
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinatory Categorial Grammars as Generators of Weighted Forests

Andreas Maletti, Lena Katharina Schiffer1,∗

aInstitute for Computer Science, Universität Leipzig,
P.O. box 100 920, D-04009 Leipzig, Germany

Abstract

Combinatory Categorial Grammar (CCG) is an extension of categorial grammar that is well-established in compu-
tational linguistics. It is mildly context-sensitive, so it is efficiently parsable and reaches an expressiveness that is
suitable for describing natural languages. Weighted CCG (wCCG) are introduced as a natural extension of CCG with
weights taken from an arbitrary commutative semiring. Their expressive power is compared to other weighted for-
malisms with special emphasis on the weighted forests generated by wCCG since the ability to express the underlying
syntactic structure of an input sentence is a vital feature of CCG in the area of natural language processing. Building
on recent results for the expressivity in the unweighted setting, the corresponding results are derived for the weighted
setting for any commutative semiring. More precisely, the weighted forests generatable by wCCG are also generatable
by weighted simple monadic context-free tree grammar (wsCFTG). If the rule system is restricted to application rules
and composition rules of first degree, then the generatable weighted forests are exactly the regular weighted forests.
Finally, when only application rules are allowed, then a proper subset of the regular weighted forests is generatable.

Keywords:
Combinatory Categorial Grammar, Regular Tree Language, Linear Context-free Tree Language, Weighted Tree
Language, Commutative Semiring

1. Introduction

Combinatory categorial grammar (CCG) [1, 2] uses rules that are inspired by combinatory logic [3] to extend
classical categorial grammar [4], which has the same expressivity as context-free grammar and is based on notions
from proof theory [5, 6]. These additional rules increase its expressivity beyond the context-free languages into
the class of languages generated by mildly context-sensitive grammar formalisms [7]. These are formalisms that
are efficiently parsable (i.e., in polynomial time), are able to express a limited amount of cross-serial dependencies,
and have the constant growth property. Due to these features and its notion of syntactic categories, which are an
intuitive way of representing constituents in natural languages, CCG has become well-established in computational
linguistics [1]. The linguistically motivated need to easily express specific structures gave rise to a variety of different
variants [1, 8, 2, 9]. Oftentimes it is not clear how subtle changes of the CCG definition influence its expressive power.
To deal with this, our goal is to identify the principal structures expressible by a common core of the formalisms and
consider CCG as generators of formal languages. As linguistic structure calls for a representation that goes beyond
strings and motivated by an application-driven interest in a weighted variant of CCG [10, 11, 12, 13], in the present
contribution we investigate the ability of CCG to generate weighted forests.

We briefly explain the basic operating principle of CCG. A CCG is essentially a lexicon together with a rule
system. The lexicon assigns syntactic categories to the symbols of an input string, and the rule system describes
how neighboring categories can be combined to new categories. Each category has a target, which is similar to the

∗Corresponding author
Email addresses: maletti@informatik.uni-leipzig.de (Andreas Maletti), schiffer@informatik.uni-leipzig.de (Lena

Katharina Schiffer)
1Supported by the German Research Foundation (DFG) Research Training Group GRK 1763 ‘Quantitative Logics and Automata’

Preprint submitted to Information and Computation May 6, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/

return type of a function, and optionally, a number of arguments. Different from functions, each argument has a
directionality that indicates whether the argument is expected on the left or right side. If repeated combination of
categories leads to a binary derivation tree that comprises all input symbols and is rooted in an initial category, then
the input string is generated. There exist several operators for combining categories, of which the most important
are the composition rules (i.e., rules based on the B-combinator of combinatory logic [3]). In these rules, a primary
category, which expects an argument, and a secondary category, which provides it, are combined. This is similar to
function composition. The degree of a composition rule is the number of arguments of the secondary category that
get transferred to the output category. If the secondary category gets completely consumed (i.e., it coincides with the
relevant argument of the primary category), then we call the rule an application rule. Other common rules, which are
not considered here, are substitution and type-raising rules [1].

Next we give an overview of the existing work on the expressive power of CCG. We start with the string lan-
guages generated by different variants of CCG. This is also called string (or weak) generative capacity. The famous
equivalence result due to Vijay-Shanker and Weir [14] shows that CCG, tree-adjoining grammar (TAG) [15], and
linear indexed grammar [16] are equivalent in expressive power. An equivalent automaton model is the embedded
push-down automaton [17]. In the definition of CCG used by Vijay-Shanker and Weir, the lexicon allows ε-entries,
which assign syntactic categories to the empty string ε, and their construction heavily depends on this feature. Their
rule system restricts rules to specific categories and limits the rule degree. When these rule restrictions are omitted,
i.e., all rules up to a limited degree are allowed, the thus obtained pure CCG is strictly less expressive than TAG [9].
On the other hand, when unbounded generalized composition rules are permitted, CCG is strictly more expressive
than TAG [18]. It has been shown that CCG with unbounded composition rules, rule restrictions, and ε-entries in
the lexicon is in fact Turing-complete [19]. Prefix-closed CCG without target restrictions, in which the rules obey
special closure properties, is less powerful. This even holds for multi-modal CCG [20, 9], which allows various types
of directionality indicators that permit more control over which categories can be combined.

Now we turn our attention to the expressiveness of CCG when going beyond the level of strings, which is of-
ten called strong generative power or capacity. For this, let us first mention that there exist different notions of this
term. Hockenmaier and Young [21] regard two formalisms as strongly equivalent if they capture the same sets of
dependencies. Then there exist specific scrambling cases whose dependencies can be expressed by their CCG (which
allows type-raising [1] as an additional combinator) but not by Lexicalized TAG (LTAG). Note that the set of forests
generated by LTAG is strictly smaller than that of TAG [22]. Koller and Kuhlmann [23] show that CCG without
rule restrictions and TAG generate incomparable classes of dependency trees. On the other hand, in this contribution,
we consider two formalisms as strongly equivalent if their generated derivation forests coincide modulo relabelings.
An example for two strongly equivalent formalisms are the well-known local and regular tree grammars [24]. Al-
ready [18] asks for this tree-generative capacity or expressiveness of the CCG derivation forests. In this context, we
would also like to mention the work of Tiede [25], who studied the strong generative capacity of Lambek-style cate-
gorial grammars [26]. The tree-generative capacity of CCG without ε-entries has been investigated in [27, 28]. The
generated trees are always binary because the rules allow only combining exactly two input categories. The forests
of CCG rule trees (i.e., trees labeled by applied rules instead of categories) are included in the forests generated by
simple monadic context-free tree grammar (sCFTG). This inclusion is proper if rule restrictions are prohibited. CCG
with application and first-degree composition rules generates exactly the regular forests. Without the composition
rules, only a proper subset can be generated. The last result is analogous to [29, Theorem 1.1], where the focus is on
classical categorial grammar, which has only application rules and no rule restrictions.

In our previous work, we proved the converse inclusion of the result concerning sCFTG mentioned above by
showing that the forests generated by sCFTG can also be generated by CCG and thereby showed strong equivalence of
both formalisms [30]. Since sCFTG and TAG are strongly equivalent [31], this result also shows strong equivalence of
CCG and TAG. Additionally, it proves strong equivalence of CCG and linear top-down push-down tree automata [32].
Since the construction avoids ε-entries, the result shows that these entries can be removed without decreasing the
expressive power of CCG. Another consequence of the construction is that rule degree 2 and first-order categories
(i.e., all arguments are atomic) are sufficient to give CCG its full expressive power.

As in most theoretical work on CCG, the rule system of the variant we investigate is finite and includes only
application and composition operators. Additionally, we allow rule restrictions that further constrain the categories
the rules can be applied to. A weighted variant of CCG has made its appearance in various applied settings in the form
of probabilistic CCG [10, 11, 12, 13]. It is thus evident that there is an application-driven interest in the extension of

2

CCG to weighted CCG (wCCG). However, while there is a wide range of theoretic work on the expressive power of
unweighted CCG, there is an apparent lack of investigations into the weighted variants. Probabilistic CCG constitute
only a single variant of weighted CCG, and in this contribution we allow weights from an arbitrary commutative
semiring on both the rules as well as the lexicon entries. This general definition encompasses most existing definitions
and allows a fundamental study of weighted CCG. We establish relationships to other well-understood weighted
formalisms in order to understand the expressive power of wCCG. In particular, we are interested in the weighted
forests generated by wCCG, since we consider the ability to express the underlying structure of an input sentence as
a vital feature of CCG, whose most important area of application is natural language processing.

A forest is generatable by an unweighted CCG if it can be obtained by relabeling its set of derivation trees, so as
mentioned above, all results refer to forests of binary trees. In the weighted case, each rule and each lexicon entry is
associated with a weight. To obtain the weight of a given tree, we sum over the weights of all derivation trees that
are relabeled to that particular tree, where the weight of a single derivation tree is the product of the weights of the
applied rules and used lexicon entries (with each occurrence yielding a separate factor). On that basis, we extend
the results shown in [27, 28] to the weighted scenario and investigate the classes of weighted forests that can be
generated by three different variants of wCCG. Our main result is that the weighted forests generatable by wCCG are
included in those generated by weighted simple monadic context-free tree grammar (wsCFTG). When restricting the
rule system to application rules and composition rules of first degree, the generated weighted forests are exactly the
regular weighted forests. Finally, when only application rules are allowed, a proper subclass of the regular weighted
forests is generated.

2. Preliminaries

First, we introduce some general notation. We denote the set of nonnegative integers by N and the positive in-
tegers by N+. For every k ∈ N, let [k] = {i ∈ N+ | i ≤ k} and Zk = {i ∈ N | i ≤ k − 1}. For every i, j ∈ N
with i ≤ j, let [i, j] = {n ∈ N | i ≤ n ≤ j}. The powerset (i.e., set of all subsets) of a set A is P(A) = {A′ | A′ ⊆ A},
and the set of all nonempty subsets is denoted by P+(A) = P(A) \ {∅}. As usual, an alphabet is a finite set of sym-
bols. The monoid (Σ∗, ·, ε) consists of all strings (i.e., sequences) over a set Σ together with concatenation · and
the empty string ε, where concatenation is often written by juxtaposition. The length of a string w ∈ Σ∗ is de-
noted by |w|. A language is a set L ⊆ Σ∗ of strings. Languages form a monoid

(
P(Σ∗), ·, {ε}

)
, where concatenation

is lifted to languages L and L′ by L · L′ = {w · w′ | w ∈ L, w′ ∈ L′}. Given two sets A and A′, a relation
from A to A′ is a subset ρ ⊆ A × A′. Its inverse is ρ−1 =

{
(a′, a) | (a, a′) ∈ ρ

}
. Further, for every B ⊆ A we

let ρ(B) = {a′ | ∃b ∈ B : (b, a′) ∈ ρ}.
Next we introduce notation for trees. In this contribution we restrict ourselves to binary trees. They are built over

the set Σ2 of binary internal symbols, the alphabet Σ1 of unary internal symbols, and the alphabet Σ0 of leaf symbols.
Note that we explicitly allow an infinite set of internal binary symbols. Given sets T and T ′ we let

Σ2(T,T ′) =
{
σ(t, t′) | σ ∈ Σ2, t ∈ T, t′ ∈ T ′

}
and Σ1(T) =

{
σ(t) | σ ∈ Σ1, t ∈ T

}
. We write TΣ2,Σ1 (Σ0) for the set of binary (Σ2,Σ1)-trees indexed by Σ0, and

it is defined as the smallest set T such that (i) Σ0 ⊆ T , (ii) Σ1(T) ⊆ T , and (iii) Σ2(T,T) ⊆ T . A forest is a
subset F ⊆ TΣ2,Σ1 (Σ0). We assign positions to a tree using the mapping pos : TΣ2,Σ1 (Σ0) → P+

(
{1, 2}∗

)
and the leaf

sequence, called yield, using the mapping yield : TΣ2,Σ1 (Σ0)→ Σ∗0. These mappings are defined by

pos(a) =
{
ε
}

yield(a) = a

pos
(
n(t)

)
=

{
ε
}
∪

{
1 · w | w ∈ pos(t)

}
yield

(
n(t)

)
= yield(t)

pos
(
c(t, t′)

)
=

{
ε
}
∪

{
1 · w | w ∈ pos(t)

}
∪

{
2 · w | w ∈ pos(t′)

}
yield

(
c(t, t′)

)
= yield(t) yield(t′) ,

where a ∈ Σ0, n ∈ Σ1, c ∈ Σ2, and t, t′ ∈ TΣ2,Σ1 (Σ0). Given a tree t, let leaves(t) =
{
w ∈ pos(t) | w · 1 < pos(t)

}
be its

leaf positions, and let ht(t) = max
{
|w| | w ∈ leaves(t)

}
be its height. We denote the subtree of t at position w ∈ pos(t)

by t|w and the label at position w by t(w). Furthermore, t[t′]w denotes the tree obtained from t by replacing the subtree
at position w by the tree t′ ∈ TΣ2,Σ1 (Σ0).

3

We reserve the use of the special symbol �. We define the set of contexts as the set of all trees of TΣ2,Σ1

(
Σ0 ∪ {�}

)
in which the special symbol � occurs exactly once and denote this set by CΣ2,Σ1 (Σ0). A context can be interpreted as
a structure containing a gap at the position of � such that a tree can be inserted at this position to obtain a (potentially
different) tree. For a context c ∈ CΣ2,Σ1 (Σ0), we write pos�(c) to refer to the unique position w ∈ pos(c) with c(w) = �.
Given t ∈ TΣ2,Σ1 (Σ0) ∪ CΣ2,Σ1 (Σ0), we write c[t] or even tc for c[t]w with w = pos�(c) for convenience. The order tc
might seem unintuitive at this point, but will prove beneficial when dealing with argument contexts c, which will be
introduced in the next section.

Given an alphabet ∆, a (deterministic) relabeling is a mapping ρ : (Σ2 ∪ Σ1 ∪ Σ0) → ∆. It induces a map-
ping ρ̂ : TΣ2,Σ1 (Σ0) → T∆,∆(∆) on trees such that ρ̂(t) = u with pos(u) = pos(t) and u(w) = ρ(t(w)) for all w ∈ pos(u).
We again do not distinguish between the relabeling ρ and its induced mapping ρ̂ on trees.

Next we introduce the algebraic structure for our weights. A commutative semiring [33, 34] is a tuple (H,+, ·, 0, 1)
consisting of two commutative monoids (H,+, 0) and (H, ·, 1) such that h · 0 = 0 for every h ∈ H and multiplication ·
distributes over addition +; i.e., h1 · (h2 + h3) = (h1 · h2) + (h1 · h3) for every h1, h2, h3 ∈ H. For the rest of the
contribution, let (H,+, ·, 0, 1) be an arbitrary commutative semiring. The support supp(ϕ) of a mapping ϕ : A → H is
given by supp(ϕ) = {a ∈ A | ϕ(a) , 0}, where A is a set.

A weighted forest is a mapping ϕ : TΣ2,∅(Σ0)→ H; i.e., each tree t ∈ TΣ2,∅(Σ0) is assigned a weight ϕ(t) ∈ H. For a
thorough introduction to weighted string languages and weighted forests we refer to [35].

A weighted simple monadic context-free tree grammar in normal form (wsCFTG) [36, 37, 38] is a tuple

G = (N,Σ, S , P,wt)

such that
• N = N1 ∪ N0 for alphabets N1 and N0 of unary and nullary nonterminals, respectively,
• Σ = Σ2 ∪ Σ0 for alphabets Σ2 and Σ0 of internal and leaf terminals, respectively, with N ∩ Σ = ∅,
• S ⊆ N0 is a subset of nullary start nonterminals,
• P = P1 ∪ P0 is a finite set of productions split into P1 and P0 for unary and nullary nonterminals, respectively,

where

P1 ⊆ N1 ×
(
Σ2

(
{�},N0

)
∪ Σ2

(
N0, {�}

)
∪ N1

(
N1({�})

))
P0 ⊆ N0 ×

(
Σ2(N0,N0) ∪ Σ0 ∪ N1(N0)

)
• wt: P→ H is a weight assignment to each production.

If N1 = ∅, then G is a weighted tree automaton (wTA) [39, 40].
A production (n, r) ∈ P is also written as n → r. The wsCFTG G is called monadic because the nonterminals are

either nullary or unary, and it is simple because all productions are linear and nondeleting (i.e., the right-hand side r
is a context for each production n → r ∈ P1). The set P of productions forms a ranked alphabet where the rank of
a symbol n → r ∈ P is the number k ∈ Z3 of nonterminals in r. The set of derivation trees of G starting in n ∈ N,
denoted byDn

G, are inductively defined for all n ∈ N to be the smallest sets (Dn
G)n∈N such thatDn

G contains all trees d
over this ranked alphabet such that d = (n→ r)(d1, . . . , dk), where n→ r ∈ P, right-hand side r contains the k ordered
nonterminals n1, . . . , nk ∈ N, and di ∈ D

ni
G for all i ∈ [k]. As usual, we letDG =

⋃
n∈N D

n
G. The weight of a derivation

tree d ∈ DG is wtG(d) =
∏

w∈pos(d) wt
(
d(w)

)
.

Derivation trees evaluate to terminal trees or contexts via the map evalG : DG → TΣ2,∅(Σ0) ∪ CΣ2,∅(Σ0), which is
defined for every n0, n1, n2 ∈ N0, c0, c1, c2 ∈ N1, α ∈ Σ0, σ ∈ Σ2, d1 ∈ D

n1
G , d2 ∈ D

n2
G , d′1 ∈ D

c1
G , and d′2 ∈ D

c2
G by

evalG
(
(n0 → α)

)
= α

evalG
((

n0 → σ(n1, n2)
)
(d1, d2)

)
= σ

(
evalG(d1), evalG(d2)

)
evalG

((
n0 → c1(n2)

)
(d′1, d2)

)
= evalG(d′1)

[
evalG(d2)

]
evalG

((
c0 → σ(�, n1)

)
(d1)

)
= σ

(
�, evalG(d1)

)
evalG

((
c0 → σ(n1,�)

)
(d1)

)
= σ

(
evalG(d1),�

)
evalG

((
c0 → c1(c2(�))

)
(d′1, d

′
2)
)
= evalG(d′1)

[
evalG(d′2)

]
.

4

Note that evalG(d) ∈ TΣ2,∅(Σ0) for all d ∈ Dn
G with n ∈ N0, and evalG(d′) ∈ CΣ2,∅(Σ0) for all d′ ∈ Dc

G with c ∈ N1.
For every t ∈ TΣ2,∅(Σ0) and n ∈ N0 we let Dn

G(t) = {d ∈ Dn
G | eval(d) = t}. The weighted forest generated by G is the

mapping τG : TΣ2,∅(Σ0)→ H, which is given for every t ∈ TΣ2,∅(Σ0) by

τG(t) =
∑

n∈S , d∈Dn
G(t)

wtG(d) .

For convenience, we also introduce the run semantics [40] for weighted tree automata. Let G = (N,Σ, S , P,wt) be
a wTA. A run of G on a tree t ∈ TΣ2,∅(Σ0) is a mapping ω : pos(t)→ N0 such that (i) ω(w)→ t(w)

(
ω(w1), ω(w2)

)
∈ P

for all internal positions w ∈ pos(t) \ leaf(t) and (ii) ω(w) → t(w) ∈ P for all leaves w ∈ leaf(t). The set of all runs
of G on t is denoted by RG(t), and for every nonterminal n ∈ N0 we let Rn

G(t) = {ω ∈ RG(t) | ω(ε) = n} be the set of all
runs with nonterminal n at the root. The weight wtG(ω) of a run ω ∈ RG(t) is

wtG(ω) =
(∏

w∈pos(t)\leaf(t)

wt
(
ω(w)→ t(w)

(
ω(w1), ω(w2)

)))
·

(∏
w∈leaf(t)

wt
(
ω(w)→ t(w)

))
,

so it coincides with the product of the weights of the productions used in the run (with each occurrence yielding a
separate factor). Obviously, a run is just a slightly less verbose variant of a derivation tree yielding a weight-preserving
bijection between Dn

G(t) and Rn
G(t) for every n ∈ N0 and t ∈ TΣ2,∅(Σ0); i.e., bijection ϑ : Dn

G(t) → Rn
G(t) such that

wtG(d) = wtG
(
ϑ(d)

)
for all d ∈ Dn

G(t). With this knowledge it is trivial to show that τG(t) =
∑

n∈S , ω∈Rn
G(t) wtG(ω)

for all t ∈ TΣ2,∅(Σ0), so the weight assigned by G to t coincides with the sum of the weights of the runs of Rn
G(t)

with n ∈ S . A weighted forest ϕ : TΣ2,∅(Σ0) → H is regular if there exists a wTA G such that ϕ = τG. In the special
case of the Boolean semiring B =

(
{0, 1},max,min, 0, 1

)
we obtain the regular forests as the supports of the regular

weighted forests [40]; i.e., for every regular forest L ⊆ TΣ2,∅(Σ0) there exists a wTA G over the Boolean semiring such
that L = supp(τG).

A wTA G = (N,Σ, S , P,wt) is terminal-normalized if there exists a mapping κ : N0 → Σ such that r(ε) = κ(n)
for all productions n → r ∈ P. In other words, in a terminal-normalized wTA each nonterminal n ∈ N0 can only
generate a single terminal symbol κ(n). It is a routine matter to verify that for every wTA there exists an equivalent
terminal-normalized wTA. Finally, if κ is injective, then G is a weighted local tree grammar [41] and for those,
a production n → σ(n1, n2) ∈ P is simply written as σ

κ(n1) κ(n2) and n′ → α ∈ P is written as α . We may
omit n, n′, n1, n2 as these are uniquely determined by n = κ−1(σ), n′ = κ−1(α), n1 = κ

−1(κ(n1)
)
, and n2 = κ

−1(κ(n2)
)
,

respectively. We similarly identify terminals and nonterminals in runs, so RG(t) ⊆ {t} for every t ∈ TΣ2,∅(Σ0). For
weighted local tree grammars, we thus let RG =

⋃
t∈TΣ2 ,∅(Σ0) RG(t) and Rσ

G =
{
t ∈ RG | t(ε) = σ

}
. Finally, we present the

weighted local tree grammar simply as
(
Σ, {κ(n) | n ∈ S }, P,wt

)
. Finally, a weighted forest ϕ : TΣ2,∅(Σ0) → H is local

if there exists a weighted local tree grammar G such that ϕ = τG. The local forests are again the supports of local
weighted forests over the Boolean semiring B.

Example 1. Let wsCFTG G1 = (N,Σ, {s0}, P,wt) be weighted over the semiring of nonnegative integers (N,+, ·, 0, 1)
with ordinary addition and multiplication such that N0 = {s0, a0, b0}, N1 = {s1, a1, b1}, Σ2 = {σ}, Σ0 = {α, β}, and

P =
{

s0 → s1(s0), s0 → σ(a0, b0), s1 → a1(b1(�)), a1 → σ(a0,�), b1 → σ(�, b0), a0 → α, b0 → β
}

with wt
(
s0 → s1(s0)

)
= wt

(
s0 → σ(a0, b0)

)
= 2 and wt(p) = 1 for all other productions p ∈ P. Figure 1 shows a

derivation tree d ∈ Ds0
G (t) with wt(d) = 8 and the corresponding terminal tree t = evalG1 (d).

Example 2. Let wTA G2 = (N,Σ, {s}, P,wt) be weighted over the semiring of nonnegative integers (N,+, ·, 0, 1) such
that N0 = {s, n, a, b}, Σ2 = {σ}, Σ0 = {α, β}, and

P =
{

s→ σ(a, n), s→ σ(a, b), n→ σ(s, b), a→ α, b→ β
}

with wt
(
s → σ(a, n)

)
= wt

(
s → σ(a, b)

)
= 2 and wt(p) = 1 for all other productions p ∈ P. Figure 2 shows a

derivation tree d′ ∈ Ds
G2

(t) with wt(d′) = 8, where t is the same terminal tree as in Example 1. Next to the derivation
tree, the corresponding run b(d′) ∈ Rs

G2
(t) is depicted. The wTA G2 is terminal-normalized with κ(s) = κ(n) = σ,

κ(a) = α, and κ(b) = β. However, since κ(s) and κ(n) coincide, it is not a weighted local tree grammar.

5

s0 → s1(s0)

s0 → s1(s0)

s0 → σ(a0, b0)

b0 → βa0 → α

s1 → a1(b1(�))

b1 → σ(�, b0)

b0 → β

a1 → σ(a0,�)

a0 → α

s1 → a1(b1(�))

b1 → σ(�, b0)

b0 → β

a1 → σ(a0,�)

a0 → α

σ

σ

βσ

σ

βσ

βα

α

α

Figure 1: wsCFTG derivation tree and terminal tree resulting from evaluation (see Example 1)

s→ σ(a, n)

n→ σ(s, b)

b→ βs→ σ(a, n)

n→ σ(s, b)

b→ βs→ σ(a, b)

b→ βa→ α

a→ α

a→ α
s

n

bs

n

bs

ba

a

a

Figure 2: wTA derivation tree and the corresponding run (see Example 2)

3. Weighted Combinatory Categorial Grammar

We start with the definition of weighted combinatory categorial grammar, which is the main model under discus-
sion in this contribution. It is a natural extension of combinatory categorial grammar [1, 2] to include weights in the
rule system as well as the lexicon. Traditionally the rule system just permits or forbids certain category combinations
via the presence or absence of certain rules, but in the extension each rule now carries a weight. Similarly, the associ-
ation of a category to a lexical item is now weighted. The weights of all rule applications as well as all lexicon entries
in a derivation tree are multiplied in our semiring H to obtain the weight of the derivation tree. If several derivation
trees relabel to the same output tree (or yield the same output string), then the weights of those derivation trees are
summed up to obtain the weight of the output tree (or output string). This follows the general principles of weighted
automata [35]. We note that the rule system of our wCCG is restricted to application and composition rules, so it does
not allow other combinators like substitution or type-raising rules [1].

First, we introduce some basic definitions and notations. Given an alphabet A and the set of slashes S = {/, /},
the set of categories over A is given by C(A) = TS ,∅(A), where the elements from A ⊆ C(A) are called atomic. We
usually write categories in infix-notation and the slashes are left-associative by convention, so each category takes
the form c = a|1c1 · · · |kck with a ∈ A, |i ∈ S , and ci ∈ C(A) for all i ∈ [k]. The atom a is called the target
of c, and each slash-argument pair |ici is called an argument of c. We write target(c) to access the target a and
argument(c, i) to access the i-th argument |ici of c. The number k of arguments is called arity of c and denoted
by arity(c). We define argcats(c) =

{
ci | i ∈ [k]

}
as the set of all categories occurring as arguments in c. A category c

with argcats(c) ⊆ A is called a first-order category. A sequence of arguments α = �|1c1 · · · |kck of length |α| = k
can be seen as a context when viewed from the tree perspective, and we write A(A) ⊆ CS ,∅(A) for the set of all such
argument contexts over A of arbitrary length. When we restrict the categories to a limited arity k ∈ N (respectively,
the argument contexts to a limited length k), we denote this set by C(A, k) = { c ∈ C(A) | arity(c) ≤ k } (resp.,

6

A(A, k) = {α ∈ A(A) | |α| ≤ k }).
We are now ready to describe how string-adjacent categories can be combined with each other. Intuitively, cat-

egory a/c requires a category of the form cγ with γ ∈ A(A) to its right and would then combine to the output
category aγ. Similarly, a /c can be combined with cγ to its left to obtain output category aγ as well. The category a/c
resp. a /c, which takes an argument, is called primary category, whereas category cγ, which provides the argument,
is called secondary category. Formally, given an alphabet A and k ∈ N, a rule of degree k over A takes one of two
possible forms [14]:

forward rule:
axγ

ax/c cγ
backward rule:

axγ
cγ ax /c

where a ∈ A, c ∈ C(A), and γ ∈ A(A) with |γ| = k. The argument context variable x can match any argument
context in A(A). We write R(A) for the set of all rules over A and R(A, k) for the set of all rules over A with degree
at most k ∈ N. Rules of degree 0 are called application rules, and rules of higher degree are called composition rules.
A ground instance of a rule r is obtained by replacing the variable x by a concrete argument context. A weighted
rule system is a tuple Π = (A,R,wt) that consists of an alphabet A, a set R ⊆ R(A) of rules over A, and a weight
function wt : R → H such that supp(wt) is finite. Given a weighted rule system Π = (A,R,wt), the set of all ground
instances of R gives rise to a relation→Π ⊆ C(A)2 × C(A), and we write c′′

c c′Π instead of (c, c′) →Π c′′. The weight
function on rules extends to a weight function ŵt : (→Π)→ H on ground instances by

ŵt
(aαγ
aα/c cγ

)
= wt

(axγ
ax/c cγ

)
and ŵt

(aαγ
cγ aα /c

)
= wt

(axγ
cγ ax /c

)
for all α ∈ A(A). We will not distinguish the two weight functions in the following. The relation →Π extends to a
relation⇒Π ⊆ C(A)∗ × C(A)∗ on category sequences by

⇒Π = { (ϕ c c′ ψ, ϕ c′′ ψ) | ϕ, ψ ∈ C(A)∗; (c, c′)→Π c′′ } .

Definition 3. A weighted combinatory categorial grammar (wCCG) is a tuple G = (Σ, A,R, I, L,wt) that consists of
an alphabet Σ of input symbols, a weighted rule system (A,R,wt), a set I ⊆ A of initial (atomic) categories, and a
weighted lexicon L : Σ × C(A)→ H such that supp(L) is finite. For each k ∈ N it is called k-wCCG if each rule r ∈ R
has degree at most k; i.e., R ⊆ R(A, k).

In the following, let G = (Σ, A,R, I, L,wt) be a wCCG with its weighted rule system Π = (A,R,wt).

Definition 4. Let cat :
(
C(A) ∪ supp(L)

)
→ C(A) be such that cat(c) = c and cat

(
〈σ, c〉

)
= c for every c ∈ C(A)

and σ ∈ Σ. A tree d ∈ TC(A),∅
(
supp(L)

)
is called derivation tree of G if for every w ∈ pos(d)\leaves(d) there is a ground

instance cat(d(w))
cat(d(w1)) cat(d(w2))Π. The set of all derivation trees is denoted byDG, andDc

G =
{
d ∈ DG | cat(d(ε)) = c

}
for

every c ∈ C(A). The weight of a derivation tree d ∈ DG is

wtG(d) =
(∏

w∈pos(d)\leaves(d)

wt
(cat(d(w))
cat(d(w1)) cat(d(w2))

))
·

(∏
w∈leaves(d)

L
(
d(w)

))
.

The wCCG G generates the weighted string language LG : Σ∗ → H given for every string s ∈ Σ∗ by

LG(s) =
∑

c∈I, d∈Dc
G

π1(yield(d))=s

wtG(d) ,

where π1
(
〈σ, c〉

)
= σ for every 〈σ, c〉 ∈ supp(L), which uniquely extends to sequences of supp(L)∗ as a homomorphism.

The labels of the derivation trees of a wCCG are (or contain, in the case of leaf labels) always specific categories.
To allow less specific labels, we will allow a mapping, called relabeling, that relabels the specific categories to the
desired output symbols. Already the classical definition of CCG [1, 2] contains such a (nondeterministic) relabeling,
the lexicon, which in essence relabels the categories at the leaves to the symbols of the desired language. In the
same spirit we now introduce a specific form of relabeling for the remaining symbols in the tree that is compatible
with the lexicon and its application to the weighted derivation forest of a wCCG. More precisely, our specific form
of relabeling is deterministic and requires that categories relabel to the same symbol if they coincide on the target
category as well as the final argument.

7

〈α, c/d/c〉
〈α, c/d〉 〈β, d〉

c
c/d 〈β, d〉

c

〈α, c/d/c〉 〈α, c/d〉
c/d/d 〈β, d〉

c/d 〈β, d〉
c

→

σ

βσ

σ

βα

α

σ

βσ

βσ

αα

Figure 3: wCCG derivation trees and their respective relabeled trees (see Example 7)

Definition 5. Let G = (Σ, A,R, I, L,wt) be a wCCG. Given an alphabet ∆ ⊇ Σ, a mapping ρ :
(
C(A) ∪ supp(L)

)
→ ∆

is a (deterministic) category ∆-relabeling for G if
(i) ρ(〈σ, c〉) = σ for every 〈σ, c〉 ∈ supp(L) and

(ii) ρ(c) = ρ(c′) for all c, c′ ∈ C(A) with target(c) = target(c′) and argument
(
c, arity(c)

)
= argument

(
c′, arity(c′)

)
.

Together the wCCG G and the category ∆-relabeling ρ generate the weighted forest wtρG : T∆,∅(∆) → H given for
every tree t ∈ T∆,∅(∆) by

wtρG(t) =
∑

c∈I, d∈Dc
G

ρ(d)=t

wtG(d) .

A weighted forest ϕ : T∆,∅(∆) → H is generatable by G if there exists a category ∆-relabeling ρ′ such that ϕ = wtρ
′

G .
Finally, ϕ is generatable by a class C of wCCG if ϕ is generatable by some G ∈ C.

Lemma 6. The weighted forests generatable by k-wCCG are closed under deterministic relabelings for all k ∈ N.

Proof. Let ϕ : T∆,∅(∆) → H be generatable by the k-wCCG G = (Σ, A,R, I, L,wt) together with the category ∆-rela-
beling ρ for G; i.e., ϕ = wtρG. Moreover, let ρ′ : ∆ → Γ be a deterministic relabeling. Unfortunately, ρ ; ρ′ is not
necessarily a category Γ-relabeling for G because we might have ρ′

(
ρ(〈σ, c〉)

)
= ρ′(σ) , σ for some 〈σ, c〉 ∈ supp(L).

However, we can move the leaf symbol relabeling into the k-wCCG and construct a k-wCCG G′ = (Γ, A,R, I, L′,wt)
with

L′
(
〈γ, c〉

)
=

∑
σ∈Σ

ρ′(σ)=γ

L
(
〈σ, c〉

)
for every γ ∈ Γ and c ∈ C(A). Note that supp(L′) is trivially finite. The relabeling ρ :

(
C(A) ∪ supp(L′)

)
→ Γ given for

every c ∈ C(A) and 〈γ, c〉 ∈ supp(L′) by ρ(c) = ρ′
(
ρ(c)

)
and ρ(〈γ, c〉) = γ is a category Γ-relabeling for G′, and it is a

routine matter to verify that ρ′(ϕ) = wtρG′ , which proves that ρ′(ϕ) is generatable by k-wCCG.

Example 7. Let G3 =
(
Σ, A,R(A, 2), I, L,wt

)
be the 2-wCCG that is weighted over the semiring of nonnegative

integers (N,+, ·, 0, 1) with Σ = {α, β}, A = {c, d}, I = {c}. Its weighted rule system
(
A,R(A, 2),wt

)
is given by

wt
(cx
cx/d d

)
= wt

(cx
cx/c c

)
= 1 and wt

(cx/d
cx/c c/d

)
= wt

(cx/d/c
cx/c c/d/c

)
= 2 .

The weight of all other rules is 0. The weighted lexicon L : Σ × C(A)→ N is given by

L
(
〈α, c/d/c〉

)
= 1 L

(
〈α, c/d〉

)
= 3 L

(
〈β, d〉

)
= 1 .

Finally, we define the category relabeling ρ
(
C(A) ∪ supp(L)

)
→ ∆ with ∆ = {σ, α, β} as

ρ(c) = ρ(cα/d) = σ ρ(〈α, c/d/c〉) = ρ(〈α, c/d〉) = α ρ(〈β, d〉) = β

for all α ∈ A(A), and the relabeling is irrelevant for all other labels since they cannot occur in derivation trees of G3.
Figure 3 depicts two derivation trees d1 and d2 that are generated by G3 together with their respective relabeled
trees t1 and t2. Their weights are wtG3 (d1) = 3 and wtG3 (d2) = 6, respectively. These are the only derivation trees with
yield α2β2, so we get LG3 (α2β2) = 9.

8

4. 0-wCCGs

0-wCCG can only utilize application rules. It is known from the unweighted setting [29, 27] that the forests gen-
eratable by 0-CCGs are universally minheight-bounded. The forests generatable by 0-CCGs are obtained as relabeled
derivation forests, so this structural property also applies to the derivation trees. In the weighted setting, exactly the
same derivation trees are additionally equipped with weights and again yield the generatable weighted forests via a
(specific) relabeling. Thus the derivation trees are again universally minheight-bounded and the relabeling preserves
this structural property. Hence it stands to reason that universal minheight again plays a major role in our weighted
setting, so let us recall the relevant notions from [29, 27]. The minheight mht(t) of a tree t is the minimal length of a
path from the root to a leaf. Formally, for all alphabets Σ2 and Σ0, let mht : TΣ2,∅(Σ0)→ N be such that mht(α) = 0 and
mht

(
σ(t1, t2)

)
= 1+min

(
mht(t1),mht(t2)

)
for all α ∈ Σ0, σ ∈ Σ2, and t1, t2 ∈ TΣ2,∅(Σ0). Both trees displayed in Figure 4

have minheight 2 (along path 2.1). A tree t ∈ TΣ2,∅(Σ0) is universally minheight-bounded by ` ∈ N if mht(t|w) ≤ ` for
every w ∈ pos(t). Indeed both trees of Figure 4 are also universally minheight-bounded by 2. Additionally, the right
direct subtree of the root (i.e., the subtree rooted in VP or 〈VP, 1〉) is in both cases universally minheight-bounded
by 1. A forest F ⊆ TΣ2,∅(Σ0) is universally minheight-bounded by ` if every t ∈ F is universally minheight-bounded
by `, and it is universally minheight-bounded if there exists ` ∈ N such that it is universally minheight-bounded by `.
Finally, we extend the notion to a weighted forest ϕ : TΣ2,∅(Σ0)→ H by calling it universally minheight-bounded (by `)
if supp(ϕ) is universally minheight-bounded (by `).

Let ϕ be a regular weighted forest that is universally minheight-bounded by some ` ∈ N. Hence there exists
a wTA G = (N,Σ, S , P,wt) such that τG = ϕ. In the unweighted setting it is immediately clear that RG(t) = ∅
for all trees t that are not universally minheight-bounded by `. To simplify this discussion, we call a tree improper
for the moment if it is not universally minheight-bounded by `. In other words, in the unweighted case there are
no runs for improper trees. However, this property need not be true in the weighted setting since different runs
might cancel each other out. For example, using weights from the commutative semiring (Z,+, ·, 0, 1) of integers,
an improper tree t might have two runs ω1 and ω2 with wtG(ω1) = 2 and wtG(ω2) = −2. Overall, we might thus
have τG(t) = wtG(ω1) + wtG(ω2) = 0, which yields t < supp(ϕ). Hence ϕ might be universally minheight-bounded
by `, whereas RG(t) , ∅ for an improper tree t. Fortunately, we can obtain a normal form that restores the desired
property. Additionally, we will annotate to each symbol the direction along which the minheight is achieved with
the first successor taking priority in case of a tie. We will use this annotation later to decompose trees into sets of
short paths that follow the annotated direction and are simulated in a 0-wCCG along sequences of primary categories.
Formally, we define the mapping dir : TΣ2,∅(Σ0)→ TΣ2×[2],∅(Σ0) by dir(α) = α for every α ∈ Σ0 and

dir
(
σ(t1, t2)

)
=

〈σ, 1〉
(
dir(t1), dir(t2)

)
if mht(t1) ≤ mht(t2)

〈σ, 2〉
(
dir(t1), dir(t2)

)
otherwise

for every σ ∈ Σ2 and trees t1, t2 ∈ TΣ2,∅(Σ0). Figure 4 displays a tree t on the left and the corresponding tree dir(t)
on the right. Note that ‘dir’ is injective on trees. Next, we lift this mapping to weighted forests ϕ : TΣ2,∅(Σ0) → H by
dirϕ(u) =

∑
t∈dir−1(u) ϕ(t) for all u ∈ TΣ2×[2],∅(Σ0). Note that the presented sum always has at most one summand due

to the injectivity of ‘dir’ and that dirϕ : TΣ2×[2],∅(Σ0) → H is a weighted forest. Finally, we note that ϕ and dirϕ are
equivalent modulo the obvious relabeling that removes the direction indicators.

Lemma 8. Let ϕ : TΣ2,∅(Σ0) → H be a regular weighted forest that is universally minheight-bounded by ` ∈ N. Then
there exists a wTA G′ such that τG′ = dirϕ and RG′ (u) = ∅ for all trees u ∈ TΣ2×[2],∅(Σ0) that are not universally
minheight-bounded by `.

Proof. Since ϕ is regular, there exists a wTA G = (N,Σ, S , P,wt) such that τG = ϕ. We construct the wTA

G′ = (N × [0, `], Σ′, S × [0, `], P′, wt′)

for dirϕ as follows:
• Σ′2 = Σ2 × [2] and Σ′0 = Σ0,

9

• the set P′ of productions is given by

P′ =
{
〈n, i + 1〉 → 〈σ, 1〉

(
〈n1, i〉, 〈n2, j〉

) ∣∣∣∣ n→ σ(n1, n2) ∈ P, i, j ∈ [0, `], i = min(i, j) < `
}
∪{

〈n, j + 1〉 → 〈σ, 2〉
(
〈n1, i〉, 〈n2, j〉

) ∣∣∣∣ n→ σ(n1, n2) ∈ P, i, j ∈ [0, `], j < i
}
∪{

〈n, 0〉 → α
∣∣∣∣ n→ α ∈ P

}
• wt′

(
〈n, k〉 → 〈σ, d〉

(
〈n1, i〉, 〈n2, j〉

))
= wt

(
n → σ(n1, n2)

)
for all 〈n, k〉 → 〈σ, d〉

(
〈n1, i〉, 〈n2, j〉

)
∈ P′ and

wt′
(
〈n, 0〉 → α

)
= wt

(
n→ α

)
for all 〈n, 0〉 → α ∈ P′.

For correctness, let us consider an arbitrary tree t ∈ TΣ2,∅(Σ0). Given a run ω ∈ RG(t) let ϑω : pos(t) → N × N be
given by ϑω(w) =

〈
ω(w),mht(t|w)

〉
for all w ∈ pos(t). If t is universally minheight-bounded by `, then we can easily

verify by induction that ϑ bijectively maps runs of G on t onto runs of G′ on dir(t); i.e., ϑ : RG
(
t
)
→ RG′

(
dir(t)

)
.

Alongside we can also observe that wt
(
ω
)
= wt′

(
ϑ(ω)

)
for all ω ∈ RG(t). Thus, we identified our weight-preserving

bijection. To complete the proof we can also show using the same arguments that RG′ (u) = ∅ if u is not universally
minheight-bounded by `. Hence τG′ = dirϕ.

Now we are ready to characterize the expressive power of 0-wCCG. We start by showing that the weighted
derivation forest of each 1-wCCG is regular, which applies to 0-wCCG as well because they are special 1-wCCG.
Let G = (Σ, A,R, I, L,wt) be a 1-wCCG. As in the unweighted case [28, Lemma 10], the main property of 1-wCCGs
is that each category that occurs in a derivation tree has arity at most arity(L) = max

{
arity(c) | 〈σ, c〉 ∈ supp(L)

}
. Thus,

the derivation trees ofDG are built over a finite set of symbols, and the ground instances of the weighted rule system
essentially specify the weighted branchings.

Lemma 9. For every 1-wCCG G = (Σ, A,R, I, L,wt) the weighted derivation forest wtG : DG → H is regular.

Proof. We show that the weighted derivation forest wtG is actually local, which also proves that it is regular by [41,
Theorem 1]. The weighted tree automata of [41] have root weights, but it is well-known [42, Theorem 6.2.2] that
weighted tree automata with root weights are as expressive as our wTA, and the same remarks apply to the weighted
local systems of [41] and our weighted local tree grammars. Let k = arity(L). To prove that wtG is local, we construct
the weighted local tree grammar G′ = (∆, I′, P,wt′) as follows.
• The terminals ∆ = ∆2 ∪ ∆0 are given by ∆2 = C(A, k), which are all the categories of C(A) that have arity at

most k, and the leaf labels are ∆0 = supp(L).
• The root labels I′ = I ∪ {〈α, c〉 ∈ supp(L) | c ∈ I} are the initial categories and the leaf labels containing them.
• The permitted branchings P =

{ c
c1 c2

| c ∈ ∆2, c1, c2 ∈ ∆,
cat(c)

cat(c1) cat(c2)Π
}
∪

{ c | c ∈ ∆0
}

are essentially the
valid ground instances of the weighted rule system Π = (A,R,wt).
• The weight wt′(c

c1 c2
) = wt(cat(c)

cat(c1) cat(c2)) of branching c
c1 c2

∈ P is inherited from Π = (A,R,wt), and
wt′(c) = L(c) for every c ∈ ∆0 is taken from the lexicon.

Obviously, DG = RG′ ; i.e., each derivation tree of G is a run of G′ and vice versa. Moreover, the weights assigned
to a given derivation tree d ∈ DG by G and G′ coincide, so the identity is a suitable weight-preserving bijection that
proves wtG′ = wtG. Thus wtG is local and regular.

We already know by [28, Lemma 10] that the derivation trees DG of a 0-wCCG G are universally minheight-
bounded by some grammar-specific constant ` ∈ N. Hence also the weighted derivation forest wtG is universally
minheight-bounded. Together with Lemma 9 we obtain that the weighted forests generatable by 0-wCCGs are regular
and universally minheight-bounded. In the rest of this section we prove that every universally minheight-bounded
regular weighted forest is generatable by a 0-wCCG. The construction utilizes the annotation provided by ‘dir’ and
decomposes the tree into paths that start at a given node v and then repeatedly proceed to the child node indicated by
the annotation. These paths, called spines, lead from v to a leaf and are never longer than the universal minheight. The
(nontrivial) spines of the right tree in Figure 4 are indicated by a special background. In the constructed 0-wCCG the
primary categories for the applications are placed along those spines and each spine terminates in an atomic category
that can be combined with the category from another spine. This is achieved by simulating each spine by a lexical
category, where the arguments store the information needed for relabling and get successively removed (see Figure 5).

10

S

VP

NP

NP

lightred

the

ran

NP

S

sawI

NP

carthe

〈S, 2〉

〈VP, 1〉

〈NP, 1〉

〈NP, 1〉

lightred

the

ran

〈NP, 1〉

〈S, 1〉

sawI

〈NP, 1〉

carthe

Figure 4: Example tree t and its direction-annotated variant dir(t), in which we also indicated nontrivial spines.

〈
〈S, 2〉,>, 〈S, 2〉

〉

〈
〈S, 2〉,>, 〈S, 2〉

〉
/
〈
〈NP, 1〉, s, 〈VP, 1〉

〉
〈
〈NP, 1〉, s, ran

〉

〈
〈NP, 1〉, s3, the

〉

〈
light, s4, red

〉〈
〈NP, 1〉, s3, the

〉
/
〈
light, s4, red

〉

〈
〈NP, 1〉, s, ran

〉
/
〈
〈NP, 1〉, s3, the

〉

〈
〈S, 2〉,>, 〈S, 2〉

〉
/
〈
〈NP, 1〉, s, 〈VP, 1〉

〉
/
〈
〈NP, 1〉, s, ran

〉

〈
〈NP, 1〉, s, 〈VP, 1〉

〉

〈
〈S, 1〉, s1, 〈NP, 1〉

〉

〈
saw, s2, I

〉〈
〈S, 1〉, s1, 〈NP, 1〉

〉
/
〈
saw, s2, I

〉

〈
〈NP, 1〉, s, 〈VP, 1〉

〉
/
〈
〈S, 1〉, s1, 〈NP, 1〉

〉
〈
car, s1, the

〉〈
〈NP, 1〉, s, 〈VP, 1〉

〉
/
〈
〈S, 1〉, s1, 〈NP, 1〉

〉
/
〈
car, s1, the

〉

Figure 5: Derivation tree of the 0-wCCG corresponding to tree t of Figure 4 with nontrivial spines indicated and with the symbol resulting after
relabeling underlined. Input symbols of leaf labels are omitted.

In the unweighted case, each tree could be decomposed into a set of spines in multiple ways. To avoid this ambiguity,
the annotation ‘dir’ enforces for each tree a unique decomposition into spines. Additionally, the set of initial categories
is more restricted than in the unweighted case.

Theorem 10. Let ϕ : TΣ2,∅(Σ0) → H be a weighted forest. Then ϕ is generatable by some 0-wCCG if and only if it is
regular and universally minheight-bounded.

Proof. The direction from left to right is clear by [28, Lemma 10] and Lemma 9 as already discussed. For the
only-if direction, let ` ∈ N be such that ϕ is universally minheight-bounded by `. Since ϕ is regular and universally
minheight-bounded by `, we can use Lemma 8 to conclude that there exists a wTA G̃ such that τG̃ = dirϕ and RG̃(u) = ∅
for all trees u ∈ TΣ2×[2],∅(Σ0) that are not universally minheight-bounded by `. Since the weighted forests generatable
by 0-wCCG are closed under deterministic relabelings by Lemma 6, it suffices to prove that dirϕ is generatable by
0-wCCG. Utilizing this approach once more, we know that according to [41, Theorem 1] there also exists a weighted
local tree grammar G = (∆, I, P,wt) and a deterministic relabeling ρ : ∆→ (Σ2 × [2])∪Σ0 such that ρ(wtG) = dirϕ and
every d ∈ RG is universally minheight-bounded by `. The latter property can easily be seen from the constructions used
in [41, Theorem 1] and the fact that RG̃(u) = ∅ for all trees u ∈ TΣ2×[2],∅(Σ0) that are not universally minheight-bounded

11

〈S, 2〉

〈VP, 1〉

〈NP, 1〉ran

〈NP, 1〉

/

〈
〈NP, 1〉, s, ran

〉
/

〈
〈NP, 1〉, s, 〈VP, 1〉

〉
�

Figure 6: Spinal run s together with its argument tree arg(s, s).

by `. Overall, it is thus sufficient to prove that there exists a 0-wCCG G′ = (∆0, A,R, I′, L,wt′) and a category
∆-relabeling ρ′ such that wtρ

′

G′ = wtG. As already remarked, RG is universally minheight-bounded by `.
Our goal is to establish a weight-preserving bijection between the runs of the weighted local tree grammar G and

the derivation trees of the 0-wCCG G′ to be constructed. To this end, we follow the basic strategy that was already
used in the unweighted case [29, 28]. First we note that all categories

{
c ∈ C(A) | 〈σ, c〉 ∈ supp(L)

}
that we include

in the lexicon L are left-spinal (i.e., all right children are leaves — see argument context displayed right in Figure 6).
Together with the fact that we can only use application rules, we obtain that all categories that can occur in derivations
of DG′ must be subtrees of the categories in

{
c ∈ C(A) | 〈σ, c〉 ∈ supp(L)

}
. Consequently, let C0(A) ⊆ C(A) be that

subset of all categories.
For every γ ∈ ∆2, let π(γ) be the annotated direction; i.e., π : ∆2 → {1, 2} such that π(γ) = z, where ρ(γ) = 〈σ, z〉,

for all γ ∈ ∆2. We denote the opposite direction by overlining, so 2 = 1 and 1 = 2. For every terminal α ∈ ∆0, we
define the set SpinesG(α) of spines of G terminating in α to be the smallest set M ⊆ T∆2,∅(∆) such that (i) α ∈ M,
and (ii) γ(s1, s2) ∈ M for all γ ∈ ∆2, sπ(γ) ∈ ∆, and sπ(γ) ∈ M such that γ

s1(ε) s2(ε) ∈ P. In other words, the spines
are obtained from the runs RG by selecting a run d ∈ RG and a position p ∈ pos(d) in it, taking the subtree d|p,
and replacing the off-direction direct subtree d′ of each node in d|p by just a leaf with the same root label d′(ε).
This process is illustrated in Figure 6 (left), and we note that each run d ∈ RG decomposes uniquely into spines as
illustrated in Figure 4 (right). Since the runs of G are universally mht-bounded by ` along the spine direction π, we
obtain that ht(s) ≤ ` for all s ∈ SpinesG(α), which shows that SpinesG(α) is finite.

Let A = ∆ × SpinesG × ∆ be the set of atomic categories, where SpinesG =
⋃
α∈∆0

SpinesG(α). Each atomic
category 〈γ′, s, γ〉 ∈ A thus stores two symbols γ′ and γ, which are required for the relabeling ρ′, and a spine s
to enforce consistency. Next, we define the category ∆-relabeling ρ′ :

(
C0(A) ∪ supp(L)

)
→ ∆ by ρ′

(
〈γ′, s, γ〉

)
= γ′

and ρ′
(
c|〈γ′, s, γ〉

)
= γ for all 〈γ′, s, γ〉 ∈ A, c ∈ C0(A), and | ∈ {/, /} as well as ρ′

(
〈σ, c〉

)
= σ for every 〈σ, c〉 ∈ supp(L).

Each lexical category is based on a spine, such that each argument records the label of a spinal node, the label of its
sibling, and the spine it belongs to. The outermost argument corresponds to the bottom of the spine because it gets
removed first in the wCCG derivation. Therefore, for all spines s, s′ ∈ SpinesG(α) we inductively construct the
argument context arg(s, s′) ∈ A(A, `), also illustrated in Figure 6, as follows:
• arg(α, s′) = �, and
• arg

(
γ(s1, s2), s′

)
= arg(sπ(γ), s′)

[
�|〈sπ(γ), s

′, sπ(γ)(ε)〉
]

for all γ ∈ ∆2, sπ(γ) ∈ ∆, and sπ(γ) ∈ SpinesG(α), where | = /
if π(γ) = 1 and | = /otherwise.2

For an argument context based on some s′ ∈ SpinesG we can use as a target all atoms that relabel to s′(ε). Thus, let

Cα =
{
arg

(
s′, s′

)[〈
s′(ε), s, γ

〉] ∣∣∣∣ s′ ∈ SpinesG(α), s ∈ SpinesG, γ ∈ ∆
}

for all α ∈ ∆0. Note that Cα ∩Cβ = ∅ for all α, β ∈ ∆0 with α , β and ρ′(c) = α for every c ∈ Cα, so ρ′(y) = ρ′
(
cat(y)

)
for every y ∈ C0(A) ∪ supp(L) provided that supp(L) ⊆

⋃
α∈∆0
{α} × Cα. Finally, we fix any spine > ∈ SpinesG and

construct the 0-wCCG G′ = (∆0, A,R(A, 0), I′, L,wt′) with initial atoms I′ and lexicon L given by

I′ =
{
〈a,>, a〉 | a ∈ I

}
L
(
〈α, c〉

)
=

wt(α) if c ∈ Cα and α ∈ P
0 otherwise

2For better readability, we write |(�, c) using the infix notation � | c.

12

for all α ∈ ∆0 and c ∈ C(A). Clearly, supp(L) ⊆
⋃
α∈∆0
{α} ×Cα. Finally, for all atoms a ∈ A and categories c ∈ C(A)

wt′
(ax
ax/c c

)
=

wt
(

ρ′(ax)
ρ′(ax/c) ρ′(c)

)
if c ∈ A and ρ′(ax)

ρ′(ax/c) ρ′(c) ∈ P

1 otherwise

wt′
(ax
c ax /c

)
=

wt
(

ρ′(ax)
ρ′(c) ρ′(ax /c)

)
if c ∈ A and ρ′(ax)

ρ′(c) ρ′(ax /c) ∈ P

1 otherwise.

The weight of application rules without corresponding productions in P is in fact irrelevant since by the definition of
the lexicon L such rules can never occur in derivations of G′.

It remains to prove that wtρ
′

G′ = wtG.
For every s ∈ SpinesG and γ ∈ ∆, let Ds,γ

G′ =
{
d′ ∈ DG′ | ∃γ

′ ∈ ∆ : target
(
d′(ε)

)
= 〈γ′, s, γ〉

}
be those derivation

trees of G′ whose root is labeled by a category that has a target with s and γ in the second and third component, re-
spectively. Additionally, let Ds,γ

G′ = {d
′ ∈ D

s,γ
G′ | d

′(ε) ∈ A} be those derivation trees ofDs,γ
G′ that are labeled by an atom

at the root. We first prove the auxiliary statement that for every s ∈ SpinesG and γ ∈ ∆ the mapping ρ′ : Ds,γ
G′ → RG

is a weight-preserving bijection; i.e., wtG′ (d′) = wtG
(
ρ′(d′)

)
for every d′ ∈ Ds,γ

G′ . To this end, we need to prove four
subgoals: (i) ρ′

(
D

s,γ
G′

)
⊆ RG, (ii) ρ′ : Ds,γ

G′ → RG is injective, (iii) RG ⊆ ρ
′
(
D

s,γ
G′

)
, which shows that ρ′ : Ds,γ

G′ → RG is
surjective, and finally subgoal (iv) wtG′ (d′) = wtG

(
ρ′(d′)

)
for every d′ ∈ Ds,γ

G′ . Given the definition of wt′, subgoal (iv)
is automatically fulfilled once we establish subgoal (i).

We start with subgoal (i) ρ′
(
D

s,γ
G′

)
⊆ RG for every s ∈ SpinesG and γ ∈ ∆ using induction on the height of d′ ∈ Ds,γ

G′ .
In the induction base d′ is a lexicon entry, so d′ = 〈α, c〉 ∈ supp(L) with c ∈ Cα and α ∈ P. Clearly, ρ′(d′) = α.
Since α ∈ P, tree α is a valid run of RG, which completes the induction base.

In the induction step, let d′ = c(d′1, d
′
2) ∈ Ds,γ

G′ for some c ∈ C0(A), and subtrees d′1 ∈ D
s1,γ1
G′ , d′2 ∈ D

s2,γ2
G′

with γ1, γ2 ∈ ∆, and s1, s2 ∈ SpinesG. By the induction hypothesis d1 = ρ
′(d′1) ∈ RG as well as d2 = ρ

′(d′2) ∈ RG.
It remains to prove that ρ′(c)

d1(ε) d2(ε) ∈ P, which would prove that ρ′(d′) ∈ RG. Since we only utilize first-order
categories and application rules we have

{
cat(d′1(ε)), cat(d′2(ε))

}
=

{
c|a, a

}
for some | ∈ {/, /} and a ∈ A. Moreover,

let a = 〈γ′′, s′, γ′〉 for some γ′′, γ′ ∈ ∆ and s′ ∈ SpinesG. We assume that cat
(
d′1(ε)

)
= a and cat

(
d′2(ε)

)
= c /a.

The remaining case, in which cat
(
d′1(ε)

)
= c/a and cat

(
d′2(ε)

)
= a, is analogous. By the definition of ρ′, we obtain

that d1(ε) = γ′′ and d2(ε) = γ′. Moreover, c /a must be a subtree of the category arg(s′, s′)
[
〈s′(ε), s2, γ2〉

]
because the

spine s′ is annotated to a right child.
Now we distinguish two cases. If c is atomic, then c = 〈s′(ε), s2, γ2〉 and ρ′(c) = s′(ε) by the definition of ρ′. By

the construction of the argument context ‘arg(s′, s′)’ we have

s′(ε) = ρ′(c) and s′(1) = γ′′ = d1(ε) and s′(2) = γ′ = d2(ε) .

Since s′ ∈ SpinesG we have s′(ε)
s′(1) s′(2) ∈ P, which yields ρ′(c)

d1(ε) d2(ε) ∈ P as desired with the help of the equations
above. In the remaining case c is not atomic. Let c = c′ | 〈γ′, s′, γ〉 for some c′ ∈ C0(A), | ∈ {/, /}, and γ′, γ ∈ ∆. The
definition of ρ′ yields that ρ′(c) = γ. Since ‘arg’ reverses the order (see Figure 6), our subtree c /a corresponds to an ini-
tial fragment of s′. Let s′ = C[s′] with C ∈ C∆2,∅(∆) and s′ ∈ SpinesG such that c /a = arg

(
C[s′(ε)], s′

)[
〈s′(ε), s2, γ2〉

]
.

Moreover, let w = pos�(C). Since we have at least two arguments in c /a, the definition of ‘arg’ yields |w| ≥ 2, so
let w = w′z2 with w′ ∈ [2]∗ and z ∈ [2]. Then � | 〈γ′, s′, γ〉 /〈γ′′, s′, γ′〉 = arg

(
C|w′ [s′(ε)], s′

)
constructs the last two

arguments and thus

s′(w′z) = γ = ρ′(c) and s′(w′z1) = γ′′ = d1(ε) and s′(w′z2) = γ′ = d2(ε) .

Since s′ ∈ SpinesG we have s′(w′z)
s′(w′z1) s′(w′z2) ∈ P, which together with the equalities above yields the existence of the

production ρ′(c)
d1(ε) d2(ε) ∈ P as required. This concludes the induction and establishes subgoal (i) ρ′

(
D

s,γ
G′

)
⊆ RG and

together with it also subgoal (iv) as already argued.
For subgoal (ii), let s ∈ SpinesG and γ ∈ ∆ and consider derivation trees d′, d′′ ∈ Ds,γ

G′ with ρ′(d′) = d = ρ′(d′′) and
cat

(
d′(ε)

)
= cat

(
d′′(ε)

)
. The latter follows from the facts that the root label of any derivation tree ofDs,γ

G′ \ supp(L) that
gets relabeled to d via ρ′ is

〈
d(ε), s, γ

〉
and that d′ ∈ Ds,γ

G′ ∩ supp(L) with ρ′(d′) = d implies d′ =
〈
d(ε), 〈d(ε), s, γ〉

〉
.

Obviously, we have pos(d′) = pos(d) = pos(d′′). If pos(d) = {ε}, then trivially d′ = d′′ as already argued. Otherwise

13

we prove that cat
(
d′(1)

)
= cat

(
d′′(1)

)
and cat

(
d′(2)

)
= cat

(
d′′(2)

)
, which can then be used inductively to show

that d′ = d′′. Let d′(ε) = 〈γ′, s, γ〉β for some γ′ ∈ ∆ and suffix β. The child categories
{
cat(d′(1)), cat(d′(2))

}
are

{
a, 〈γ′, s, γ〉β | a

}
for some | ∈ {/, /} and atom a ∈ A. Indeed, we show that | and a are uniquely determined, which

also settles which category labels which child. If β , ε, then it determines the spine s′ ∈ SpinesG, which occurs in all
second components of atoms in the suffix β by the construction of L. In turn, this uniquely determines | and a to be
those that make 〈γ′, s, γ〉β | a a subtree of arg(s′, s′)

[
〈γ′, s, γ〉

]
. It remains to consider the case β = ε. Every useful non-

atomic category is a prefix of a category of
⋃
α∈∆0

Cα and each that starts with 〈γ′, s, γ〉 is a prefix of arg(s′, s′)
[
〈γ′, s, γ〉

]
for some unknown s′ ∈ SpinesG(α) and α ∈ ∆0 with s′(ε) = γ′ by the construction of L. Since s′(ε) = γ′, we conclude
that | = / if π(γ′) = 1 and | = /otherwise. Due to the relabeling ρ′ we conclude that a =

〈
d(π(γ′)), s′, d(π(γ′))

〉
and

thus s′(1) = d(1) and s′(2) = d(2). Continuing the same process with symbol d
(
π(γ′)

)
, we obtain all of s′. Since

| and a are uniquely determined, we have proved d′(1) = d′′(1) as well as d′(2) = d′′(2) as desired. As already
mentioned iterating the argument then yields d′ = d′′, which proves injectivity of ρ′ : Ds,γ

G′ → RG because as noted
above the root label category of any derivation tree d′ ∈ Ds,γ

G′ that relabels to ρ′(d′) = d is cat
(
d′(ε)

)
=

〈
d(ε), s, γ

〉
.

For the final subgoal (iii), which is the converse inclusion RG ⊆ ρ′
(
D

s,γ
G′

)
, we first prove an auxiliary statement.

Let d′ ∈ Ds,γ
G′ be a derivation tree. Then for every s′ ∈ SpinesG and γ′ ∈ ∆ there exists a derivation tree d′s′,γ′ ∈ D

s′,γ′

G′

such that ρ′(d′s′,γ′) = ρ
′(d′). In other words, in any derivation tree with an atomic category at the root we can adjust the

derivation tree such that the root label contains any spine s′ ∈ SpinesG and third component γ′ ∈ ∆. The obtained tree
is still a derivation tree and relabels to the same run as d′. This statement is very easy to prove using [14, Lemma 3.1],
which shows that d′(ε) is the target of a category of

⋃
α∈∆0

Cα. However, by the construction of Cα those targets always
allow each spine s′ as second component and each γ′ as third component. A detailed proof is left to the reader.

Before we proceed we define the functions prune : RG → SpinesG and spine-path : RG → [2]∗ inductively by

prune
(
α
)
= α spine-path

(
α
)
= ε

prune
(
γ(d1, d2)

)
=

γ
(
prune(d1), d2(ε)

)
if π(γ) = 1

γ
(
d1(ε), prune(d2)

)
otherwise

spine-path
(
γ(d1, d2)

)
= π(γ) spine-path(dπ(γ))

for every α ∈ ∆0, γ ∈ ∆2, and d1, d2 ∈ RG. It is straightforward to show that prune(d) ∈ SpinesG as well as
spine-path(d) ∈ pos(d) for all d ∈ RG. We return to the main proof that RG ⊆ ρ′

(
D

s,γ
G′

)
, which is achieved by

induction on d ∈ RG. In the induction base, let d ∈ ∆0. Then
〈
d, 〈d, s, γ〉

〉
∈ supp(L) ∩ Ds,γ

G′ and thus d ∈ ρ′
(
D

s,γ
G′

)
by the definition of ρ′. In the induction step, we have d < ∆0 and the desired property d ∈ ρ′

(
D

s,γ
G′

)
is true for

all proper subtrees d of d that are located next to the spine. We let s′ = prune(d) and w = spine-path(d). More
precisely, let w = z1 · · · zk with z1, . . . , zk ∈ [2]. We first deal with the positions outside the spine. For every i ∈ [k],
let wi = z1 · · · zi−1zi, which refer to the positions outside the spine s′. Similarly, for every i ∈ [0, k], let wi = z1 · · · zi be
the i-th position on the spine s′. Trivially, s′(wi) = d(wi) for all i ∈ [k] by the construction of s′. For every i ∈ [k] we
know that d|wi ∈ ρ

′
(
D

s,γ
G′

)
by the induction hypothesis and together with the auxiliary statement we obtain that there

exists a derivation tree d′i ∈ D
s′,d(wi)
G′ such that ρ′(d′i) = d|wi . Let c = arg(s′, s′)

[
〈d(ε), s, γ〉

]
∈ Cd(wk). More precisely,

let c = 〈d(ε), s, γ〉|1a1|2 · · · |kak for some |1, . . . , |k ∈ {/, /} and a1, . . . , ak ∈ A. Note that the categories a1, . . . , ak are
atomic. By the construction of c we know that (i) |i = / if and only if zi = 1, and (ii) ai =

〈
s′(wi), s′, s′(wi)

〉
for

every i ∈ [k]. Additionally, note that s′(wi) = d(wi) and s′(wi) = d(wi) for all i ∈ [k], which yields ai = d′i (ε). Now we
can construct the required derivation d′ ∈ Ds,γ

G′ by combining this category c with the subderivations d′i ∈ D
s′,d(wi)
G′ . For

every i ∈ Zk we let

t′k =
〈
d(wk), c

〉
and t′i (ε) =

〈
d(ε), s, γ

〉
|1a1|2 · · · |iai t′i |zi+1 = t′i+1 t′i |zi+1 = d′i+1 .

Finally, we set d′ = t′0. A straightforward check shows that d′ ∈ Ds,γ
G′ . It remains to show that ρ′(d′) = d. Obvi-

ously, pos(d′) = pos(d), so we need to show that d(v) = ρ′
(
cat(d′(v))

)
for every v ∈ pos(d). If v = wiv′ for some i ∈ [k]

and v′ ∈ pos(d|wi), then this is trivially true because d′|wi = d′i and we already observed that ρ′(d′i) = d|wi . Conse-
quently, we only need to prove the property for all the prefixes wi of w with i ∈ Zk. By the construction of d′ we
have cat

(
d′(wi)

)
=

〈
d(ε), s, γ

〉
|1a1|2 · · · |iai. For i = 0, we thus obtain ρ′

(
cat(d′(w0))

)
= ρ′

(
〈d(ε), s, γ〉

)
= d(ε). For

all i ∈ [k] we have
ρ′

(
cat(d′(wi))

)
= ρ′

(
〈d(ε), s, γ

〉
|1a1|2 · · · |iai

)
= d(wi)

14

since ai =
〈
d(wi), s′, d(wi)

〉
. This completes the proof of RG ⊆ ρ

′
(
D

s,γ
G′

)
.

It remains to prove wtρ
′

G′ = wtG using the proved subgoals. Let t ∈ T∆2,∅(∆0) be arbitrary. Then

wtρ
′

G′ (t) =
∑

d′∈(ρ′)−1(t)
d′(ε)=〈t(ε),>,t(ε)〉

wtG′ (d′) =
∑

d′∈(ρ′)−1(t)∩D>,t(ε)
G′

wtG′ (d′) =
∑

d′∈D>,t(ε)
G′

t=ρ′(d′)

wtG(t)

because the weight of non-derivations is 0 and we proved that ρ′ : D>,t(ε)
G′ → RG is a weight-preserving bijection. Thus,

wtρ
′

G′ (t) = wtG(t) if t ∈ RG. Otherwise, wtρ
′

G′ (t) = 0 = wtG(t) if t < RG, which completes the proof.

5. 1-wCCGs

In this section we show that the weighted forests generatable by 1-wCCG are exactly the regular weighted forests.
1-wCCG can use composition rules of degree at most 1. The inclusion of the class of weighted forests generatable by
1-wCCG in the class of regular weighted forests has already been shown in Lemma 9, so we only have to prove the
remaining direction. Lemma 6 shows that the weighted forests generatable by 1-wCCG are closed under deterministic
relabelings, so we only need to prove that the weighted forest of each weighted local tree grammar G = (Σ, S , P,wt)
is generatable by some 1-wCCG. Without loss of generality, we can assume that (i) Σ = Zm = {0, . . . ,m − 1} for
some m ∈ N, (ii) σ

σ1 σ2
∈ P for every σ,σ1, σ2 ∈ Σ, and (iii) α ∈ P for every α ∈ Σ0. The latter 2 properties can

be achieved by setting wt
(σ
σ1 σ2

)
= 0 and wt

(α)
= 0 for all undesired productions.

The main idea of the construction is taken from the unweighted setting [27]. Our goal is to construct a 1-wCCG G′

and a deterministic category Σ-relabeling ρ such that for all productions σ
σ1 σ2

∈ P there is a rule c
c1 c2

Π such
that ρ(c) = σ, ρ(c1) = σ1, and ρ(c2) = σ2. In this way we model the runs of G as the derivation trees of the
constructed wCCG G′, where the weights that control which productions are admissible are transferred to the rule
system Π. We use only first-order categories with at most one argument which has to start with a forward-slash.

In the following, we lay out some preliminary considerations. The productions P permit to derive all ordered pairs
of terminals (σ1, σ2) ∈ Σ2 from σ ∈ Σ2. Clearly, there are m2 such pairs. Given a set A of atoms and a category a/a′

with a, a′ ∈ A, there are |A| pairs of input categories a/a′′ and a′′/a′ with a′′ ∈ A whose composition results in a/a′.
This is depicted in Figure 7 (left). To cover all terminal pairs (σ1, σ2) that can be generated by σ = ρ(a/a′), the
constructed 1-wCCG G′ needs m2 atoms. The relabeling ρ is defined such that all pairs (σ1, σ2) are actually covered.
The strategy for categories of arity 1 is illustrated in Figure 7 (right). The set I of initial atomic categories is restricted
such that for each start terminal s ∈ S only a single category as with ρ(as) = s is contained in I. This restriction is
necessary to ensure that for each run d ∈ Ds

G only a single derivation tree d′ ∈ Das
G′ exists. Finally, we let �lex be the

total lexicographic order on N2.

Definition 11. Let G = (Zm, S , P,wt) be a weighted local tree grammar with σ
σ1 σ2

∈ P for every σ,σ1, σ2 ∈ Zm

and σ′ ∈ P for every σ′ ∈ (Zm)0. We construct the 1-wCCG CG =
(
Zm, A, R, I, L,wt′

)
with A = Z2

m and the
deterministic category Zm-relabeling ρ :

(
C(A) ∪ supp(L)

)
→ Zm such that

I =
{

min�lex

(
ρ−1(σ) ∩ A

) ∣∣∣ σ ∈ S
}

R =
{(ax

ax/c c

) ∣∣∣∣ a, c ∈ A
}
∪

{(ax/b
ax/c c/b

) ∣∣∣∣ a, b, c ∈ A
}

wt′
(ax
ax/c c

)
= wt

(ρ(a)
ρ(a/c) ρ(c)

)
and wt′

(ax/b
ax/c c/b

)
= wt

(ρ(a/b)
ρ(a/c) ρ(c/b)

)
for all a, b, c ∈ A

L
(
〈σ, c〉

)
=

wt
(

ρ(c)
)

if ρ(c) = σ

0 otherwise,

and ρ
(
〈i, j〉

)
= i and ρ

(
〈i, j〉α /〈i′, j′〉

)
= i + j′ mod m for all i, i′, j, j′ ∈ Zm and argument contexts α ∈ A(A) as well

as ρ
(
〈σ, c〉

)
= σ for every 〈σ, c〉 ∈ supp(L). The relabeling is irrelevant for all other categories.

15

a0 a1 a2 a3

a0 a0/a0 a0/a1 a0/a2 a0/a3

a1 a1/a0 a1/a1 a1/a2 a1/a3

a2 a2/a0 a2/a1 a2/a2 a2/a3

a3 a3/a0 a3/a1 a3/a2 a3/a3

〈0, 0〉 〈0, 1〉 〈0, 2〉 〈1, 0〉 〈1, 1〉 〈1, 2〉 〈2, 0〉 〈2, 1〉 〈2, 2〉

〈0, 0〉 0 1 2 0 1 2 0 1 2

〈0, 1〉 0 1 2 0 1 2 0 1 2

〈0, 2〉 0 1 2 0 1 2 0 1 2

〈1, 0〉 1 2 0 1 2 0 1 2 0

〈1, 1〉 1 2 0 1 2 0 1 2 0

〈1, 2〉 1 2 0 1 2 0 1 2 0

〈2, 0〉 2 0 1 2 0 1 2 0 1

〈2, 1〉 2 0 1 2 0 1 2 0 1

〈2, 2〉 2 0 1 2 0 1 2 0 1

Figure 7: The category matrix (left) contains all first-order categories of arity 1 with only forward slashes in a 1-wCCG with four atoms. Each
category is the result of the forward composition of a category taken from the same row and one from the same column, respectively. The i-th entry
of each row can be combined with the i-th entry of each column. Thus, each category a/a′ is the result of four different forward compositions
combining a/a′′ and a′′/a′ (with four choices for a′′). The relabeling matrix (right) shows a 1-wCCG with nine atomic categories after relabeling
using category relabeling ρ : C(Z2

3) → Z3, obtained from a local tree grammar G with three terminals by applying Definition 11. Note that
when slicing the matrix evenly into blocks of size 3 × 3, the entries in the rows cycle through the terminals, whereas in a single column, each
block has only a single terminal in all three entries. Relabeling in this manner ensures that each category can be obtained as the composition
of two input categories that are relabeled to σ1, σ2 ∈ Z3 for all ordered pairs (σ1, σ2) of terminals. Suppose we want to find two categories
relabeled to terminals (σ1, σ2) = (0, 2) whose composition yields 〈i, j〉/〈i′, j′〉 = 〈0, 1〉/〈0, 1〉. These are categories 〈0, 1〉/〈1, 0〉 and 〈1, 0〉/〈0, 1〉
since 〈k, `〉 = 〈σ2 − j′ mod 3, σ1 − i mod 3〉 = 〈2 − 1 mod 3, 0 − 0 mod 3〉 = 〈1, 0〉.

Lemma 12. Every regular weighted forest ϕ : TΣ2,∅(Σ0)→ H is generatable by some 1-wCCG.

Proof. As argued above, we use [41, Theorem 1], due to which for each regular weighted forest ϕ : TΣ2,∅(Σ0) → H,
there exists a weighted local tree grammar G = (∆, S , P,wt) and a deterministic relabeling ρ′ : ∆ → Σ2 ∪ Σ0 such
that ρ′(wtG) = ϕ. Without loss of generality, let ∆ = Zm, and let G comply with the conditions described before,
so σ

σ1 σ2
∈ P for every σ,σ1, σ2 ∈ Zm and σ′ ∈ P for every σ′ ∈ (Zm)0. Based on the weighted local tree gram-

mar G, we use Definition 11 to define the 1-wCCG G′ = CG = (Zm, A, R, I, L,wt′) with A = Z2
m and deterministic

category Zm-relabeling ρ :
(
C(A) ∪ supp(L)

)
→ Zm. As 1-wCCG is closed under deterministic relabelings, it suffices

to show that wtρG′ = wtG to prove the main statement. To this end, we establish that ρ is a weight-preserving bijection
between the derivation trees DI

G′ =
⋃

a∈ID
a
G′ of G′ and the runs ρ(DI

G′) ⊆ RS
G =

⋃
σ∈S Rσ

G containing runs of G. It is
clear that the image of DI

G′ under ρ results in a run, since G permits all productions. By the choice of I, this run is
rooted in an element σ ∈ S .

First we observe that the categories that occur inDG′ are restricted to the set C1 = A∪{a/b | a, b ∈ A} of categories
that are either atomic or have at most one atomic argument with a forward slash. This follows because all categories
can have only arguments that are already present in the lexicon by [14, Lemma 3.1] and because in a 1-wCCG the
limited rule degree prevents that arities of categories grow larger than the maximal arity found in the lexicon.

We start by showing the following auxiliary statement: Given a production σ
σ1 σ2

∈ P and a category c ∈ C1
with ρ(c) = σ, there are unique categories c1, c2 ∈ C1 with ρ(c1) = σ1 and ρ(c2) = σ2 such that c

c1 c2
Π is permitted

by the rule system. Additionally, the weight of this rule is wt′(c
c1 c2

) = wt(σ
σ1 σ2

).

We distinguish two cases. If c is atomic, then the desired rule instance c
c1 c2

Π of G′ has the shape 〈i, j〉
〈i, j〉/〈k,`〉 〈k,`〉 ,

where i, j, k, ` ∈ Zm. Relabeling the input categories c1 and c2 yields ρ(c1) = ρ(〈i, j〉/〈k, `〉) = i + ` mod m and
ρ(c2) = ρ(〈k, `〉) = k. From ρ(c2) = σ2 follows k = σ2, and from ρ(c1) = σ1 follows i + ` mod m = σ1,
thus ` = σ1 − i mod m. Clearly, k and ` and therefore also c1 and c2 are uniquely determined by the choice
of c = 〈i, j〉, σ1, and σ2, as required. If c has arity 1, then the desired rule instance c

c1 c2
Π of G′ is of the

form 〈i, j〉/〈i′, j′〉
〈i, j〉/〈k,`〉 〈k,`〉/〈i′, j′〉 , where i, i′, j, j′, k, ` ∈ Zm. The input categories are relabeled to ρ(c1) = ρ(〈i, j〉/〈k, `〉) = i+ `

mod m = n1 and ρ(c2) = ρ(〈k, `〉/〈i′, j′〉) = k + j′ mod m = σ2. Hence, we have ` = σ1 − i mod m and k = σ2 − j′

mod m. Again, it is easy to see that k and ` are determined by the choice of c, σ1, and σ2. We conclude that this
choice uniquely fixes c1, c2 ∈ C1 as well. The approach is illustrated in Figure 7. In both cases,

wt′
(c
c1 c2

)
= wt

(ρ(c)
ρ(c1) ρ(c2)

)
= wt

(σ

σ1 σ2

)
16

holds by definition of wt′.
Next, we show injectivity of ρ using the auxiliary statement. Let d ∈ ρ(DI

G) with d(ε) = σ ∈ S . It follows that each
d′ ∈ ρ−1(d) has root category c = cat

(
d′(ε)

)
= min�lex

{
a ∈ ρ−1(σ) ∩ A

}
. There are two cases. If d consists of a single

node, then a production (σ) is used. In that case, there is a lexicon entry L(〈σ, c〉) = wt(σ) with ρ(c) = σ. Since
c and σ are fixed, this is the only lexicon entry that we can use. As a consequence, there is only a single derivation
tree d′ ∈ ρ−1(d). Now assume that d has more than one node. Let σ1 = d(1) and σ2 = d(2). Because c = d′(ε)
and σ1, σ2 are fixed and ρ

(
d′(1)

)
= σ1 and ρ

(
d′(2)

)
= σ2 have to hold, there are unique categories c1, c2 ∈ C1 such

that c
c1 c2

Π is a valid rule instance of G′. Thus, we have d′(1) = c1 and d′(2) = c2. We can then successively
apply the auxiliary statement for each position w ∈ pos(d) in a top-down manner and use d′(w), d(w1), and d(w2)
to infer the categories d′(w1) and d′(w2). Because the root of d′ is fixed, all other categories are fixed as well. The
leaves of d correspond to productions σ that in turn correspond to lexicon entries. Since the leaf categories are
fixed by their parent nodes, there is only a single choice for each lexicon entry. We can conclude that |ρ−1(d)| = 1,
so ρ : DI

G′ → ρ(DI
G′) is a bijection.

To see that ρ is weight-preserving we can use the auxiliary statement as well, namely

wt′
(d′(w)
d′(w1) d′(w2)

)
= wt

(ρ(d′(w))
ρ(d′(w1)) ρ(d′(w2))

)
= wt

(d(w)
d(w1) d(w2)

)
,

giving a one-to-one correspondence between weights of applied rules and branching productions. For the leaf symbols
the weights of lexicon entries are given by L(〈σ, c〉) = wt(σ) in the same manner, so there we have a direct
correspondence to productions of G as well.

Note that the only runs d ∈ RS
G that are not in ρ(DI

G′) are those containing positions w ∈ leaves(d) such that
〈d(w), c〉 < supp(L) for some c ∈ ρ−1(d(w)

)
. These runs have weight 0. Preimages of all other runs d ∈ RS

G can be con-
structed with the approach described above. In summary, for every d′ ∈ DI

G′ and d = ρ(d′) we have wt(d) = wt′(d′),
and for every d ∈ RS

G with d < ρ(DI
G′) we have wt(d) = 0, which shows wtρG′ = wtG.

Theorem 13. The weighted forests generatable by 1-wCCG are exactly the regular weighted forests.

6. Inclusion in the Context-Free Weighted Forests

Finally, we aim to settle the relation between the weighted derivation forests of wCCGs and the simple monadic
context-free weighted forests, which are exactly those weighted forests that are generated by wsCFTG. To this end,
let us fix a wCCG G = (Σ, A,R, I, L,wt). However, the derivation forestDG might potentially contain infinitely many
categories, whereas infinitely many symbols are impossible in any context-free weighted forest. An illustration of
this problem can be found in [28, Example 21] for the unweighted case. As in the unweighted case, we circumvent
this problem by considering an alternative notion, called rule trees, which plainly record the used rules instead of
the categories. The leaves continue to record the used lexicon entry, so full category information is available at the
leaves. An example rule tree is depicted in Figure 9 (top left). The category of the root of each subtree can be uniquely
determined from the subtree supposing that the subtree is well-formed. Let us formally define this category evaluation
and the associated well-formedness condition. To simplify the notation, let T = TR,∅

(
supp(L)

)
.

Definition 14 (see [28, Definition 22]). A tree t ∈ T is a rule tree of G if evalG(t) is defined, where evalG : T 99K C(A) is
the partial mapping that is inductively defined by
• evalG

(
〈σ, c〉

)
= c for all 〈σ, c〉 ∈ supp(L),

• evalG
(axγ

ax/c cγ (t1, t2)
)
= aαγ for all axγ

ax/c cγ ∈ R and t1, t2 ∈ T with evalG(t1) = aα/c and evalG(t2) = cγ, and
• evalG

(axγ
cγ ax /c (t1, t2)

)
= aαγ for all axγ

cγ ax /c ∈ R and t1, t2 ∈ T with evalG(t1) = cγ and evalG(t2) = aα /c.
Let RG be the set of all rule trees of G, and Rc

G = eval−1
G

(
{c}

)
for all c ∈ C(A). The weight of a rule tree t ∈ RG is

wtG(t) =
(∏

w∈pos(d)\leaves(d)

wt
(
t(w)

))
·

(∏
w∈leaves(d)

L
(
t(w)

))
and the weighted rule forest τG : T→ H is given for every t ∈ T by

τG(t) =

wtG(t) if ∃a ∈ I : t ∈ Ra
G

0 otherwise.

17

We note that there is an (obvious) bijection between the derivation trees DG and the rule trees RG. This corre-
spondence extends to a bijection between the subsets Dc

G and Rc
G for every category c ∈ C(A). Finally, we note that

all those bijections are trivially weight-preserving, so we have found a suitable representation that will permit the
comparison to wsCFTG.

Our next goal is to construct a wsCFTG that computes exactly the weighted rule forest τG. To this end, we
essentially follow the unweighted approach of [28], but need to modify the construction slightly as in the previous
sections to correctly account for the weight. We start by limiting the number of categories. Let k ∈ N+ be the maximal
arity of a category in

cat
(
supp(L)

)
∪

{
cγ

∣∣∣ axγ
ax/c cγ

∈ R
}
∪

{
cγ

∣∣∣ axγ
cγ ax /c

∈ R
}
,

i.e., the maximal arity of the categories occurring in the lexicon or as secondary category in a rule of R. Additionally,
let CL(A, k) = {c ∈ C(A, k) | argcats(c) ⊆ argcats(L)}, and define the sets CL(A), AL(A, k), and AL(A) analogously.
Obviously, the derivation trees DG only contain categories whose arguments appear as arguments of lexical entries
because each argument of an output category exists in an input category [14, Lemma 3.1]. Hence we can safely restrict
ourselves to only categories using these arguments. Intuitively, the nullary nonterminals of the constructed wsCFTG
are the “short” categories CL(A, k) and the unary nonterminals are tuples 〈a, |c, γ〉 consisting of an atom a ∈ A, a single
argument |c with | ∈ {/, /} and “short” category c ∈ CL(A, k), and a “short” argument context γ ∈ AL(A, k). Unary
nonterminals can be interpreted as CCG rules in the following sense: Given a primary category with target a, the
output category is obtained by replacing the outermost argument |c by the argument context γ. Recall that we write
substitutions α[t] as tα for α ∈ A(A) and t ∈ C(A) ∪A(A).

Definition 15. We construct the wsCFTG G′ =
(
N,R ∪ supp(L), I, P,wt′

)
with

• N = N1 ∪ N0 such that N0 = CL(A, k) and N1 =
{
〈a, |c, γ〉 | a ∈ A, | ∈ {/, /}, c ∈ argcats(L), γ ∈ AL(A, k)

}
,

• the following set P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 of productions

P1 =
{
c→ 〈σ, c〉 | 〈σ, c〉 ∈ supp(L)

}
(1)

P2 =

{
〈a, /c, γ〉 → s(�, cγ)

∣∣∣∣∣∣ s =
axγ

ax/c cγ
∈ R

}
(2)

P3 =

{
〈a, /c, γ〉 → s(cγ,�)

∣∣∣∣∣∣ s =
axγ

cγ ax /c
∈ R

}
(3)

P4 =

{
aαγ → s(aα/c, cγ)

∣∣∣∣∣∣ s =
axγ

ax/c cγ
∈ R, α ∈ AL(A), |αγ| < k

}
(4)

P5 =

{
aαγ → s(cγ, aα /c)

∣∣∣∣∣∣ s =
axγ

cγ ax /c
∈ R, α ∈ AL(A), |αγ| < k

}
(5)

P6 =
{
aαγ → 〈a, |c, γ〉(aα|c)

∣∣∣∣ a ∈ A, α, γ ∈ AL(A), | ∈ {/, /}, c ∈ argcats(L), |α| < k, |αγ| = k
}

(6)

P7 =
{
〈a, |c, γ〉 → 〈a, |′c′,�〉

(
〈a, |c, γ|′c′〉(�)

) ∣∣∣∣ a ∈ A, |, |′ ∈ {/, /}, c, c′ ∈ argcats(L), γ ∈ AL(A, k − 1)
}

(7)

• and the weight assignment wt′ : P→ H given for every (n→ r) ∈ P by

wt′(n→ r) =


L
(
r(ε)

)
if r(ε) ∈ supp(L)

wt
(
r(ε)

)
if r(ε) ∈ R

1 otherwise.

A nonterminal c ∈ N0 can be treated in three different ways. First, it can be replaced by an element of supp(L) and
thus produce a nullary terminal (P1). Second, if its arity is lower than k, it can be replaced by a CCG rule with output
category c, producing a binary terminal, and two new nullary nonterminals representing input categories (P4, P5).
Third, if its arity is exactly k, instead of directly producing a CCG rule, a unary nonterminal is generated as a suitable
rule placeholder, together with a nullary nonterminal representing a matching primary category for that rule (P6). This
is necessary because the arity of categories might rise above k in the CCG derivation that is produced next, such that

18

the involved categories can no longer be represented using elements of N0. In the unweighted case, the productions
of P6 were used regardless of arity. However, this leads to ambiguity and therefore, P4 and P5 were introduced here
to avoid this. Each unary nonterminal 〈a, |c, γ〉 ∈ N1 eventually produces a part of the rule tree (or more precisely, a
context) where, when starting at a primary category at the bottom (i.e., at the position of �) and following the nodes
towards the root, the overall effect on that category is that of the rule represented by 〈a, |c, γ〉. This can be achieved
either by means of a single rule performing that operation (P2, P3), or by gradually splitting into placeholders for rules
that, when applied successively, have the same effect (P7).

Naturally we still need to convince ourselves that the construction is correct, so we need to prove that τG′ = τG.
This will be achieved by five auxiliary lemmas, which, when combined, establish correctness. We start by proving
that every derivation tree of

⋃
c∈N0
Dc

G′ evaluates to a rule tree of G. More precisely, we claim that evalG′ (d) ∈ Rc
G for

every derivation tree d ∈ Dc
G′ with c ∈ N0.

Lemma 16. evalG′
(
Dc

G′
)
⊆ Rc

G for every c ∈ N0.

Proof. Let eval = evalG′ ;evalG. We start with the following auxiliary statement, which is important enough to warrant
special labels. For every nonterminal n ∈ N and derivation tree d ∈ Dn

G′

(c1) if n ∈ N0, then eval(d) = n, and
(c2) if n = 〈a, |c, γ〉 ∈ N1, then evalG

(
evalG′ (d)[t]

)
= aαγ for every t ∈ T such that evalG(t) = aα|c with α ∈ AL(A).

We distinguish seven cases based on the production p = d(ε) ∈ P used at the root of d.
(1) If p = c→ 〈σ, c〉 ∈ P1 is a production of type (1), then n = c ∈ N0 and statement (c1) needs to be proved. By the

definition of P1 we get 〈σ, c〉 ∈ supp(L). Moreover, evalG′ (d) = 〈σ, c〉 and thus eval(d) = c = n as required.
(2) If p = 〈a, /c, γ〉 → s(�, cγ) ∈ P2 is a production of type (2), then n = 〈a, /c, γ〉 ∈ N1 and s = axγ

ax/c cγ ∈ R. We
need to prove statement (c2). Consequently, let t ∈ T be such that evalG(t) = aα/c with α ∈ AL(A). Obviously,
we have d|1 ∈ D

cγ
G′ and by the induction hypothesis applied to d|1 we conclude that eval(d|1) = cγ. Hence

evalG
(
evalG′ (d)[t]

)
= evalG

(
axγ

ax/c cγ

(
t, evalG′ (d|1)

))
= aαγ .

(3) If p = 〈a, /c, γ〉 → s(cγ,�) ∈ P3 is a production of type (3), then we prove statement (c2) in the same way as in
the previous case (2).

(4) If p = aαγ → s(aα/c, cγ) ∈ P4 is a production of type (4), then n = aαγ ∈ N0 and s = axγ
ax/c cγ ∈ R. We need

to prove statement (c1). Obviously, we have d|1 ∈ D
aα/c
G′ as well as d|2 ∈ D

cγ
G′ and by the induction hypothesis

applied to both we conclude that eval(d|1) = aα/c and eval(d|2) = cγ. Hence eval(d) = aαγ = n as required.
(5) If p = aαγ → s(cγ, aα /c) ∈ P5 is a production of type (5), then we prove statement (c1) in the same way as in

the previous case (4).
(6) If p = aαγ → 〈a, |c, γ〉(aα|c) ∈ P6 is a production of type (6), then n = aαγ ∈ N0 and we again need to

prove statement (c1). Obviously we have d|1 ∈ D
〈a,|c,γ〉
G′ as well as d|2 ∈ D

aα|c
G′ and by the induction hypothesis

applied to d|2 we obtain that eval(d|2) = aα|c. Moreover, evalG′ (d) = evalG′ (d|1)
[
evalG′ (d|2)

]
and by the induction

hypothesis applied to d|1 with t = evalG′ (d|2) we obtain

eval(d) = evalG
(
evalG′ (d)

)
= evalG

(
evalG′ (d|1)

[
evalG′ (d|2)

])
= evalG

(
evalG′ (d|1)[t]

)
= aαγ = n .

(7) If p = 〈a, |c, γ〉 → 〈a, |′c′,�〉
(
〈a, |c, γ|′c′〉(�)

)
∈ P7 is a production of type (7), then n = 〈a, |c, γ〉 ∈ N1 and we need

to prove statement (c2). Let t ∈ T be such that evalG(t) = aα|c with α ∈ AL(A). Clearly,

evalG′ (d) = evalG′ (d|1)
[
evalG′ (d|2)

]
and evalG′ (d)[t] = evalG′ (d|1)

[
evalG′ (d|2)[t]

]
.

By the induction hypothesis applied to d|2, we obtain evalG
(
evalG′ (d|2)[t]

)
= aαγ|′c′. Now we apply the induction

hypothesis to d|1 with t′ = evalG′ (d|2)[t], which is suitable due to evalG(t′) = evalG
(
evalG′ (d|2)[t]

)
= aαγ|′c′, and

obtain
evalG

(
evalG′ (d)[t]

)
= evalG

(
evalG′ (d|1)[t′]

)
= aαγ .

This completes the proof of the auxiliary statement, which yields eval(d) = c for all d ∈ Dc
G′ with c ∈ N0 and

thus evalG′ (d) ∈ Rc
G.

19

〈a, /b, /c〉 →
〈a, /c,�〉

(
〈a, /b, /c /c〉(�)

)
〈a, /b, /c /c〉 →

〈a, /d,�〉
(
〈a, /b, /c /c/d〉(�)

)
〈a, /b, /c /c/d〉 →

ax/c /c/d
ax/b b/c /c/d (�, b/c /c/d)

〈σ, b/c /c/d〉

�

�

〈a, /b, /c〉 →
〈a, /c,�〉

(
〈a, /b, /c /c〉(�)

)
〈a, /b, /c /c〉 →

〈a, /d,�〉
(
〈a, /b, /c /c/d〉(�)

)
〈a, /b, /c /c/d〉 →

ax/c /c/d
ax/b b/c /c/d (�, b/c /c/d)

〈σ, b/c /c/d〉

�

〈a, /c,�〉 →
〈a, /a,�〉

(
〈a, /c, /a〉(�)

)
〈a, /c, /a〉 →
ax /a

c /a ax /c (c /a,�)

〈σ′, c /a〉

�

Figure 8: The left tree is a partial derivation tree of D〈a,/b,/c〉G′ (/c/d), in which we underlined the open arguments, whereas the right tree is not a
partial derivation tree.

The previous lemma already shows that any derivation tree of G′ for a nullary nonterminal of N0 evaluates to a rule
tree of G. This immediately proves that supp(τG′) ⊆ RG since τG′ is determined by the derivation trees for the nullary
nonterminals of I. Additionally, we observe that G′ assigns weights to productions based solely on the generated
terminal of the production. All productions that do not generate any terminal are assigned weight 1. Additionally, the
weight assigned to a terminal by G′ is exactly the weight assigned to that terminal by G. By definition the weight
assigned by G to a rule tree of G is simply the product of the weights assigned by G to the lexicon entries and rules
(i.e., terminals) that constitute the rule tree. These observations make the following statement self-evident.

Lemma 17. wtG′ (d) = wtG
(
evalG′ (d)

)
for every d ∈ Dc

G′ with c ∈ N0.

To enable the proof of the converse we first introduce (special) partial derivation trees for our wsCFTG G′. The
proof of this direction differs considerably from the one in the unweighted case, which, instead of utilizing partial
derivation trees, decomposes the rule tree into spines that are derived separately and then assembled to obtain the
complete rule tree. The approach employed here accounts for the slightly different construction of G′ while facilitating
the proof of the existence of a unique (partial) derivation tree for each rule tree. Recall that the productions P form a
ranked alphabet, so we can consider trees of TP4∪P5∪P6∪P7 , P2∪P3 (P1 ∪ {�}) of productions together with � as a nullary
symbol. The partial derivation trees of G′ that start in nonterminal n ∈ N and have open arguments β ∈ AL(A),
denoted byDn

G′ (β), are inductively defined for all n ∈ N and β ∈ AL(A) to be the smallest sets
(
Dn

G′ (β)
)
n∈N such that

• Dn
G′ ⊆ D

n
G′ (�),

• p7(�, d2) ∈ Dn
G′ (|cβ) for every p7 = n→ 〈a, |c,�〉

(
n2(�)

)
∈ P7 of type (7), | ∈ {/, /}, c ∈ CL(A), and d2 ∈ D

n2
G′ (β),

• p6(d1, d2) ∈ Dn
G′ (β) for every p6 = n→ n1(n2) ∈ P6 of type (6), d1 ∈ D

n1
G′ (β), and d2 ∈ D

n2
G′ , and

• p7(d1, d2) ∈ Dn
G′ (β) for every p7 = n→ n1

(
n2(�)

)
∈ P7 of type (7), d1 ∈ D

n1
G′ (β), and d2 ∈ D

n2
G′ .

It is obvious from the definition ofDn
G′ (β) that open positions, indicated by �, can only occur for nonterminals of the

form 〈a, |c,�〉. Moreover, they occur left-most in the sense that an open position forces all occurrences of nonterminals
of N1 to the left of it (but not ancestors of it) to be open as well. It is a routine matter to verify thatDn

G′ (�) = Dn
G′ for

all n ∈ N. Consequently, we call a partial derivation tree d ∈ Dn
G′ (β) complete if β = � and incomplete otherwise. We

note that for every incomplete d ∈ Dn
G′ (β) we have (i) d(ε) ∈ P6 if n ∈ N0 and (ii) d(ε) ∈ P7 if n ∈ N1. We illustrate a

partial derivation tree in Figure 8.
Next, we extend our evaluation to the partial derivation trees of DG′ =

⋃
n∈N, β∈AL(A)D

n
G′ (β). Similar to standard

derivation trees our partial derivation trees also evaluate to terminal trees or contexts via the map

eval′G′ : DG′ → T ∪CR,∅
(
supp(L)

)
,

which is defined for every d ∈ DG′ , p6 = n → n1(n2) ∈ P6, p7 = n → n1
(
n2(�)

)
∈ P7, d′1 ∈ D

n1
G′ (β), d2 ∈ D

n2
G′ ,

20

and d′2 ∈ D
n2
G′ (β) by

eval′G′
(
d
)
= evalG′ (d) eval′G′

(
p7(�, d′2)

)
= eval′G′ (d

′
2)

eval′G′
(
p6(d′1, d2)

)
= eval′G′ (d

′
1)
[
evalG′ (d2)

]
eval′G′

(
p7(d′1, d2)

)
= eval′G′ (d

′
1)
[
evalG′ (d2)

]
.

In other words, the evaluation is performed normally ignoring the open positions completely. We simply write evalG′
instead of eval′G′ , which should not lead to confusion since we have eval′G′ (d) = evalG′ (d) for all complete derivation
trees d ∈ DG′ . Note that partial derivation trees of G′ still generate complete rule trees of G, since each open position
represents a context that gets “wrapped around” the rule tree of the sibling tree, removing the last argument of its root
category. This is ensured in the definition of partial derivation trees by restricting which positions can be open. Next,
we show that straightforward variants of the two main properties (c1) and (c2) in the proof of Lemma 16 also hold for
partial derivation trees.

Lemma 18. Let eval = evalG′ ; evalG. For every nonterminal n ∈ N, β ∈ AL(A), and derivation tree d ∈ Dn
G′ (β)

(d1) if n ∈ N0, then eval(d) = nβ, and
(d2) if n = 〈a, |c, γ〉 ∈ N1, then evalG

(
evalG′ (d)[t]

)
= aαγβ for every t ∈ T with evalG(t) = aα|c for some α ∈ AL(A).

Proof. We distinguish four cases corresponding to the definition ofDn
G′ (β).

(1) If d ∈ Dn
G′ (i.e., β = �), then statements (d1) and (d2) hold by the corresponding statements (c1) and (c2) in the

proof of Lemma 16.
(2) If d = p6(d1, d2) for some p6 = aαγ → 〈a, |c, γ〉(aα|c) ∈ P6 of type (6), d1 ∈ D

〈a,|c,γ〉
G′ (β), and d2 ∈ D

aα|c
G′ , then

n = aαγ and evalG′ (d) = evalG′ (d1)
[
evalG′ (d2)

]
. Let t = evalG′ (d2), which is suitable because eval(d2) = aα|c by

(c1) in the proof of Lemma 16. Hence by the induction hypothesis applied to d1 with t, we obtain

evalG
(
evalG′ (d)

)
= evalG

(
evalG′ (d1)[t]

)
= aαγβ

as required to prove statement (d1).
(3) If d = p7(�, d2) for some p7 = 〈a, |c, γ〉 → 〈a, |′c′,�〉

(
〈a, |c, γ|′c′〉(�)

)
∈ P7 of type (7) and d2 ∈ D

〈a,|c,γ|′c′〉
G′ (β2),

then n = 〈a, |c, γ〉, β = |′c′β2, and evalG′ (d) = evalG′ (d2). We need to prove statement (d2), so let t ∈ T be such
that evalG(t) = aα|c for some α ∈ AL(A). By the induction hypothesis applied to d2 with t, we obtain the desired

evalG
(
evalG′ (d)[t]

)
= evalG

(
evalG′ (d2)[t]

)
= aαγ|′c′β2 = aαγβ .

(4) If d = p7(d1, d2) for some p7 = 〈a, |c, γ〉 → 〈a, |′c′,�〉
(
〈a, |c, γ|′c′〉(�)

)
∈ P7 of type (7), d1 ∈ D

〈a,|′c′,�〉
G′ (β), and

d2 ∈ D
〈a,|c,γ|′c′〉
G′ , then n = 〈a, |c, γ〉. Moreover, evalG′ (d) = evalG′ (d1)

[
evalG′ (d2)

]
. We need to prove statement (d2),

so let t ∈ T be such that evalG(t) = aα|c for some α ∈ AL(A). By (c2) in the proof of Lemma 16 applied to d2 with t,
we obtain evalG

(
evalG′ (d2)[t]

)
= aαγ|′c′. Now we can apply the induction hypothesis to d1 with t′ = evalG′ (d2)[t]

to obtain the required equality

evalG
(
evalG′ (d)[t]

)
= evalG

(
evalG′ (d1)[t′]

)
= aαγβ .

Let t ∈ T, n ∈ N0, and β ∈ AL(A). Moreover, let

Dn
G′ (t, β) =

{
d ∈ Dn

G′ (β) | evalG′ (d) = t
}
.

Lemma 18 yields the nice property Dn
G′ (t, β) = ∅ unless evalG(t) = nβ. Moreover, if β , � and n ∈ CL(A, k − 1),

thenDn
G′ (t, β) = ∅ because every incomplete derivation tree d ∈ Dn

G′ (β) with n ∈ N0 utilizes a production of P6 at the
root as we already remarked, which yields n = aαγ with |αγ| = k and thus n < CL(A, k − 1). Hence if the category nβ
has arity k′ ≥ k, then DG′ (t, β) = ∅ unless n has arity k. This motivates the following definition. For every c ∈ CL(A)
let nonterm(c) = c if c ∈ N0 and nonterm(c) = c′ otherwise, where c′ is the unique category of arity k such that c = c′β
for some β ∈ AL(A). In other words, nonterm(c) is either directly the category c if c is “short” (i.e., c has arity at
most k) or the prefix of c of arity k. Given a rule tree t ∈ Rc

G′ we know that the only partial derivation trees that may
evaluate to t are to be found inDn

G′ (β) with n = nonterm(c) and nβ = c. We use this property without explicit mention
in the following.

Finally, we define substitution of a partial derivation tree into another partial derivation tree by replacing the right-
most open position; i.e., right-most occurrence of �. Formally, for every d ∈ Dn

G′ (β|c) with n ∈ N0 and d′ ∈ Dn′
G′ (β

′)
with n′ = 〈target(n), |c,�〉 we define d[d′] ∈ Dn

G′ (ββ
′) by

21

• p(�, d2)[d′] = p
(
d′, d2

)
for every p = n→ n′

(
n2(�)

)
∈ P7 of type (7), and d2 ∈ D

n2
G′ ,

• p(�, d2)[d′] = p
(
�, d2[d′]

)
for every p = n→ n1

(
n2(�)

)
∈ P7 of type (7), and d2 ∈ D

n2
G′ (β2) with β2 , �,

• p(d1, d2)[d′] = p
(
d1[d′], d2

)
for every p = n → n1(n2) ∈ P6 of type (6), d1 ∈ D

n1
G′ (β1) with β1 , �, and

d2 ∈ D
n2
G′ , and

• p(d1, d2)[d′] = p
(
d1[d′], d2

)
for every p = n→ n1

(
n2(�)

)
∈ P7 of type (7), d1 ∈ D

n1
G′ (β1), and d2 ∈ D

n2
G′ .

This overloads the current substitution into contexts, but replacing the right-most open position is the only option to
obtain another partial derivation tree. As mentioned before, this ensures that, when evaluated to rule trees, the context
corresponding to the inserted partial derivation tree properly wraps around the rule tree corresponding to the other
partial derivation tree. Thus, we obtain the following useful property.

Lemma 19. evalG′
(
d[d′]

)
= evalG′ (d′)

[
evalG′ (d)

]
for every partial derivation d ∈ Dn

G′ (β|c) with n ∈ N0 and partial
derivation d′ ∈ Dn′

G′ (β
′) with n′ = 〈target(n), |c,�〉.

Proof. We prove the statement by induction on the size of d and case distinction.
• If d = p(�, d2) for some p = n→ n′

(
n2(�)

)
∈ P7 of type (7) and d2 ∈ D

n2
G′ , then

evalG′
(
d[d′]

)
= evalG′

(
p(d′, d2)

)
= evalG′ (d′)

[
evalG′ (d2)

]
= evalG′ (d′)

[
evalG′ (d)

]
.

• If d = p(�, d2) for some p = n→ n1
(
n2(�)

)
∈ P7 of type (7) and d2 ∈ D

n2
G′ (β2) with β2 , �, then

evalG′
(
d[d′]

)
= evalG′

(
p(�, d2[d′])

)
= evalG′

(
d2[d′]

) IH
= evalG′ (d′)

[
evalG′ (d2)

]
= evalG′ (d′)

[
evalG′ (d)

]
.

• If d = p(d1, d2) for some p = n→ n1(n2) ∈ P6 of type (6), d1 ∈ D
n1
G′ (β1) with β1 , �, and d2 ∈ D

n2
G′ , then

evalG′
(
d[d′]

)
= evalG′

(
p(d1[d′], d2)

)
= evalG′

(
d1[d′]

)[
evalG′ (d2)

]
IH
=

(
evalG′ (d′)

[
evalG′ (d1)

])[
evalG′ (d2)

]
= evalG′ (d′)

[
evalG′ (d1)

[
evalG′ (d2)

]]
= evalG′ (d′)

[
evalG′ (d)

]
.

• If d = p(d1, d2) for some p = n→ n1
(
n2(�)

)
∈ P7 of type (7), d1 ∈ D

n1
G′ (β1), and d2 ∈ D

n2
G′ , then

evalG′
(
d[d′]

)
= evalG′

(
p(d1[d′], d2)

)
= evalG′

(
d1[d′]

)[
evalG′ (d2)

]
IH
=

(
evalG′ (d′)

[
evalG′ (d1)

])[
evalG′ (d2)

]
= evalG′ (d′)

[
evalG′ (d1)

[
evalG′ (d2)

]]
= evalG′ (d′)

[
evalG′ (d)

]
.

We now have the ingredients for the converse of Lemma 16, namely we prove that for every rule tree t ∈ Rc
G there

exists a unique partial derivation tree that evaluates to t. If c ∈ N0, then the unique derivation tree is complete. Before
we prove this final lemma, let us illustrate the construction. Suppose that the rule tree t displayed top left in Figure 9
belongs to RG and its corresponding derivation tree d displayed top right in Figure 9 belongs to DG. Moreover,
suppose that k = 2. Let us construct the corresponding partial derivation tree of G′ step-by-step.

The derivation tree of G′ for a leaf 〈σ, c〉 is obviously c → 〈σ, c〉. Next, we investigate the subtree t|12, which
has root label s = ax/c /c

ax/b b/c /c and evalG(t|12) = a/b/c /c as indicated in the top right derivation tree of Figure 9.
Since we have evalG(t|12) < N0, we expect to find the derivation tree in Da/b/c

G′ (/c). Clearly it has to start with the
production a/b/c→ 〈a, /b, /c〉(a/b/b) ∈ P6 of type (6), so that we can attach the unique derivation tree for subtree t|121
that delivers the primary category evalG(t|121) = a/b/b for s. The two nonterminals a/b/c ∈ N0 and a/b/b ∈ N0
uniquely determine 〈a, /b, /c〉 ∈ N1. Next, we need to generate the root label s, which will also allow us to attach
the derivation tree for subtree t|122 that delivers the secondary category evalG(t|122) = b/c /c for s. Since we need
to generate the root label from nonterminal 〈a, /b, /c〉 we need to utilize a production of type (2). Additionally, we
may only generate a single open position (and no additional terminals), so we need to extend the third component /c
of nonterminal 〈a, /b, /c〉 in a single step to the full arguments of evalG(t|122); i.e., /c /c. This is achieved with the
production 〈a, /b, /c〉 → 〈a, /c,�〉

(
〈a, /b, /c /c〉(�)

)
∈ P7 of type (7). Clearly, the nonterminal 〈a, /c,�〉 remains

open (and has the right argument for the single open position), and the nonterminal 〈a, /b, /c /c〉 now allows the

22

ax
ax/a a

〈α, a〉ax/a
c/a ax /c

ax/c /c
ax/b b/c /c

〈σ, b/c /c〉〈σ, a/b/b〉

cx
a cx /a

〈σ, c/a /a〉〈α, a〉

a/b/c

〈α, a〉a/b/c/a

a/b/c /c

〈σ, b/c /c〉〈σ, a/b/b〉

c/a

〈σ, c/a /a〉〈α, a〉

a/b/c→
〈a, /b, /c〉(a/b/b)

a/b/b→
〈σ, a/b/b〉

〈a, /b, /c〉 →
〈a, /c,�〉

(
〈a, /b, /c /c〉(�)

)
〈a, /b, /c /c〉 →
ax/c /c

ax/b b/c /c (�, b/c /c)

b/c /c→
〈σ, b/c /c〉

�

〈a, /c,�〉 →
〈a, /a,�〉

(
〈a, /c, /a〉(�)

)
〈a, /c, /a〉 →
ax/a

c/a ax /c (c/a,�)

c/a→
cx

a cx /a (a, c/a /a)

c/a /a→
〈σ, c/a /a〉

a→ 〈α, a〉

�

Figure 9: Example rule tree t (top left) of a wCCG G, its corresponding derivation tree of G (top right), the derivation tree of G′ corresponding
to t|12 (bottom left), and the insert into that derivation tree that yields the derivation tree of G′ corresponding to t|1 (bottom right).

production 〈a, /b, /c /c〉 → s(�, b/c /c) ∈ P2 of type (2). This successfully generates the root terminal s and allows the
attachment of the derivation tree for t|122. The resulting derivation tree of G′ is displayed bottom left in Figure 9.

To derive the unique derivation tree of G′ for t|1 we now utilize the only derivation tree of G′ for t|12 and insert
additional material at the top via the open position. The root label of t|1 is s′ = ax/a

c/a ax /c , so with the same rationale as
above, we extend the nonterminal 〈a, /c,�〉 corresponding to the open position in a single step to the full arguments /a
of the secondary category for s′. This is achieved by the production 〈a, /c,�〉 → 〈a, /a,�〉

(
〈a, /c, /a〉(�)

)
∈ P7 of

type (7). The first nonterminal in that production remains open and the second nonterminal generates s′ via the
production 〈a, /c, /a〉 → s′(c/a,�) ∈ P2 of type (2). The unique derivation tree of G′ for t|11 clearly attaches to the
nonterminal c/a thus generated. The complete insert is also displayed bottom right in Figure 9.

Lemma 20. For every category c ∈ CL(A) and rule tree t ∈ Rc
G there exists a unique partial derivation tree d ∈ Dn

G′ (t, β),
where n = nonterm(c) and β ∈ AL(A) is such that c = nβ.

Proof. We prove the statement by induction on t ∈ Rc
G. In the induction base, we have t = 〈σ, c〉 ∈ supp(L) and

thus n = nonterm(c) = c ∈ N0 and β = �. Let d = n → 〈σ, n〉 ∈ Dn
G′ , for which we observe that evalG′ (d) = 〈σ, c〉.

Hence d ∈ Dn
G′ (t, β) as desired. Obviously, the chosen d is unique because productions of types (4) and (5) generate

terminal symbols of R and productions of type (6) generate a nonterminal of the form 〈a, |′c′, γ〉 with γ , � that will
eventually generate at least one terminal symbol of R. This is because only nonterminals of the form 〈a, |′c′,�〉 may
remain open. Obviously, the production of type (1) that generates 〈σ, c〉 is unique.

In the induction step, let t = s(t1, t2) with s = axγ
ax/c′ c′γ ∈ R, t1 ∈ R

c1
G , and t2 ∈ R

c2
G , where c = aαγ, c1 = aα/c′, and

c2 = c′γ for some α ∈ AL(A). By the induction hypothesis applied to both t1 and t2 there exist unique d1 ∈ D
n1
G′ (t1, β1)

and d2 ∈ D
n2
G′ (t2, β2), where n1 = nonterm(c1), n2 = nonterm(c2), and β1, β2 ∈ A(A) such that c1 = n1β1 and c2 = n2β2.

Obviously, c2 ∈ N0, so n2 = nonterm(c2) = c2 and β2 = �. Now we distinguish five cases.
(i) If c, c1 ∈ N0 with |αγ| < k, then n = nonterm(c) = c = aαγ, n1 = nonterm(c1) = c1 = aα/c′, and β = β1 = �.

23

We construct the derivation tree d = p(d1, d2) with p = n→ s(n1, n2) ∈ P4. Clearly,

evalG′ (d) = s
(
evalG′ (d1), evalG′ (d2)

)
= s(t1, t2) = t ,

which proves that d ∈ Dn
G′ (t, β). Obviously only productions of type (4) are applicable to n and thus the

production must generate s. Productions of type (6) are not applicable because n = c ∈ CL(A, k − 1). Moreover,
the terminal s and the category n uniquely determine p ∈ P4. The subderivations d1 and d2 are unique by the
induction hypothesis.

(ii) If c, c1 ∈ N0 with |αγ| = k, then n = nonterm(c) = c = aαγ, n1 = nonterm(c1) = c1 = aα/c′, and β = β1 = �.
We construct the derivation tree d = p

(
p′(d2), d1

)
with p = aαγ → 〈a, /c′, γ〉(aα/c′) ∈ P6 of type (6) and

p′ = 〈a, /c′, γ〉 → s(�, c′γ) ∈ P2 of type (2). Clearly,

evalG′ (d) = evalG′
(
p′(d2)

)[
evalG′ (d1)

]
= s

(
evalG′ (d1), evalG′ (d2)

)
= s(t1, t2) = t ,

which proves d ∈ Dn
G′ (t, β) as desired. Obviously only productions of type (6) are applicable to n since pro-

ductions of type (1) generate the wrong terminal. Note that |αγ| = k and |α/c′| ≤ k yield |α| ≤ k − 1 and
thus γ , �. The categories c and c2 uniquely determine the initial production p, which generates the nonter-
minal n′ = 〈a, /c′, γ〉. Because γ , �, it generates at least one terminal symbol and thus must generate s and
only s. Clearly, n′ uniquely determines the production p′ of type (2) needed to generate s.

(iii) If c1 ∈ N0, but c < N0, then n = nonterm(c) = aαγ′, n1 = nonterm(c1) = c1 = aα/c, and β1 = �, where
γ = γ′β. Let β = |1c′1 · · · |`c

′
` for some ` ∈ N+, |i ∈ {/, /} and c′i ∈ argcats(L) for all i ∈ [`]. Additionally, let

γ′i = γ
′|1c′1 · · · |ic

′
i for all 0 ≤ i ≤ `. We construct the partial derivation tree

d = p
(
p1

(
�, · · · (p`(�, p′(d2))) · · ·

)
, d1

)
with p = aαγ′ → 〈a, /c′, γ′〉(aα/c′) ∈ P6 of type (6), pi = 〈a, /c′, γ′i−1〉 → 〈a, |ic

′
i ,�〉

(
〈a, /c′, γ′i 〉(�)

)
∈ P7 of

type (7) for every i ∈ [`], and p′ = 〈a, /c′, γ〉 → s(�, c′γ) ∈ P2 of type (2). Note that γ′` = γ. Clearly,

evalG′ (d) = evalG′
(
p1

(
�, · · · (p`(�, p′(d2))) · · ·

))[
evalG′ (d1)

]
= evalG′

(
p′(d2)

)
[t1]

= s
(
t1, evalG′ (d2)

)
= s(t1, t2) = t ,

which proves that d ∈ Dn
G′ (t, β) as desired. Obviously we need to start with a production of type (6) and it is

uniquely determined by n and n2. It generates the nonterminal n′ = 〈a, /c′, γ′〉, which will generate at least one
terminal symbol since γ′ , �. Hence it needs to generate s, which forces the chain of productions of type (7).
Each is uniquely determined by the next argument on the path from γ′ to γ in the third component. Additionally,
the first arguments of all those productions need to remain open as we otherwise would eventually generate
additional terminals. Finally, once we generated the nonterminal 〈a, /c′, γ〉, the production that generates s is
clearly p′.

(iv) If c, c1 < N0, then n = nonterm(c) = aα′ = nonterm(c1) = n1 for some α′, α′′ ∈ AL(A) such that α = α′α′′.
Moreover, β = α′′γ and β1 = α′′/c′. Let γ = |1c′1 · · · |`c

′
` for some ` ∈ N, |i ∈ {/, /} and c′i ∈ argcats(L) for

all i ∈ [`]. Additionally, let γi = |1c′1 · · · |ic
′
i for all 0 ≤ i ≤ `. We construct the partial derivation tree

d = d1

[
p1

(
�, · · · (p`(�, p′(d2))) · · ·

)]
with production pi = 〈a, /c′, γi−1〉 → 〈a, |ic′i ,�〉

(
〈a, /c′, γi〉(�)

)
∈ P7 of type (7) for every i ∈ [`] and production

p′ = 〈a, /c′, γ〉 → s(�, cγ) ∈ P2 of type (2). Note that γ` = γ. We verify

evalG′ (d) = evalG′
(
p1

(
�, · · · (p`(�, p′(d2))) · · ·

))[
evalG′ (d1)

]
= evalG′

(
p′(d2)

)
[t1]

= s
(
t1, evalG′ (d2)

)
= s(t1, t2) = t

by Lemma 19, which proves that d ∈ Dn
G′ (t, β) as desired. Obviously, we need the derivation d1 to generate the

subtree t1 and we can only extend it by replacing the innermost open argument as it otherwise is no longer a

24

partial derivation tree. Additionally, we can only close a single open argument as each will generate a terminal
symbol. Thus we extend the open argument for nonterminal n′ = 〈a, /c′,�〉 with the goal to generate the
terminal s. It is uniquely extended as described in the previous case from � all the way to γ in the third
component using productions of type (7), which then allows us to use the uniquely determined rule of type (2)
to generate s. Once again, all the first arguments of the productions of type (7) need to remain open to avoid
generating additional terminals.

(v) If c ∈ N0, but c1 < N0, then n = nonterm(c) = c = aαγ and n1 = nonterm(c1) = aα. Additionally, γ = β = �

and β1 = /c′. We construct the derivation tree d = d1
[
p′(d2)

]
with production p′ = 〈a, /c′,�〉 → s(�, c′) ∈ P2 of

type (2). We verify

evalG′ (d) = evalG′
(
p′(d2)

)[
evalG′ (d1)

]
= s

(
t1, evalG′ (d2)

)
= s(t1, t2) = t

by Lemma 19, which proves that d ∈ Dn
G′ (t, β) as desired. As in the previous case, we need derivation d1 to

generate t1 and we can only extend it at its single open argument for nonterminal 〈a, /c′,�〉, which we need to use
to generate the terminal s. Clearly, no extension via productions of type (7) is possible since this would generate
additional terminals, so we directly utilize the uniquely determined production p′ of type (2) to generate s.

The induction step for root symbol s = axγ
c′γ ax /c′ ∈ R is analogous.

Theorem 21. τG′ = τG

Proof. We claim that evalG′ is a weight-preserving bijection between Dn
G′ and Rn

G for all n ∈ N0. By Lemma 16 we
have evalG′ : Dn

G′ → R
n
G. Moreover, by Lemma 17 it is weight-preserving. Additionally, Lemma 20 shows that for

every t ∈ Rn
G there exists a unique d ∈ Dn

G′ such that evalG′ (d) = t, which proves surjectivity and injectivity. Let a ∈ I,
t ∈ Ra

G, and d ∈ Da
G′ such that evalG′ (d) = t. Then

τG(t) = wtG(t) = wtG(evalG′ (d)) = wtG′ (d) =
∑

n∈I,d∈Dn
G′ (t)

wtG′ (d) = τG′ (t) .

Finally, let t ∈ T be such that t <
⋃

a∈I R
a
G. In this case we have

τG(t) = 0 =
∑

a∈I,d∈Da
G′ (t)

wtG′ (d) = τG′ (t)

becauseDa
G′ (t) = ∅ for all a ∈ I due to Lemma 16.

Corollary 22. Weighted forests generatable by wCCG can also be generated by wsCFTG.

Acknowledgements

We thank the anonymous reviewers for carefully reading this article and for their detailed and helpful suggestions on
how to improve it.

References

[1] M. Steedman, The Syntactic Process, MIT Press, 2000. doi:10.7551/mitpress/6591.001.0001.
[2] M. Steedman, J. Baldridge, Combinatory categorial grammar, in: R. D. Borsley, K. Börjars (Eds.), Non-Transformational Syntax: Formal

and Explicit Models of Grammar, Blackwell, 2011, Ch. 5, pp. 181–224. doi:10.1002/9781444395037.ch5.
[3] H. B. Curry, R. Feys, W. Craig, Combinatory Logic, no. 22 in Studies in Logic and the Foundations of Mathematics, North-Holland, 1958.

URL https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/22
[4] Y. Bar-Hillel, H. Gaifman, E. Shamir, On categorial and phrase structure grammars, in: Y. Bar-Hillel (Ed.), Language and Information:

Selected Essays on Their Theory and Application, Addison Wesley, 1964, pp. 99–115.
[5] K. Ajdukiewicz, Die syntaktische Konnexität, Studia Philosophica 1 (1935) 1–27.
[6] Y. Bar-Hillel, A quasi-arithmetical notation for syntactic description, Language 29 (1) (1953) 47–58. doi:10.2307/410452.
[7] A. K. Joshi, Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions?, in: D. R.

Dowty, L. Karttunen, A. M. Zwicky (Eds.), Natual Language Parsing, Cambridge University Press, 1985, Ch. 6, pp. 206–250.

25

https://doi.org/10.7551/mitpress/6591.001.0001
https://doi.org/10.1002/9781444395037.ch5
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/22
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/22
https://doi.org/10.2307/410452

[8] J. Baldridge, Lexically specified derivational control in combinatory categorial grammar, Ph.D. thesis, University of Edinburgh (2002).
URL http://hdl.handle.net/1842/562

[9] M. Kuhlmann, A. Koller, G. Satta, Lexicalization and generative power in CCG, Computational Linguistics 41 (2) (2015) 187–219. doi:
10.1162/COLI_a_00219.

[10] T. Kwiatkowksi, L. Zettlemoyer, S. Goldwater, M. Steedman, Inducing probabilistic CCG grammars from logical form with higher-order
unification, in: Proc. 2010 Conf. Empirical Methods in Natural Language Processing, ACL, 2010, pp. 1223–1233.
URL https://aclanthology.org/D10-1119

[11] L. S. Zettlemoyer, M. Collins, Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars,
arXiv preprint arXiv:1207.1420 (2012). doi:10.48550/arXiv.1207.1420.

[12] L. Zettlemoyer, M. Collins, Online learning of relaxed CCG grammars for parsing to logical form, in: Proc. 2007 Conf. Empirical Methods
in Natural Language Processing, ACL, 2007, pp. 678–687.
URL https://aclanthology.org/D07-1071

[13] T. Kwiatkowski, S. Goldwater, L. Zettlemoyer, M. Steedman, A probabilistic model of syntactic and semantic acquisition from child-directed
utterances and their meanings, in: Proc. 13th Conf. European Chapter of Association for Computational Linguistics, ACL, 2012, pp. 234–244.
URL https://aclanthology.org/E12-1024

[14] K. Vijay-Shanker, D. J. Weir, The equivalence of four extensions of context-free grammars, Mathematical Systems Theory 27 (6) (1994)
511–546. doi:10.1007/BF01191624.

[15] A. K. Joshi, Y. Schabes, Tree-adjoining grammars, in: Rozenberg and Salomaa [43], Ch. 2, pp. 69–123. doi:10.1007/
978-3-642-59126-6_2.

[16] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, 1979.
[17] K. Vijay-Shanker, A study of tree adjoining grammars, Ph.D. thesis, University of Pennsylvania (1988).
[18] K. Vijay-Shanker, D. J. Weir, Combinatory categorial grammars: Generative power and relationship to linear context-free rewriting systems,

in: Proc. 26th Ann. Meeting Association for Computational Linguistics, ACL, 1988, pp. 278–285. doi:10.3115/982023.982057.
[19] M. Kuhlmann, G. Satta, P. Jonsson, On the complexity of CCG parsing, Computational Linguistics 44 (3) (2018) 447–482. doi:10.1162/

coli_a_00324.
[20] M. Kuhlmann, A. Koller, G. Satta, The importance of rule restrictions in CCG, in: Proc. 48th Ann. Meeting Association for Computational

Linguistics, ACL, 2010, pp. 534–543.
URL https://aclanthology.org/P10-1055

[21] J. Hockenmaier, P. Young, Non-local scrambling: The equivalence of TAG and CCG revisited, in: Proc. 9th Int. Workshop Tree Adjoining
Grammar and Related Formalisms, ACL, 2008, pp. 41–48.
URL https://aclanthology.org/W08-2306

[22] M. Kuhlmann, G. Satta, Tree-adjoining grammars are not closed under strong lexicalization, Computational Linguistics 38 (3) (2012)
617–629. doi:10.1162/COLI_a_00090.

[23] A. Koller, M. Kuhlmann, Dependency trees and the strong generative capacity of CCG, in: Proc. 12th Conf. European Chapter of Association
for Computational Linguistics, ACL, 2009, pp. 460–468.
URL https://aclanthology.org/E09-1053

[24] F. Gécseg, M. Steinby, Tree languages, in: Rozenberg and Salomaa [43], Ch. 1, pp. 1–68. doi:10.1007/978-3-642-59126-6_1.
[25] H.-J. Tiede, Deductive systems and grammars: Proofs as grammatical structures, Ph.D. thesis, Indiana University (1999).
[26] J. Lambek, The mathematics of sentence structure, The American Mathematical Monthly 65 (3) (1958) 154–170. doi:10.1080/00029890.

1958.11989160.
[27] M. Kuhlmann, A. Maletti, L. K. Schiffer, The tree-generative capacity of combinatory categorial grammars, in: Proc. 39th Foundations of

Software Technology and Theoretical Computer Science, Vol. 150 of LIPIcs, Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2019, pp.
44:1–44:14. doi:10.4230/LIPIcs.FSTTCS.2019.44.

[28] M. Kuhlmann, A. Maletti, L. K. Schiffer, The tree-generative capacity of combinatory categorial grammars, Journal of Computer and System
Sciences 124 (2022) 214–233. doi:10.1016/j.jcss.2021.10.005.

[29] W. Buszkowski, Generative power of categorial grammars, in: R. T. Oehrle, E. Bach, D. Wheeler (Eds.), Categorial Grammars and
Natural Language Structures, Vol. 32 of Studies in Linguistics and Philosophy, Springer, 1988, Ch. 4, pp. 69–94. doi:10.1007/
978-94-015-6878-4_4.

[30] L. K. Schiffer, A. Maletti, Strong equivalence of TAG and CCG, Transactions of the Association for Computational Linguistics 9 (2021)
707–720. doi:10.1162/tacl_a_00393.

[31] S. Kepser, J. Rogers, The equivalence of tree adjoining grammars and monadic linear context-free tree grammars, Journal of Logic, Language
and Information 20 (3) (2011) 361–384. doi:10.1007/s10849-011-9134-0.

[32] A. Fujiyoshi, T. Kasai, Spinal-formed context-free tree grammars, Theory of Computing Systems 33 (1) (2000) 59–83. doi:10.1007/
s002249910004.

[33] U. Hebisch, H. J. Weinert, Semirings — Algebraic Theory and Applications in Computer Science, World Scientific, 1998. doi:10.1142/
3903.

[34] J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers, 1999. doi:10.1007/978-94-015-9333-5.
[35] M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, EATCS Monographs in Theoretical Computer Science, Springer,

2009. doi:10.1007/978-3-642-01492-5.
[36] W. C. Rounds, Context-free grammars on trees, in: Proc. 1st Symposium on Theory of Computing, ACM, 1969, pp. 143–148. doi:

10.1145/800169.805428.
[37] M. Teichmann, Expressing context-free tree languages by regular tree grammars, Ph.D. thesis, Technische Universität Dresden (2017).

URL https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-224756
[38] J. Engelfriet, A. Maletti, S. Maneth, Multiple context-free tree grammars: Lexicalization and characterization, Theoretical Computer Science

728 (2018) 29–99. doi:10.1016/j.tcs.2018.03.014.

26

http://hdl.handle.net/1842/562
http://hdl.handle.net/1842/562
https://doi.org/10.1162/COLI_a_00219
https://doi.org/10.1162/COLI_a_00219
https://aclanthology.org/D10-1119
https://aclanthology.org/D10-1119
https://aclanthology.org/D10-1119
https://doi.org/10.48550/arXiv.1207.1420
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/E12-1024
https://aclanthology.org/E12-1024
https://aclanthology.org/E12-1024
https://doi.org/10.1007/BF01191624
https://doi.org/10.1007/978-3-642-59126-6_2
https://doi.org/10.1007/978-3-642-59126-6_2
https://doi.org/10.3115/982023.982057
https://doi.org/10.1162/coli_a_00324
https://doi.org/10.1162/coli_a_00324
https://aclanthology.org/P10-1055
https://aclanthology.org/P10-1055
https://aclanthology.org/W08-2306
https://aclanthology.org/W08-2306
https://doi.org/10.1162/COLI_a_00090
https://aclanthology.org/E09-1053
https://aclanthology.org/E09-1053
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.44
https://doi.org/10.1016/j.jcss.2021.10.005
https://doi.org/10.1007/978-94-015-6878-4_4
https://doi.org/10.1007/978-94-015-6878-4_4
https://doi.org/10.1162/tacl_a_00393
https://doi.org/10.1007/s10849-011-9134-0
https://doi.org/10.1007/s002249910004
https://doi.org/10.1007/s002249910004
https://doi.org/10.1142/3903
https://doi.org/10.1142/3903
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1145/800169.805428
https://doi.org/10.1145/800169.805428
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-224756
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-224756
https://doi.org/10.1016/j.tcs.2018.03.014

[39] J. Berstel, C. Reutenauer, Recognizable formal power series on trees, Theoretical Computer Science 18 (2) (1982) 115–148. doi:10.1016/
0304-3975(82)90019-6.

[40] Z. Fülöp, H. Vogler, Weighted tree automata and tree transducers, in: Droste et al. [35], Ch. 9, pp. 313–403. doi:10.1007/
978-3-642-01492-5_9.

[41] Z. Fülöp, Local weighted tree languages, Acta Cybernetica 22 (2) (2015) 393–402. doi:10.14232/actacyb.22.2.2015.10.
[42] B. Borchardt, The theory of recognizable tree series, Ph.D. thesis, Technische Universität Dresden (2005).
[43] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3, Springer, 1997. doi:10.1007/978-3-642-59126-6.

27

https://doi.org/10.1016/0304-3975(82)90019-6
https://doi.org/10.1016/0304-3975(82)90019-6
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.14232/actacyb.22.2.2015.10
https://doi.org/10.1007/978-3-642-59126-6

	Introduction
	Preliminaries
	Weighted Combinatory Categorial Grammar
	0-wCCGs
	1-wCCGs
	Inclusion in the Context-Free Weighted Forests

