβ

cγ

→
cα

cβ

cγ

=
cα

cγ



Parsing Algorithm – Rule 3

3 Context + Context → Context

i j

cα

cβ
i j

cβ

cγ

→
cα

cβ

cγ

=
cα

cγ



Parsing Algorithm – Rule 3

3 Context + Context → Context

i j

cα

cβ
i j

cβ

cγ

→
cα

cβ

cγ

=
cα

cγ



What is New?

• generalization to substitution rules

• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ

with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k



What is New?

• generalization to substitution rules
• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ

with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k



What is New?

• generalization to substitution rules
• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ

with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k



What is New?

• generalization to substitution rules
• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k



What is New?

• generalization to substitution rules
• improve complexity by restricting the tree items

secondary category
cα OR

lexical category
cα

tree item category
cβ with |β | ≤ 2

and |β | ≤ |α |

→ number of items (and deduction rules!) exponential in k



Complexity Result

Theorem

The universal recognition problem for k-CCG with
ε-entries and substitution rules can be solved in time
and space O(|G|k+5 · |w|6).

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

bounded degree PTIME



Complexity Result

Theorem

The universal recognition problem for k-CCG with
ε-entries and substitution rules can be solved in time
and space O(|G|k+5 · |w|6).

CCG variant complexity
with ε-entries EXPTIME†

without ε-entries NP†

bounded degree PTIME

†Kuhlmann, Satta, Jonsson (2018)



Generative Capacity



Strong Generative Capacity

weak
generative capacity

aabb

abab

aba

aaabb

ab

string languages
= sets of strings

strong
generative capacity

c
a b

c
c

a b

a

c
c

a b

c
a b

tree languages
= sets of trees



Strong Generative Capacity

weak
generative capacity

aabb

abab

aba

aaabb

ab

string languages
= sets of strings

strong
generative capacity

c
a b

c
c

a b

a

c
c

a b

c
a b

tree languages
= sets of trees



Tree Language of CCG

S

S/B B
S

B

B/C C

S\B

S

S/B

S/B/C C

B

B/C C

CCG derivation tree set
(root category = initial)

−→
relabel

s
a b

s

b
d c

a

s
a

e c
b

d c

generated
tree language



Tree Language of CCG

S

S/B B
S

B

B/C C

S\B

S

S/B

S/B/C C

B

B/C C

CCG derivation tree set
(root category = initial)

−→
relabel

s
a b

s

b
d c

a

s
a

e c
b

d c

generated
tree language



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd

RTG Regular Tree Grammar

=⇒

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd

RTG Regular Tree Grammar

=⇒

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd

RTG Regular Tree Grammar

=⇒
aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Research Questions

What is the generative capacity of CCG without ε-entries?

What class of tree languages does CCG generate?

How does the rule degree affect the generative capacity?



Research Questions

What is the generative capacity of CCG without ε-entries?

What class of tree languages does CCG generate?

How does the rule degree affect the generative capacity?



Research Questions

What is the generative capacity of CCG without ε-entries?

What class of tree languages does CCG generate?

How does the rule degree affect the generative capacity?



Strong Equivalence of TAG and CCG

2-CCG

⊆

TAG
†
= sCFTG

= CCG

⊆

k-CCG

⊊

RTG

simple monadic

context-free tree grammar

†Kepser, Rogers (2011)



Strong Equivalence of TAG and CCG

2-CCG

⊆

TAG
†
= sCFTG

= CCG

⊆
k-CCG

⊊

RTG

simple monadic

context-free tree grammar

†Kepser, Rogers (2011)



Strong Equivalence of TAG and CCG

2-CCG

⊆

TAG
†
= sCFTG

= CCG

⊆
k-CCG

⊊

RTG

simple monadic

context-free tree grammar

†Kepser, Rogers (2011)



Strong Equivalence of TAG and CCG

2-CCG

⊆

TAG
†
= sCFTG = CCG

⊆
k-CCG

⊊

RTG

simple monadic

context-free tree grammar

†Kepser, Rogers (2011)



Strong Equivalence of TAG and CCG

2-CCG

⊆

TAG
†
= sCFTG = CCG

⊆
k-CCG

⊊

RTG

simple monadic

context-free tree grammar

†Kepser, Rogers (2011)



Decomposition into Spines

α

α

β

η

ββ

γ

γγ

γδ

α

α



Decomposition into Spines

α

α

β

η

ββ

γ

γγ

γδ

α

α



Decomposition into Spines

δ γ γ β α α

β η

α

γ

β

...



Decomposition into Spines

δ γ γ β α α

β η

α

γ

β

...

context-free



Decomposition into Spines

δ γ γ β α α

β η

α

γ

β

...

context-free

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

Moore PDA



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩

⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ

γ γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩

⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ

γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩

⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ

β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩

⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ β

α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩

⊢ ⟨q5, ⟩

δ γ γ β α

α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

pop(ν) = q4

pop(ω) = q5

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Moore PDA

q0start q1

q2

q3 q4

q5

ν ↓

ν ↓

ν ↑

ν ↑

ω ↑
ω ↑

pop(ν) = q4

pop(ω) = q5

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

δ γ γ β α α

q0 : δ
q1, q2 : γ
q3 : β
q4, q5 : α



Simulate Moore PDA

• Moore PDA generates all spines (of length ≥ 2)

• primary category length can grow unbounded
→ simulate Moore PDA in primary spines of CCG
→ store stack in the argument sequence

• last argument of primary category stores
• current state
• topmost stack symbol



Simulate Moore PDA

• Moore PDA generates all spines (of length ≥ 2)

• primary category length can grow unbounded
→ simulate Moore PDA in primary spines of CCG
→ store stack in the argument sequence

• last argument of primary category stores
• current state
• topmost stack symbol



Simulate Moore PDA

• Moore PDA generates all spines (of length ≥ 2)

• primary category length can grow unbounded
→ simulate Moore PDA in primary spines of CCG
→ store stack in the argument sequence

• last argument of primary category stores
• current state
• topmost stack symbol



Primary Spines

α

α

β

η

ββ

γ

γγ

γδ

α

α



Primary Spines

I

P

P

S

PS

P

SP

SP

S

S

P primary category

S secondary category

I initial category



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

P

P

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

SP

SP

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

SP

SP

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Simulate Moore PDA

I

P

P

P

P

SP

SP

c

c \
( q4
ω

)
c \

( q4
ω

)
\
( q3
ν

)
( q1
ω

)
\
( q4
ω

)
/
( q2
ν

)c \
( q4
ω

)
/
( q2
ν

)
c /

( q1
ω

)
( q0
ω

)
/
( q1
ω

)
c /

( q0
ω

)

⟨q0, ω ⟩ ⊢ ⟨q1, ω ⟩ ⊢ ⟨q2,

ν
ω ⟩ ⊢ ⟨q3,

ν
ω ⟩ ⊢ ⟨q4, ω ⟩ ⊢ ⟨q5, ⟩

pop(ν) = q4

=

(
⊥
ε

q5

)



Strong Equivalence Result

2-CCG

without ε-entries

⊆

TAG = sCFTG

= 2-CCG without ε-entries

⊆
k-CCG

with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Strong Equivalence Result

2-CCG

without ε-entries

⊆

TAG = sCFTG

= 2-CCG without ε-entries

⊆
k-CCG

with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Strong Equivalence Result

2-CCG

without ε-entries

⊆

TAG = sCFTG

= 2-CCG without ε-entries

⊆
k-CCG with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Strong Equivalence Result

2-CCG without ε-entries

⊆

TAG = sCFTG

= 2-CCG without ε-entries

⊆
k-CCG with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Strong Equivalence Result

2-CCG without ε-entries

⊆

TAG = sCFTG = 2-CCG without ε-entries

⊆
k-CCG with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Strong Equivalence Result

2-CCG without ε-entries

⊆

TAG = sCFTG = 2-CCG without ε-entries

⊆
k-CCG with ε-entries

Theorem

2-CCG without ε-entries generates the same class of
tree languages as TAG.



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd

= RTG = TAG

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd = RTG

= TAG

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAGc

trees ⊊ RTGd = RTG = TAG

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Generative Capacity

0-CCG 1-CCG 2-CCG k-CCG k-CCG with ε-entries

strings = CFGa = CFGb = TAG = TAGc

trees ⊊ RTGd = RTG = TAG

aBar-Hillel, Gaifman, Shamir (1964)
bFowler, Penn (2010)
cVijay-Shanker, Weir (1994)
dBuszkowski (1988)



Overview of Results

CCG variant
rule

ε-entries
string tree

degree languages languages
(pure) with application rules only k = 0 yes/no = CFG ⊊ RTG
pure with composition k = 1 yes/no = CFG ⊊ RTG
composition k = 1 yes/no = CFG = RTG
pure with composition k ≥ 2 yes/no ⊊ TAG ⊊ TAG
prefix-closed, no target restrictions k ≥ 2 yes/no ⊊ TAG ⊊ TAG
prefix-closed k ≥ 2 yes = TAG
composition k ≥ 2 no = TAG = TAG
composition k ≥ 2 yes = TAG = TAG
composition and substitution k ≥ 2 yes = TAG
generalized composition unlimited no ⊋ TAG ⊋ TAG
generalized composition unlimited yes ⊋ TAG ⊋ TAG

CCG variant complexity
with ε-entries EXPTIME
without ε-entries NP
bounded degree PTIME



Overview of Results

CCG variant
rule

ε-entries
string tree

degree languages languages
(pure) with application rules only k = 0 yes/no = CFG ⊊ RTG
pure with composition k = 1 yes/no = CFG ⊊ RTG
composition k = 1 yes/no = CFG = RTG
pure with composition k ≥ 2 yes/no ⊊ TAG ⊊ TAG
prefix-closed, no target restrictions k ≥ 2 yes/no ⊊ TAG ⊊ TAG
prefix-closed k ≥ 2 yes = TAG
composition k ≥ 2 no = TAG = TAG
composition k ≥ 2 yes = TAG = TAG
composition and substitution k ≥ 2 yes = TAG
generalized composition unlimited no ⊋ TAG ⊋ TAG
generalized composition unlimited yes ⊋ TAG ⊋ TAG

CCG variant complexity
with ε-entries EXPTIME
without ε-entries NP
bounded degree PTIME



Publications

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. The
tree-generative capacity of combinatory categorial
grammars. FSTTCS, 2019.

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. The
tree-generative capacity of combinatory categorial
grammars. Journal of Computer and System Sciences, 2022.

Lena K. Schiffer and Andreas Maletti. Strong equivalence of
TAG and CCG. Transactions of the Association for Computational
Linguistics, 2021.

Lena K. Schiffer, Marco Kuhlmann, and Giorgio Satta. Tractable
Parsing for CCGs of Bounded Degree. Computational
Linguistics, 2022.

Andreas Maletti and Lena K. Schiffer. Combinatory categorial
grammars as generators of weighted forests. Information and
Computation, 2023.


	Combinatory Categorial Grammar
	Computational Complexity
	Generative Capacity
	Appendix

