
Generative and Computational Power of
Combinatory Categorial Grammar

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt von

Lena Katharina Schiffer, M. Sc.
geboren am 18. Mai 1992 in Lingen an der Ems

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Andreas Maletti (Universität Leipzig)
2. Prof. Dr. Mark Steedman (University of Edinburgh)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 10. Juli 2024 mit dem Gesamtprädikat

summa cum laude.

Acknowledgments

First and foremost, I would like to thank Andreas Maletti, who has been an amazing supervisor. He
gave me great advice not only directly related to my research, but also on how to navigate academia
in general. He has influenced me in many ways and gave me confidence in my abilities. I would
also like to thank Heiko Vogler for his support as a second supervisor.

I am grateful to Mark Steedman for reviewing this dissertation and for sending me thoughtful and
attentive comments on details I have missed.

This project would not have been possible without the financial support and the research environment
provided by the DFG Research Training Group QuantLA. I very much appreciate that Doreen Straß
made me aware of QuantLA and introduced me to Andreas, who later became my supervisor.

I was lucky to have the opportunity to work with brilliant collaborators in addition to Andreas.
Marco Kuhlmann and Giorgio Satta, it has been a privilege to work with you!

Many thanks go to my colleagues for hours of enjoyable discussions. Especially the reading group
has been a great help for learning how to read, understand, and think about scientific work. It
has been one of the few possibilities to stay in contact with my colleagues during the pandemic.
In particular, I want to thank Sven Dziadek, Erik Paul, and Karin Quaas for their helpful advice
regarding the dissertation and academia in general. Andreea-Teodora Nász, Erik Paul, and Markus
Ulbricht helped me a lot with their practical suggestions on how to improve my thesis defense
presentation. I also want to thank my friend Jannis Harder for the inspiring discussions we had.
Special thanks go to Maria Arndt and Svø Burmeister for contributing to the celebration after my
defense with their great baking skills!

Finally, I wish to express my sincere gratitude to my partner Yusuke, my friends, and my family,
who have supported me enormously all these years.

Abstract

Combinatory categorial grammar (CCG) is a formalism that is well-established in computational
linguistics. At the basis of the grammar are a lexicon and a rule system: The lexicon assigns syntactic
categories to the symbols of a given input string, and the rule system specifies how adjacent
categories can be combined, yielding a derivation tree whose nodes are labeled by categories. In
this thesis, we focus on composition rules, which are present in all variants of the grammar. CCG is
a mildly context-sensitive formalism, thus it has a relatively high expressivity that lies in between
the context-free and context-sensitive language class and is parsable in polynomial time.

As a fundamental result regarding CCG, Vĳay-Shanker and Weir show that it can generate the
same class of string languages as tree-adjoining grammar, linear indexed grammar, and head
grammar. Their equivalence proof relies on two particular features of the grammar. The first is the
admissibility of 𝜀-entries, which are lexicon entries that assign syntactic categories to the empty
word. The second is the use of rule restrictions, which allow to impose certain restrictions on the
rule set on a per-grammar basis. However, modern variants of CCG tend to avoid these features.
This raises the question whether what is known about the generative and computational power of
CCG still holds under different circumstances. Apart from the two abovementioned features, this
also concerns the rule degree, which determines how complex a certain category involved in a rule
application may be. The goal of this thesis is to shed light on the effects that these changes of the
formalism have. This can help to identify properties that are desirable in a grammar formalism.

When regarding the generative power of a formalism that is used for modeling natural language, one
is not only interested in the acceptability of an input sentence, but also in its underlying structure.
Therefore, we study the sets of constituency trees that CCG can generate, which are obtained by
relabeling sets of derivation trees. We start by investigating CCG with low rule degrees. First, we
provide a new proof of an analogous result by Buszkowski, showing that when only application
rules are allowed, a proper subset of regular tree languages can be generated by CCG. Then, going
one step further, we show that when composition of first degree is included, CCG can generate
exactly the regular tree languages. On the other hand, pure CCG, which allows all rules up to some
degree and thus has no rule restrictions, is shown to not even generate all local tree languages. Our
main result on the generative power of CCG is its strong equivalence to tree-adjoining grammar.
This means that these formalisms can generate the same class of tree languages. This is even the
case when only composition rules of second degree and no 𝜀-entries are used, showing that a CCG
with these seemingly limiting properties already has its full expressive power. Our constructions
also provide an effective procedure for the removal of 𝜀-entries.

From a computational point of view, these 𝜀-entries and a high rule degree are in fact problematic.
Kuhlmann, Satta, and Jonsson investigated the complexity of the universal recognition problem for
CCG, which refers to the question whether some given string is generated by some given grammar,
considering also the latter as part of the input. They prove that this problem is EXPTIME-complete
if 𝜀-entries are included, and NP-complete if not. We refine this result and, by providing a new
parsing algorithm, show that this problem is exponential only in the maximum rule degree of the
grammar. Hence, when the rule degree is bounded by a constant, parsing becomes polynomial in
the grammar size. Moreover, this also holds when substitution rules are included in the rule system,
as our algorithm is able to handle these.

Contents

Acknowledgments

Abstract

1 Introduction 1
1.1 Basic Concept . 2
1.2 Research Focus . 3
1.3 Generative Power . 4

1.3.1 Weak Generative Power . 4
1.3.2 Strong Generative Power . 5
1.3.3 Contributions . 7

1.4 Computational Power . 8
1.4.1 Contributions . 9

1.5 Overview of the Dissertation . 11

2 Preliminaries 13
2.1 Basic Definitions . 13
2.2 String Languages . 13

2.2.1 Nondeterministic Finite Automata . 14
2.2.2 Context-Free Grammar . 14
2.2.3 Push-Down Automata . 15

2.3 Tree Languages . 16
2.3.1 Tree Grammars . 17
2.3.2 Tree-Adjoining Grammar . 19

2.4 Mild Context-Sensitivity . 20
2.4.1 Definition . 20
2.4.2 Tree-Adjoining Languages . 21
2.4.3 Multiple Context-Free Languages . 23

3 Combinatory Categorial Grammar 25
3.1 Categories . 25
3.2 Rules . 26

3.2.1 Combinatory Rules . 26
3.2.2 Rule Restrictions . 27
3.2.3 Instantiation . 28
3.2.4 Rule System . 29
3.2.5 Type-Raising . 29

3.3 Grammars . 30
3.3.1 Generated String Language . 31
3.3.2 Generated Tree Language . 33
3.3.3 Lexical Arguments . 33

4 Generative Power for Low Rule Degrees 35
4.1 0-CCG . 36
4.2 1-CCG . 46

4.2.1 Pure 1-CCG . 50

5 Generative Power 53
5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 54
5.2 Proper Inclusion for Pure CCG . 64
5.3 Spine Grammar . 65
5.4 Decomposition into Spines . 70
5.5 Moore Push-Down Automata . 74
5.6 CCG Construction . 80

5.6.1 Relating CCG Spines and Automaton Runs 86
5.6.2 Combining Spines . 91

5.7 Strong Equivalence . 94

6 Computational Complexity for Bounded Rule Degree 97
6.1 Parsing Algorithm . 98

6.1.1 Definitions and Notation . 99
6.1.2 Algorithm Specification . 103

6.2 Correctness . 108
6.2.1 Soundness . 108
6.2.2 Completeness . 110

6.3 Runtime Analysis . 115
6.3.1 Argument Contexts and Root Categories . 115
6.3.2 Items . 116
6.3.3 Deduction Rules . 117
6.3.4 Implementation and Runtime . 118
6.3.5 Hardness for CCG with 𝜀-entries . 120

6.4 From Parse Tree to Derivation Tree . 121
6.4.1 Parse Trees and Parse Forests . 121
6.4.2 Construction of the Derivation Tree . 122

6.5 Parser Extensions and Improvements . 125
6.5.1 Eliminating Spurious Ambiguity . 126
6.5.2 Support for Rule Restrictions . 133
6.5.3 Support for Multi-Modal CCG . 133
6.5.4 Instantiated Secondary Categories . 134

7 Conclusion 137
7.1 Summary . 137

7.1.1 Generative Power . 137
7.1.2 Computational Power . 140

7.2 Discussion . 141
7.3 Outlook . 142

Bibliography 145

Introduction 1
1.1 Basic Concept 2
1.2 Research Focus 3
1.3 Generative Power . . . 4
1.4 Computational Power 8
1.5 Overview of the Dis-

sertation 11

Combinatory categorial grammar (CCG) [86, 88] is an extension
of categorial grammar, enriching it using ideas from combinatory
logic [13]. Categorial grammar [2, 7] itself took inspiration from
proof theory and was introduced alongside the phrase-structure
grammars of the Chomsky-Hierarchy [12]. However, having the
same expressive power as context-free grammar [8], it became
evident that categorial grammar was too restricted to capture
the linguistic structures arising in natural language [79]. This led
to the introduction of the class of mildly context-sensitive lan-
guages [37]. The properties that characterize this language class
are the containment of context-free languages, the ability to express
a limited amount of cross-serial dependencies, efficient parsing
(i.e., in polynomial time), and the constant growth property. The
two most celebrated works on CCG are the proof of its equiva-
lence to tree-adjoining grammar (TAG) [93] (and to several other
mildly context-sensitive formalisms) and a parsing algorithm with
polynomial runtime [91, 92], showing that CCG indeed belongs
to the mildly context-sensitive formalisms. This combination of
beneficial properties–a relatively high expressivity together with
efficient parsing–are not the only reasons why CCG has since be-
come widely applied in computational linguistics [59, 60]. Another
leading cause is its notion of syntactic categories, which is very
natural and allows to intuitively model the combination of con-
stituents in natural language. This clear interface between syntax
and semantics makes it possible to conveniently add semantics to
the formalism through lambda calculus [86]. On one hand, the de-
sire to fully lexicalize the formalism and to be able to easily express
certain syntactic structures gave rise to the development of a wide
range of variants with slightly different operating principles [5, 50,
86, 88]. On the other hand, driven by statistical natural language
processing, there has also been a growing interest in probabilistic
variants [56, 57, 98, 99].

Mary
.........

NP

really
..

(S\NP)/(S\NP)

likes
..

(S\NP)/NP

(S\NP)/NP
>B

cats
......

NP

S\NP
>

S
<

Figure 1.1: A CCG derivation tree
for the sentence Mary really likes cats.
The conventional abbreviations are
provided for each rule: > forward
application; < backward application;
>B forward harmonic composition.
The term harmonic refers to the co-
inciding direction of slashes in the
input categories.

2 1 Introduction

1.1 Basic Concept

We will now explain the basic concept behind CCG. At the basis
of the grammar is a lexicon and rule system. Given a string of
input symbols, the grammar assigns a syntactic category to each
of the input symbols in accordance with the lexicon. Note that this
assignment is nondeterministic: There might be several categories
associated with an input symbol. The rule system then repeatedly
combines adjacent categories. When a (binary) derivation tree that
comprises all input symbols and has its root labeled by an initial
category can be obtained, the input string is accepted. Figure 1.1
depicts a derivation tree, where the symbol–category relation given
by the lexicon is indicated by a dotted line.

Categories are built from atomic categories, such as NP (“noun
phrase”) or S (“sentence”), and slashes, which indicate direction-
ality. The atomic category at the beginning of a category is called
target and is similar to the return type of a function. After the
target, a number of arguments may follow, each consisting of a
slash and a category itself. The forward slash indicates that the
subsequent category is expected to be provided on the right side;
the backward slash indicates that it is expected on the left side. For
example, a transitive verb can be modeled by the complex category
(S\NP)/NP. The intended interpretation of this category is that,
in order to obtain a sentence, a noun phrase on the right side (the
object) and a noun phrase on the left side (the subject) have to be
provided.

The rule system comprises a set of rules that specify how two
adjacent categories can be combined, where the primary category
is the one expecting an argument, and the secondary category is
the one providing it. In the most simple type of rule, the application
rule, the secondary category matches exactly with the category
in the last (i.e., outermost) argument of the primary category.
The combination yields an output category that follows the form
of the primary category, but has its last argument removed. An
example is the combination of (S\NP)/NP as a primary category
and NP as a secondary category on the right side, as shown in

Figure 1.2: A CCG derivation tree
(example from [86, page 51]) that
demonstrates the combination of
categories corresponding to file and
without reading through backward
crossed substitution (<Sx), where
crossed refers to the pattern of op-
posing slash directions in the input
categories. The derivation of S/VP
from the categories associated with
the words I and will is omitted.

which
.............

(N\N)/(S/NP)

I will
.........

S/VP

file
......

VP/NP

without
..

(VP\VP)/VPing

reading
..

VPing/NP

(VP\VP)/NP
>B

VP/NP
<S×

S/NP
>B

N\N
>

1.2 Research Focus 3

Figure 1.1. More general are composition rules, where additional
arguments may follow in the secondary category after the required
category, as in the combination of (S\NP)/(S\NP) and (S\NP)/NP
in Figure 1.1. The additional argument /NP gets transferred into
the output category (S\NP)/NP. This is a rule of first degree,
where the degree of a rule is defined as the number of additional
arguments in the secondary category after the prefix that gets
consumed (i.e., (S\NP) in the example). These operations are
similar to function application and function composition.

Substitution is another rule type of practical relevance and related
to composition. The difference is that not only the last argument
of the primary category has to be provided by the secondary
category, but the last two arguments, of which the first one gets
removed, and the second one gets preserved in the output category.
Substitution is used to model the combination of two constituents
that are both followed by a gap referring to the same resource.1

1: This phenomenon is called par-
asitic gap and describes a ‘gap that
is dependent on the existence of an-
other gap’ [17].This is the case for without reading and file in Figure 1.2, which is an

example taken from Steedman [86, page 51]. The occurrences of
the argument /NP in the categories VP/NP and (VP\VP)/NP refer
to the same resource and are collapsed through substitution. As
discussed by Steedman, expressions such as file without reading can
be used in coordinate structures and should therefore be regarded
as constituents.

Another rule type that is commonly used in practical applications
is type-raising [86]. However, it will not be used by the formalism
we study.

1.2 Research Focus

The focus of the research presented in this thesis is twofold: We
study the generative power as well as the computational power
of CCG. As pointed out, there is a wide range of variants of CCG.
However, for only a few of them, their generative power has been in-
vestigated. Even worse, it has become apparent that subtle changes
of the formalism can have an immense effect on its expressivity. We
therefore aim to bring more clarity into the relation of different vari-
ants and the relation to other mildly context-sensitive formalisms.
For this, in the first part of this thesis, we take an indispensable core
of the formalism and study it as a generator of formal languages.
In particular, we are interested in the generated tree languages,
since the underlying structure of a sentence is of major interest in
natural language processing. Determining the expressive power
of CCG is an important problem since a certain amount is required
in order to properly model natural language. On the downside, the
expressivity should also not be too high, as increasing it generally

4 1 Introduction

2: Note that Vĳay-Shanker and
Weir [93] and the other referenced
works in general do not take into
account substitution rules. If substi-
tution is regarded, we will state so
explicitly in the following.

comes at the cost of a higher parsing complexity. This leads us
to the second focus of this thesis: computational power. Several
features of CCG have been discussed as possible contributors
to the high complexity of CCG parsing, which is known to be
computationally demanding. However, it remained unanswered
if omitting or restricting some of these features would actually
allow for more efficient parsing. This question is studied in the
second part of this thesis. The goal is to identify grammar features
that lead to desirable properties in both aspects: an expressivity
appropriate for modeling natural language, and a good parsing
complexity to render it practically applicable. In the following,
we survey the existing research in these two areas in detail and
describe our contributions to them.

1.3 Generative Power

The generative power refers to the question what sets of structures
a formalism is able to express. Other terms commonly used are
expressive power, expressivity, or generative capacity. We will use
them interchangeably.

1.3.1 Weak Generative Power

The weak generative power, or string-generative capacity, of a
formalism is its ability to express a language, i.e., a set of strings.
It is thus defined as the class of languages that it can generate. A
classical result is that categorial grammar, which has only appli-
cation rules, can generate exactly the context-free languages [8].
The string-generative capacity does not increase when composi-
tion of first degree is included [19, 49]. One of the best-known
results on the mildly context-sensitive formalisms, which are more
expressive, is the weak equivalence of CCG, TAG [38], linear in-
dexed grammar (LIG) [35], and head grammar (HG), famously
shown by Vĳay-Shanker and Weir [93].2 An automaton model with
the same expressive power is the embedded push-down automa-
ton [90]. However, the equivalence result due to Vĳay-Shanker
and Weir [93] crucially depends on two key features of their CCG:
rule restrictions and 𝜀-entries. The first allow the inclusion or
exclusion of certain rules depending on the form of the input
categories. The second are lexicon entries that assign syntactic
categories to the empty word. In contrast, a CCG is called pure if
it allows all possible rules up to some fixed rule degree: Then it
is a fully lexicalized formalism, relying on a universal set of rules
and putting all derivational control into the lexicon. The question

1.3 Generative Power 5

... omdat ik Cecilia Henk de nĳlpaarden zag helpen voeren.

... because I Cecilia Henk the hippopotamuses saw help feed

’... because I saw Cecilia help Henk feed the hippopotamuses.’

Figure 1.3: Cross-serial dependencies in Dutch (example from [84]).

if lexicalization is possible without any sacrifices in terms of ex-
pressivity is a particular interesting one, as this model is favored
by modern variants of CCG. Having said that, it has been shown
that pure CCG is actually strictly less expressive than TAG [49,
50]. More precisely, it offers less control over the derivation, since
the possibility of a rearrangement of derivation trees causes each
generated language to contain a Parikh-equivalent3

3: Two languages are called
Parikh-equivalent if for each word in
one of the languages there is a per-
mutation of it (possibly the word
itself) in the other language.

context-free
language as a subset. For example, the (non-context-free) language
consisting exactly of the strings of the form 𝑎𝑛𝑏𝑛𝑐𝑛 cannot be
generated because other permutations of the input symbols would
be generated as well. This renders the formalisms inappropriate
for expressing the cross-serial word order in Dutch subordinate
clauses [84] (see Figure 1.3) since also other word orders would be
generated. This applies not only to pure CCG, but already to the
more general prefix-closed4

4: A CCG is called prefix-closed if
for all valid rules also all rules of the
same form, but with some (or all) ar-
guments removed from the respec-
tive secondary category, are part of
the rule set. Therefore, if the rule set
allows S/VP VP/NP

S/NP , then S/VP VP
S is

permitted as well [50, Definition 2].

CCG without target restrictions.5

5: Target restrictions, a type of rule
restrictions, allow to restrict a rule
such that it can only be applied to
primary categories with specific tar-
gets.

If
these conditions apply, also the expressivity of multi-modal CCG
is impaired in spite of additional slash types promising further
derivational control. The target restrictions play a critical role here,
as prefix-closed CCG with target restrictions has the same weak
generative capacity as TAG. On the other hand, the expressive
power of CCG can be increased by allowing generalized com-
position rules of unbounded degree [97, Section 5.2]. However,
it is generally accepted that substitution rules do not increase
the expressive power: Steedman [86, page 210] sketches how to
adapt the equivalence proof of Vĳay-Shanker and Weir [93] to take
substitution rules into account.

1.3.2 Strong Generative Power

Strong generative power describes the expressivity of a formalism
considering not only the sequence of input symbols, but also some
kind of additional structure that explains the relation between
them. There exist several different definitions of this term. The
basic distinction is between dependency and constituency, which
are both fundamental and well-established conceptions of syntax.
Dependency [64, page 101] describes the relation between the
words of an input sentence. In CCG, when a lexical category
provides an argument for another lexical category, the input symbol

6 1 Introduction

Table 1.1: Overview of the weak and strong generative capacity of CCG. It is related to the following language classes:
context-free languages (CFL), regular tree languages (RTL), and tree-adjoining languages (TAL). If not specified, rule
restrictions are allowed and the rule system uses only composition rules. The references indicated in the first row
investigate classical categorial grammar, but the results for CCG with rule restrictions can easily be concluded (see also
Theorem 4.1.9). Parentheses contain the number of the respective theorem or corollary in this dissertation. If no reference
is given, a result follows directly through combination of a result from the literature with a new result (see page 138).

CCG variant rule
𝜀-entries string tree

degree languages languages

(pure) with application rules only 𝑘 = 0 yes/no = CFL [8] ⊊ RTL [10] (4.1.9)
pure with composition 𝑘 = 1 yes/no = CFL (4.2.8) ⊊ RTL (5.2.2)
composition 𝑘 = 1 yes/no = CFL [19, 49] = RTL (4.2.6)
pure with composition 𝑘 ≥ 2 yes/no ⊊ TAL [49, 50] ⊊ TAL (5.2.2)
prefix-closed, no target restrictions 𝑘 ≥ 2 yes/no ⊊ TAL [50] ⊊ TAL
prefix-closed 𝑘 ≥ 2 yes = TAL [50]
composition 𝑘 ≥ 2 no = TAL (5.7.3) = TAL (5.7.2)
composition 𝑘 ≥ 2 yes = TAL [93] = TAL (5.7.2)
composition and substitution 𝑘 ≥ 2 yes = TAL [86]
generalized composition unlimited no ⊋ TAL ⊋ TAL
generalized composition unlimited yes ⊋ TAL [97] ⊋ TAL

6: For a short introduction to TAG,
see Section 2.3.2.

associated with the first becomes a dependant of the input symbol
associated with the latter. Constituency [64, page 93] describes how
a sentence is subdivided into its constituents, which are certain
groups of words that behave as a unit, for example noun phrases.
The derivation trees of CCG are already based on the idea of
constituency. Therefore, they and also relabeled derivation trees
can be regarded as constituency trees.

Several works have investigated the strong generative power of
CCG in terms of dependency, often with a focus on the compar-
ison to TAG. To obtain dependencies in a straightforward way,
one usually considers only lexicalized TAG (LTAG), where each
elementary tree of the grammar is associated with a lexical anchor;
then a dependency between these is created when an elementary
tree is adjoined into another.6 Note that LTAG has been shown to
be strictly less expressive than TAG when the sets of generated
trees are considered [53]. Hockenmaier and Young [31] analyze and
compare the sets of dependencies expressible by LTAG and a CCG
variant with type-raising. They demonstrate that there exist certain
scrambling cases that cannot be expressed by the first, but can be
expressed by the latter. In a similar direction, Koller and Kuhlmann
[47] examine the sets of dependency trees that can be generated by
CCG and LTAG, proving that these are incomparable. Stanojević
and Steedman [83] study particular expressions on the basis of
the “natural order of dominance” of their constituents. They show
that CCG can express exactly the separable permutations of this
order. A permutation is called separable if there exists a binary
tree such that, when using the permutation to label the leaves of

1.3 Generative Power 7

the tree from left to right, the leaves in each subtree are labeled
by a set of consecutive elements of the original order. In contrast,
TAG can also express non-separable permutations. As an example,
they give that from Koller and Kuhlmann [47, Figure 8b], which
was used to separate the classes of dependency trees generatable
by CCG and LTAG. It is noteworthy that Stanojević and Steedman
[83] also draw a connection to the permutations that have been
documented in natural language. While for each separable permu-
tation of the expressions they study there exists evidence in some
natural language, this is not the case for any of the non-separable
permutations.

The target of our investigations on the strong generative power
of CCG are tree languages in the sense of constituency trees.
Analogous to string languages, a tree language is a set of trees;
the term forest is commonly used as well. An overview on tree
languages can be found in [22]. When comparing the strong
generative power of two formalisms, we sometimes consider strong
equivalence modulo relabeling. An example for two formalisms
that are strongly equivalent modulo relabeling are local and regular
tree grammars [22]. We define the tree languages generated by
CCG as relabeled derivation tree sets. Already Weir and Joshi
[97] asked what set of derivation trees CCG can generate. Since
CCG derivation trees are always binary, this is the case for the
generated tree languages as well. Therefore, we will consider only
binary trees throughout this thesis. This conception of strong
generative capacity has been studied by Tiede [89] for Lambek
grammars [58], but has not yet been addressed for CCG. The
only known result in this direction is the characterization of tree
languages generated by categorial grammar due to Buszkowski
[10, Theorem 1.1]. These tree languages form a proper subset of
regular tree languages, containing exactly those where for each
node the length of the shortest path to a leaf is bounded.7

7: Buszkowski [10] uses a grammar
with a multiple-argument format,
which can generate trees with node
ranks higher than 2. It can be re-
stricted to obtain the analogous re-
sult for binary trees [11, page 699].

1.3.3 Contributions

In this thesis, we study the tree-generative capacity of a CCG
formalism that is based on that of Vĳay-Shanker and Weir [93]
and relate its generated tree languages to other well-established
classes of tree languages, in particular regular tree languages [22]
and context-free tree languages [72]. Our CCG has a finite set of
application and composition rules; rule restrictions are permitted
in general, but we also study the effect of their absence. While
Vĳay-Shanker and Weir [93] heavily relied on 𝜀-entries, it remained
unclear whether they can be avoided without compromising the
generative power of CCG. This is particularly interesting because
𝜀-entries violate the Principle of Adjacency [86, page 54], one of the

8 1 Introduction

9: By 𝜀-free, we mean that the empty
word is not part of the generated
language.

fundamental principles at the basis of CCG.88: The Principle of Adjaceny de-
mands that all combining cate-
gories have phonologically realized
counterparts in the input and are
string-adjacent.

Another important
aspect is that 𝜀-entries are computationally problematic [55], as
will be discussed further on.

We provide a new proof of the abovementioned characterization
of the tree languages generated by categorial grammar as a subset
of regular tree languages [10, Theorem 1.1], or more general, we
characterize the tree languages generated by CCG with application
rules, since we also allow rule restrictions. This, however, has no
effect on the tree-generative capacity. Then, we show that CCG
with composition rules of first degree can generate exactly the
regular tree languages.

The main result is the strong equivalence of CCG and TAG when
understood as generators of tree languages. The proof is not directly
using TAG, but the strongly equivalent (𝜀-free)9 simple monadic
context-free tree grammar (sCFTG) [45], where simple means
that it is linear and nondeleting, and monadic means that the
nonterminals are nullary or unary nodes. For the first inclusion,
we show that the set of rule trees of a CCG can be generated by
an sCFTG. In rule trees, the internal nodes are labeled by rules,
and only the leaves are labeled by categories. This concept was
first introduced by Weir and Joshi [97] to keep the set of node
labels finite. The inclusion in the tree-adjoining languages (TAL)
is proper for pure CCG, which cannot even generate all local tree
languages. For the second inclusion, we show that each spine
grammar [21] can be simulated by a CCG. Spine grammars are
a restriction on sCFTG that is still strongly equivalent modulo
relabeling. The construction uses rules of degree at most 2 and only
first-order categories, thus all arguments contain atomic categories.
This proves that CCG with these restrictions already has the full
expressive power. A worthwhile result of the constructions is an
effective procedure for removing 𝜀-entries from a CCG. Finally,
another interesting consequence of the equivalence result is the
strong equivalence of CCG and linear top-down push-down tree
automata [21]. The properties of the language class TAL along
with further representations are discussed in Section 2.4. Table 1.1
summarizes the discussed results on the generative power of CCG,
both from the literature and shown in this dissertation.

1.4 Computational Power

The computational power of a formalism refers to its parsing
complexity. This in turn can point to two different problems: the
membership problem and the universal recognition problem. Both
problems consider the question whether a given string is part of
the language generated by some grammar or other formalism.

1.4 Computational Power 9

In the membership problem, the grammar is fixed and one is
interested only in the complexity depending on the length of the
input string. In the universal recognition problem, on the other
hand, one is additionally interested in the complexity in terms of
grammar size. Polynomial parsing is one of the defining properties
of the mildly context-sensitive language class [37]. This refers to
the membership problem; it can be solved in polynomial time
for CCG as shown by Vĳay-Shanker and Weir [91, 92]. Kuhlmann
and Satta [54] present a simpler algorithm for CCG parsing and
analyze its runtime depending on the grammar size. It depends
on several properties of the grammar, including the number of lex-
ical arguments, the maximum degree of rules, and the maximum
number of arguments of lexical categories. Thus, although the
algorithm itself is straightforward, its runtime complexity is quite
involved. Kuhlmann, Satta, and Jonsson [55] demonstrate that the
runtime complexity of the universal recognition problem for CCG
is in sharp contrast to the complexity of the membership problem:
They show that the universal recognition problem is NP-complete
when 𝜀-entries are excluded, and even EXPTIME-complete in
the presence of 𝜀-entries. Thus, the problem cannot be solved in
time polynomial in the grammar size in the worst-case scenario
(assuming P ≠ NP in the first case). When unbounded general-
ized composition rules and 𝜀-entries are included, the universal
recognition problem even becomes Turing-complete [55, page 478].
The high complexity of the universal recognition problem sets
CCG apart from TAG, where the problem can be solved in poly-
nomial time [74]. Kuhlmann, Satta, and Jonsson [55] discuss a
number of properties of CCG that were essential for the proof
of their EXPTIME-completeness result. These properties are the
availability of rule restrictions, the use of variables in secondary
categories when specifying rules, the absence of a fixed bound on
the maximum degree of rules,10

10: Note that due to the CCG
rule set being finite, each individual
grammar has some individual maxi-
mum rule degree. (An exception are
the already mentioned unbounded
generalized composition rules that
are usually forbidden.) The bound
that Kuhlmann, Satta, and Jonsson
[55] refer to, however, is a universal
bound on the maximum degree that
would hold for all possible CCGs.

and the lexical ambiguity, which
allows nondeterministic assignment of categories to input symbols.
However, it was not apparent if omitting or restricting any of these
features would lead to a formalism with a parsing complexity
polynomial in the grammar size.

1.4.1 Contributions

Our main result in this direction of research is that the universal
recognition problem can be solved in polynomial time and space
if the rule degree of the CCG is bounded. For this, we present a
new parsing algorithm for CCG that improves and extends the
algorithm of Kuhlmann and Satta [54] and leads to a considerably
simpler complexity analysis. It has the notable feature that the
runtime is exponential exclusively in the maximum rule degree of
the grammar. Thus, bounding the rule degree leads to an algorithm

10 1 Introduction

Table 1.2: Overview of the com-
putational complexity of the uni-
versal recognition problem for
several variants of CCG with
rule restrictions. The first two
rows are completeness-results. The
third is containment in PTIME in
the general case (Theorem 6.3.1),
and PTIME-completeness under
logspace-reduction if 𝜀-entries are
allowed (Corollary 6.3.3).

CCG variant complexity

with 𝜀-entries EXPTIME [55]
without 𝜀-entries NP [55]
bounded rule degree PTIME (Theorem 6.3.1, Corollary 6.3.3)

polynomial in the grammar size. This is particularly interesting
because a bound as low as degree 2 is sufficient for full generative
power with regard to string languages [93] and tree languages
(see above). Also in linguistic work a similarly low bound has
been presumed as a syntactic universal; for English, Steedman [86,
page 43] suggests a maximum rule degree of 3 as sufficient. We
also show that, if 𝜀-entries are included, the universal recognition
problem for CCG of bounded degree is PTIME-complete under
logspace-reduction.

The second novel feature of our algorithm is that it can handle
substitution rules, which are of practical relevance, but have been
neglected in theoretic work on CCG so far. This is an important
contribution since the effect of substitution rules on the parsing
complexity was not clear, and seemingly trifle changes of the for-
malism can result in substantial differences in terms of complexity,
as can be seen from the effect of 𝜀-entries.

We propose several extensions of our algorithm. First, we discuss
how to implement rule restrictions and how to adapt the algorithm
to multi-modal CCG. Second, we describe how a small change
of the algorithm makes it polynomial in the grammar size if
all secondary categories in the rule set are instantiated, i.e., not
containing any variables. This demonstrates that the availability of
variables in secondary categories is indeed indispensable for the
EXPTIME-completeness result of Kuhlmann, Satta, and Jonsson
[55]. Finally, we present our ideas on how to remove spurious
ambiguity11

11: A parsing algorithm has spuri-
ous ambiguity if the same derivation
tree can be produced by several dif-
ferent parse trees (see Section 6.5.1). from the algorithm.

The discussed results on the computational complexity of the
universal recognition problem for CCG with rule restrictions are
presented in Table 1.2. Although Kuhlmann, Satta, and Jonsson
[55] regarded CCG with only composition rules, the validity of
their results is not affected by the inclusion of substitution rules.

1.5 Overview of the Dissertation 11

1.5 Overview of the Dissertation

We will briefly outline the structure of this dissertation and indicate
which articles the respective chapters are based on. Chapter 2
introduces notations and definitions of standard formalisms for
string and tree languages. It also gives an overview over the class of
mildly context-sensitive languages. Chapter 3 formally introduces
the CCG formalism that is used throughout this dissertation. If any
assumptions are made that restrict the considered CCG, this will be
stated at the beginning of the respective chapters or sections. These
two chapters both partly draw on contents of the publications
listed below. Chapters 4 and 5 are closely related since they both
discuss the generative power of CCG. They constitute the first part
of contributions of this dissertation. Chapter 4 investigates CCG
with low rule degrees (i.e., rule degrees 0 and 1) and characterizes
the tree languages they can generate. It is based on joint work with
Marco Kuhlmann and Andreas Maletti, published in the following
two articles.

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. ‘The
Tree-Generative Capacity of Combinatory Categorial Gram-
mars’. In: Proceedings of the 39th Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS).
Ed. by A. Chattopadhyay and P. Gastin. Vol. 150. LIPIcs. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2019

Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. ‘The
Tree-Generative Capacity of Combinatory Categorial Gram-
mars’. In: Journal of Computer and System Sciences 124 (2022).
Extended version.

Chapter 5 gives a characterization of the tree languages gener-
atable by CCG with an arbitrary rule degree by proving strong
equivalence with TAG. Sections 5.1 and 5.2 are based on the two ar-
ticles listed above. They show the first inclusion of the equivalence
and discuss pure CCG. The remaining sections of Chapter 5 are
dedicated to the second inclusion and are based on the following
joint work with Andreas Maletti.

Lena K. Schiffer and Andreas Maletti. ‘Strong Equivalence of
TAG and CCG’. In: Transactions of the Association for Computational
Linguistics (TACL) 9 (2021)

Andreas Maletti and Lena K. Schiffer. ‘Strong Equivalence of
TAG and CCG’. Extended version. Unpublished manuscript.
2022. arXiv: 2205.07743 [cs.FL]

https://arxiv.org/abs/2205.07743

12 1 Introduction

Chapter 6 constitutes the second part of contributions and provides
insights into the computational power of CCG. It is based on the
joint work with Marco Kuhlmann and Giorgio Satta published in
the following article.

Lena K. Schiffer, Marco Kuhlmann, and Giorgio Satta. ‘Tractable
Parsing for CCGs of Bounded Degree’. In: Comput. Linguist. 48.3
(2022)

Finally, Chapter 7 concludes the dissertation with a summary, a
discussion of the results, and an outlook to possible future work.

Preliminaries 2
2.1 Basic Definitions . . . 13
2.2 String Languages . . . 13
2.3 Tree Languages 16
2.4 Mild Context-

Sensitivity 20

This chapter introduces the notation and several standard for-
malisms for string and tree languages. For string languages, we
recall nondeterministic finite automata, context-free grammars,
and push-down automata; for tree languages, we recall simple
monadic context-free tree grammar, regular tree grammar, and
tree-adjoining grammar. The chapter concludes with an introduc-
tion to mild context-sensitivity.

2.1 Basic Definitions

The nonnegative integers are ℕ and the positive integers are ℕ+.
For every 𝑘 ∈ ℕ let [𝑘] = {𝑖 ∈ ℕ | 1 ≤ 𝑖 ≤ 𝑘} as well
as ℤ𝑘 = {𝑖 ∈ ℕ | 𝑖 < 𝑘}. The power-set (i.e., set of all subsets) of a
set 𝐴 is P(𝐴) = {𝐴′ | 𝐴′ ⊆ 𝐴}, and P+(𝐴) = P(𝐴) \ {∅} contains
all nonempty subsets. As usual, 𝜋𝑖 : 𝑋1 × · · · × 𝑋𝑛 → 𝑋𝑖 projects a
tuple to its 𝑖-th component and is given by 𝜋𝑖

(
⟨𝑥1 , . . . , 𝑥𝑛⟩

)
= 𝑥𝑖 ,

where each 𝑋𝑗 with 𝑗 ∈ [𝑛] is a set.

Given two sets 𝐴 and 𝐴′, a relation from 𝐴 to 𝐴′ is a sub-
set 𝜌 ⊆ 𝐴×𝐴′. The inverse of 𝜌 is 𝜌−1 =

{
(𝑎′, 𝑎) | (𝑎, 𝑎′) ∈ 𝜌

}
, and

for every 𝐵 ⊆ 𝐴, we let 𝜌(𝐵) =
{
𝑎′ | ∃𝑏 ∈ 𝐵 : (𝑏, 𝑎′) ∈ 𝜌

}
. The rela-

tion 𝜌 ⊆ 𝐴×𝐴′ can also be understood as a mapping 𝜌̂ : 𝐴 → P(𝐴′)
with 𝜌̂(𝑎) = 𝜌({𝑎}) for all 𝑎 ∈ 𝐴. We will not distinguish these two
representations. Given a relation ⇒ ⊆ 𝐴2, we let ⇒∗ be the reflex-
ive, transitive closure of ⇒. Further, we let ⇒+ be the transitive
closure of ⇒.

2.2 String Languages

As usual, an alphabet is a finite set of symbols. The monoid (Σ∗ , ·, 𝜀)
consists of all strings (i.e., sequences) over a (possibly infinite)
set Σ, together with concatenation · and the empty string 𝜀. We let
Σ+ = Σ∗ \ {𝜀}. We often write concatenation by juxtaposition. The
length of a string 𝑤 ∈ Σ∗ (i.e., the number of components in the se-
quence) is denoted by |𝑤|. The prefixes Pref(𝑤) of a string𝑤 ∈ Σ∗ are
{𝑢 ∈ Σ∗ | ∃𝑣 ∈ Σ∗ : 𝑤 = 𝑢𝑣}. Any set L ⊆ Σ∗ is a (string) language,
and the languages form a monoid

(
P(Σ∗), ·, {𝜀}

)
with concatena-

tion lifted to languages by L · L′ = {𝑤 · 𝑤′ | 𝑤 ∈ L, 𝑤′ ∈ L′}.

14 2 Preliminaries

Every mapping 𝑓 : Σ → Δ∗ [respectively, 𝑓 : Σ → P(Δ∗)] extends
uniquely to a monoid homomorphism 𝑓 ′ : Σ∗ → Δ∗ [respectively,
𝑓 ′ : Σ∗ → P(Δ∗)]. We will not distinguish the mapping 𝑓 and its
induced homomorphism 𝑓 ′, but rather use 𝑓 for both.

In the following, we briefly recall three standard formalisms for
representing string languages.

2.2.1 Nondeterministic Finite Automata

We start with nondeterministic finite automata [35].

Definition 2.2.1 A nondeterministic finite automaton (NFA)
A = (𝑄,Σ, 𝛿, 𝐼 , 𝐹) is a tuple consisting of

(i) finite sets 𝑄 and Σ of states and input symbols, respectively,
(ii) a transition relation 𝛿 ⊆ 𝑄 × Σ ×𝑄, and
(iii) sets 𝐼 , 𝐹 ⊆ 𝑄 of initial and final states, respectively.

The transition relation can be extended to a function taking a string
as an input. It is denoted by 𝛿̂ : 𝑄 × Σ∗ → P(𝑄) and is given by

𝛿̂(𝑞, 𝜀) = {𝑞} 𝛿̂(𝑞, 𝑎𝑤) =
⋃

(𝑞,𝑎,𝑝)∈𝛿
𝛿̂(𝑝, 𝑤)

for all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, and 𝑤 ∈ Σ∗. The language accepted by a given
NFA A is defined as

L(A) =
⋃
𝑞∈𝐼

{
𝑤 ∈ Σ∗ | 𝛿̂(𝑞, 𝑤) ∩ 𝐹 ≠ ∅

}
.

Given string language L, if there exists an NFA A with L(A) = L,
then we call L regular.

2.2.2 Context-Free Grammar

Next, let us recall context-free grammars [9].

Definition 2.2.2 A context-free grammar (CFG) G = (𝑁,Σ, 𝑆, 𝑃)
consists of

(i) disjoint finite sets 𝑁 and Σ of nonterminal and terminal
symbols, respectively,

(ii) a set 𝑆 ⊆ 𝑁 of start nonterminals, and
(iii) a finite set 𝑃 ⊆ 𝑁 × (𝑁 ∪ Σ)∗ of productions.

In the following let G = (𝑁,Σ, 𝑆, 𝑃) be a CFG. We write produc-
tions (𝑛, 𝑟) as 𝑛 → 𝑟. Productions of the form 𝑛 → 𝜀 are called
𝜀-productions. However, we will usually consider CFG without

2.2 String Languages 15

𝜀-productions. Given 𝑛 → 𝑟 ∈ 𝑃 and 𝑢, 𝑣 ∈ (𝑁 ∪ Σ)∗, we write
𝑢𝑛𝑣 ⇒G 𝑢𝑟𝑣 and say that 𝑢𝑛𝑣 derives 𝑢𝑟𝑣. The language gener-
ated by G is L(G) = {𝑤 ∈ Σ∗ | ∃𝑠 ∈ 𝑆 : 𝑠 ⇒∗

G 𝑤}. Given a string
language L, if there exists a CFG G with L(G) = L, then we call
L context-free. The derivation trees of G are inductively defined as
the smallest set D(G) such that (i) Σ ⊆ D(G), (ii) for all 𝑛 → 𝜀 ∈ 𝑃

we have 𝑛(′𝜀′) ∈ D(G), and (iii) for all 𝑛 → 𝑟1 . . . 𝑟𝑚 ∈ 𝑃 with
𝑟𝑖 ∈ Σ ∪ 𝑁 and for all 𝑡𝑖 ∈

{
𝑡 ∈ D(G) | 𝑡(𝜀) = 𝑟𝑖

}
for 𝑖 ∈ [𝑚] we

have 𝑛(𝑡1 , . . . , 𝑡𝑚) ∈ D(G).1

1: We use the standard bracket no-
tation and address system for trees,
i.e., 𝑛(𝑡1 , . . . , 𝑡𝑚) denotes the tree
with root label 𝑛 and subtrees
𝑡1 , . . . , 𝑡𝑚 , and 𝑡(𝜀) refers to the
root label of tree 𝑡 ∈ D(G) (see Sec-
tion 2.3). For disambiguation, we
write ′𝜀′ when the empty word is
used as a symbol inside a tree or
lexicon entry.

2.2.3 Push-Down Automata

Finally, let us recall push-down automata [3], which accept the
(𝜀-free) context-free languages. For any alphabet Σ and the spe-
cial symbol ⊥ ∉ Σ, we let Σ⊥ = Σ ∪ {⊥}. Moreover, we let Σ≤1

be the set of strings of length at most 1 over the alphabet Σ;
i.e., Σ≤1 = {𝜀} ∪ Σ.

Definition 2.2.3 A push-down automaton (PDA) is defined as a
tuple A = (𝑄,Σ, Γ, 𝛿, 𝐼 ,⊥, 𝐹) consisting of

(i) finite sets 𝑄, Σ, and Γ of states, input symbols, and stack
symbols, respectively,

(ii) a set 𝛿 ⊆
(
𝑄 ×Σ × Γ≤1

⊥ × Γ≤1 ×𝑄
)
\
(
𝑄 ×Σ × Γ⊥ × Γ ×𝑄

)
of transitions,

(iii) sets 𝐼 , 𝐹 ⊆ 𝑄 of initial and final states, respectively, and
(iv) an initial stack symbol ⊥ ∉ Γ.

Given a PDA A = (𝑄,Σ, Γ, 𝛿, 𝐼 ,⊥, 𝐹), let ConfA = 𝑄 × Σ∗ × Γ∗⊥
be the set of configurations. Intuitively speaking, in configura-
tion ⟨𝑞, 𝑤, 𝛼⟩ ∈ ConfA the PDAA is in state 𝑞 with stack contents 𝛼
and still has to read the input string𝑤. The move relation⊢A ⊆ Conf2

A
is defined as follows:

⊢A =
⋃

(𝑞,𝑎,𝛾,𝛾′,𝑞′)∈𝛿,
𝑤∈Σ∗ , 𝛼∈Γ∗⊥

{(
⟨𝑞, 𝑎𝑤, 𝛾𝛼⟩, ⟨𝑞′, 𝑤, 𝛾′𝛼⟩

)
∈ Conf2

A | 𝛾𝛼 ≠ 𝜀
}
.

The configuration ⟨𝑞, 𝑤, 𝛼⟩ is initial [respectively, final] if 𝑞 ∈ 𝐼,
𝑤 ∈ Σ+, and 𝛼 = ⊥ [respectively, 𝑞 ∈ 𝐹, 𝑤 = 𝜀, and 𝛼 = 𝜀]. An
accepting run is a sequence 𝜉0 , . . . , 𝜉𝑛 ∈ ConfA of configurations
that are successively related by moves (i.e., 𝜉𝑖−1 ⊢A 𝜉𝑖 for all 𝑖 ∈ [𝑛]),
that starts with an initial configuration 𝜉0, and finishes in a final
configuration 𝜉𝑛 . In other words, we start in an initial state with
⊥ on the stack and finish in a final state with the empty stack,
and for each intermediate step there exists a transition. An input
string 𝑤 ∈ Σ+ is accepted by A if there exists an accepting run

16 2 Preliminaries

2: Note that the sets Σ0, Σ1, and Σ2
are not necessarily disjoint and a
symbol can thus occur with differ-
ent ranks. This accounts for the fact
that the same categories can occur
as leaves or internal nodes in CCG
derivation trees.

starting in ⟨𝑞, 𝑤,⊥⟩ with 𝑞 ∈ 𝐼. The language L(A) accepted by the
PDA A is the set of accepted input strings and thus given by

L(A) =
⋃

(𝑞,𝑞′)∈𝐼×𝐹

{
𝑤 ∈ Σ+ | ⟨𝑞, 𝑤,⊥⟩ ⊢∗A ⟨𝑞′, 𝜀, 𝜀⟩

}
.

Note that our PDA are 𝜀-free (in the sense that each transition
induces moves that process an input symbol) and have limited
stack access: In each move we can pop a symbol, push a symbol, or
ignore the stack. We explicitly exclude the case in which a symbol is
popped and another symbol is pushed at the same time. However,
this restriction has no influence on the expressive power (see [15,
Corollary 12] for the weighted scenario; an instantiation of the
result with the Boolean semiring yields the unweighted case). Note
that no moves are possible anymore once the stack is empty.

2.3 Tree Languages

In this paper, we only deal with binary trees since the derivation
trees of CCGs are binary. Thus, we build trees over ranked sets
Σ = Σ0 ∪ Σ1 ∪ Σ2, consisting of the set Σ0 of leaf symbols, the
set Σ1 of unary internal symbols, and the set Σ2 of binary internal
symbols. If Σ is an alphabet, then it is a ranked alphabet. For every
𝑘 ∈ {0, 1, 2}, we say that symbol 𝑎 ∈ Σ𝑘 has rank 𝑘.2 We write
𝑇Σ2 ,Σ1(Σ0) for the set of all trees over Σ, which is the smallest
set 𝑇 such that 𝑐(𝑡1 , . . . , 𝑡𝑘) ∈ 𝑇 for all 𝑘 ∈ {0, 1, 2}, 𝑐 ∈ Σ𝑘 , and
𝑡1 , . . . , 𝑡𝑘 ∈ 𝑇. As usual, we write just 𝑎 for leaves 𝑎() with 𝑎 ∈ Σ0.
We use graphical representations of trees to increase readability.
A tree language is a subset T ⊆ 𝑇Σ2 ,∅(Σ0). Let 𝑇 = 𝑇Σ2 ,Σ1(Σ0). The
map pos : 𝑇 → P+

(
[2]∗

)
assigns Gorn tree addresses [25] to a tree

as follows. Let

pos
(
𝑐(𝑡1 , . . . , 𝑡𝑘)

)
= {𝜀} ∪

⋃
𝑖∈[𝑘]

{
𝑖𝑤 | 𝑤 ∈ pos(𝑡𝑖)

}
for all 𝑘 ∈ {0, 1, 2}, 𝑐 ∈ Σ𝑘 , and 𝑡1 , . . . , 𝑡𝑘 ∈ 𝑇. The set of all leaf
positions of 𝑡 is defined as leaves(𝑡) =

{
𝑤 ∈ pos(𝑡) | 𝑤1 ∉ pos(𝑡)

}
.

Let ht(𝑡) = max𝑤∈leaves(𝑡) |𝑤| be the height of the tree 𝑡. The subtree
of 𝑡 at position 𝑤 ∈ pos(𝑡) is denoted by 𝑡|𝑤 , and the label of 𝑡
at position 𝑤 is denoted by 𝑡(𝑤). Moreover, 𝑡[𝑡′]𝑤 denotes the
tree obtained from 𝑡 by replacing the subtree at position 𝑤 by
the tree 𝑡′ ∈ 𝑇. Let yield : 𝑇 → Σ+

0 be defined as yield(𝑎) = 𝑎 for
all 𝑎 ∈ Σ0 and yield

(
𝑏(𝑡1 , . . . , 𝑡𝑘)

)
= yield(𝑡1) · · · yield(𝑡𝑘) for all

𝑘 ∈ [2], 𝑏 ∈ Σ𝑘 , and 𝑡1 , . . . , 𝑡𝑘 ∈ 𝑇.

The special leaf symbol □ is reserved and represents a hole in a tree.
The set 𝐶Σ2 ,Σ1(Σ0) of contexts contains all trees of𝑇Σ2 ,Σ1

(
Σ0∪{□}

)
in

which the special symbol □ occurs exactly once. Let 𝐶 ∈ 𝐶Σ2 ,Σ1(Σ0).

2.3 Tree Languages 17

3: We require that each input sym-
bol can be relabeled.

We write pos□(𝐶) to denote the unique position of □ in 𝐶, or
in other words, 𝑤 ∈ pos(𝐶) with 𝐶(𝑤) = □. Moreover, given
𝑡 ∈ 𝑇 ∪ 𝐶Σ2 ,Σ1(Σ0) we simply write 𝐶[𝑡] instead of 𝐶[𝑡]pos□(𝐶). Let
yield : 𝐶Σ2 ,Σ1(Σ0) → Σ∗

0 × Σ∗
0 be given by yield(□) = (𝜀, 𝜀) and

yield
(
𝑏(𝑡1 , . . . , 𝑡𝑖−1 , 𝐶, 𝑡𝑖+1 , . . . , 𝑡𝑘)

)
=(

yield(𝑡1) · · · yield(𝑡𝑖−1) · 𝑙 , 𝑟 · yield(𝑡𝑖+1) · · · yield(𝑡𝑘)
)

with (𝑙 , 𝑟) = yield(𝐶)

for all 𝑘 ∈ [2], 𝑏 ∈ Σ𝑘 , 𝑡1 , . . . , 𝑡𝑖−1 , 𝑡𝑖+1 , . . . , 𝑡𝑘 ∈ 𝑇,𝐶 ∈ 𝐶Σ2 ,Σ1(Σ0).

A relabeling is a mapping 𝜌 : Σ → P+(Δ) for some ranked alpha-
bet Δ.3 It induces a mapping 𝜌̂ : 𝑇 → P+

(
𝑇Δ2 ,Δ1(Δ0)

)
that is defined

for every 𝑡 ∈ 𝑇 by

𝜌̂(𝑡) =
{
𝑢 ∈ 𝑇Δ2 ,Δ1(Δ0) |pos(𝑢) = pos(𝑡),

∀𝑤 ∈ pos(𝑢) : 𝑢(𝑤) ∈ 𝜌
(
𝑡(𝑤)

)}
.

A relabeling is therefore in general nondeterministic since it can
map one symbol of Σ to several symbols of Δ. If |𝜌(𝜎)| = 1 for
all 𝜎 ∈ Σ, a relabeling is called deterministic and we also write
𝜌 : Σ → Δ and 𝜌̂ : 𝑇 → 𝑇Δ2 ,Δ1(Δ0). In the following, we do not
distinguish between the relabeling 𝜌 and its induced mapping 𝜌̂
on trees.

2.3.1 Tree Grammars

Now we move on to representations of tree languages. We first
recall context-free tree grammars (CFTG) [72], but only the monadic
simple variant [45]. The grammar is called monadic because there
are only nullary and unary nonterminals; simple means that the
productions are linear and nondeleting, i.e., if the left side of a
production is a unary nonterminal, the special symbol □ (marking
the new position of the subtree of the nonterminal) appears exactly
once on the right side.4

4: Omitting the requirement that
the productions are nondeleting has
no effect on the expressivity [20].

Definition 2.3.1 A simple monadic context-free tree grammar
(sCFTG) is a tuple G = (𝑁,Σ, 𝑆, 𝑃) consisting of

(i) disjoint ranked alphabets𝑁 andΣ of nonterminal and terminal
symbols with 𝑁 = 𝑁1 ∪ 𝑁0 and Σ1 = ∅,

(ii) a set 𝑆 ⊆ 𝑁0 of nullary start nonterminals, and
(iii) a finite set 𝑃 ⊆ 𝑃0 ∪ 𝑃1 of productions, which are taken from

𝑃0 = 𝑁0 × 𝑇Σ2 ,𝑁1(𝑁0 ∪Σ0) and 𝑃1 = 𝑁1 × 𝐶Σ2 ,𝑁1(𝑁0 ∪Σ0).

If 𝑁1 = ∅, then G is a regular tree grammar (RTG).

18 2 Preliminaries

𝑠 ⇒G1

𝜎

𝛼 𝜎

𝑠 𝛽

⇒G1

𝜎

𝛼 𝜎

𝜎

𝛼 𝜎

𝑠 𝛽

𝛽 ⇒G1

𝜎

𝛼 𝜎

𝜎

𝛼 𝜎

𝜎

𝛼 𝛽

𝛽

𝛽 𝑠 ⇒G2

𝜎

𝛼 𝜎

𝑛

𝛽

𝛾

⇒G2

𝜎

𝛼 𝜎

𝜎

𝛼 𝜎

𝑛

𝜎

𝛽 𝛽

𝛾

𝛾
⇒2

G2

𝜎

𝛼 𝜎

𝜎

𝛼 𝜎

𝜎

𝛼 𝜎

𝜎

𝜎

𝛽 𝛽

𝛽

𝛾

𝛾

𝛾

Figure 2.1: Derivations using the RTG G1 (left) and the sCFTG G2 (right) of Examples 2.3.2 and 2.3.3, respectively.

We write (𝑛, 𝑟) ∈ 𝑃 as 𝑛 → 𝑟. Next, we define the rewrite seman-
tics [4] for the sCFTG G = (𝑁,Σ, 𝑆, 𝑃). Given 𝑡 , 𝑢 ∈ 𝑇Σ2 ,𝑁1(Σ0∪𝑁0)
and position 𝑤 ∈ pos(𝑡), we let 𝑡 ⇒G ,𝑤 𝑢 if there exist a production
(𝑛 → 𝑟) ∈ 𝑃 such that

(i) 𝑡|𝑤 = 𝑛 and 𝑢 = 𝑡[𝑟]𝑤 with 𝑛 ∈ 𝑁0, or
(ii) 𝑡|𝑤 = 𝑛(𝑡′) and 𝑢 = 𝑡

[
𝑟[𝑡′]

]
𝑤

with 𝑛 ∈ 𝑁1 and subtree
𝑡′ ∈ 𝑇Σ2 ,𝑁1(Σ0 ∪ 𝑁0).

We write 𝑡 ⇒G 𝑢 if there exists 𝑤 ∈ pos(𝑡) such that 𝑡 ⇒G ,𝑤 𝑢.
The tree language generated by G is

T (G) =
{
𝑡 ∈ 𝑇Σ2 ,∅(Σ0) | ∃𝑠 ∈ 𝑆 : 𝑠 ⇒+

G 𝑡
}

.

The sCFTG G′ is strongly equivalent to G if T (G) = T (G′), and it
is weakly equivalent to G if yield

(
T (G)

)
= yield

(
T (G′)

)
. The string

language generated by G is L(G) =
{
yield(𝑡) | 𝑡 ∈ T (G)

}
. The tree

languages generated by sCFTGs form a subset of the context-free
tree languages, and a tree language T is regular if and only if there
exists an RTG G such that T = T (G). A detailed introduction to
trees and tree languages can be found in [22].

Example 2.3.2 The RTG G1 = (𝑁,Σ, 𝑆, 𝑃) with nonterminals
𝑁 = 𝑁0 = 𝑆 = {𝑠}, terminals Σ = Σ2 ∪ Σ0 with Σ2 = {𝜎}
and Σ0 = {𝛼, 𝛽}, and 𝑃 =

{
𝑠 → 𝜎

(
𝛼, 𝜎(𝑠, 𝛽)

)
, 𝑠 → 𝜎(𝛼, 𝛽)

}
generates the string language L(G1) = {𝛼𝑛𝛽𝑛 | 𝑛 ≥ 1}. Clearly,
the only nonterminal 𝑠 is nullary (since G1 is an RTG) and thus
occurs only as leaf in the right-hand sides of productions, which
is similar to right-linearity for CFGs.

Two important facts on regular tree languages are that they properly
include the derivation tree languages of CFGs [22, Theorem 3.2.2]
and that their string languages are exactly the context-free lan-
guages [22, Theorem 3.2.7].

2.3 Tree Languages 19

Example 2.3.3 The sCFTG G2 = (𝑁,Σ, 𝑆, 𝑃) with 𝑁 = 𝑁1 ∪ 𝑁0
with 𝑁1 = {𝑛} and 𝑁0 = 𝑆 = {𝑠}, Σ = Σ2 ∪ Σ0 with Σ2 = {𝜎}
and Σ0 = {𝛼, 𝛽, 𝛾}, and

𝑃 =

{
𝑠 → 𝜎

(
𝛼, 𝜎

(
𝑛(𝛽), 𝛾

))
,

𝑛 → 𝜎
(
𝛼, 𝜎

(
𝑛(𝜎(□, 𝛽)

)
, 𝛾)

)
, 𝑛 → □

}
generates the string language L(G2) = {𝛼𝑛𝛽𝑛𝛾𝑛 | 𝑛 ≥ 1}. The
placeholder □, which indicates the new position of the subtree
under the unary nonterminal symbol 𝑛, appears exactly once on
the right-hand sides of the productions with left-hand side 𝑛 (as
required for an sCFTG).

2.3.2 Tree-Adjoining Grammar

In the following, we will give a brief introduction to TAG [38]. We
refrain from giving a formal definition since we will never use
TAG itself in our proofs, but will always resort to other strongly
equivalent formalisms. TAG is a mildly context-sensitive grammar
formalism that operates on a set of elementary trees of which a
subset is initial. To generate a tree, we start with an initial tree and
successively splice elementary trees into nodes using adjunction
operations. In an adjunction, we select a node, insert a new tree
there, and reinsert the original subtree below the selected node at
the distinguished and specially marked foot node of the inserted
tree. We use the non-strict variant of TAG, in which the root and
foot labels of the inserted tree need not coincide with the label of
the replaced node to perform an adjunction. To control at which
nodes adjunction is allowed, each node is equipped with two types
of constraints. The selective adjunction constraint specifies a set of
trees that can be adjoined and the Boolean obligatory adjunction
constraint specifies whether adjunction is mandatory. Only trees
without obligatory adjunction constraints are part of the generated
tree language.

1:

{2, 3}+

𝛼2

𝛾2

𝛾𝛿

𝛼

2:

{2, 3}+

𝛼2

𝛾2

𝛾𝛾∗
2

𝛼

3:

{4}

𝛽2

𝛽𝛾∗
2

4: {5}𝜂2

𝛽∗𝛽

5:

{5}

𝜂2

𝜂∗2𝛽
Figure 2.2: Tree-adjoining gram-
mar G3 (see Example 2.3.4).

20 2 Preliminaries

{2, 3}+

𝛼2

𝛾2

𝛾𝛿

𝛼 ⇒G3
{2, 3}+

𝛼2

𝛼2

𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

⇒G3
{4}

𝛼2

𝛼2

𝛽2

𝛽𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

⇒G3
{5}

𝛼2

𝛼2

𝛽2

𝜂2

𝛽𝛽

𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

⇒G3

{5}

𝛼2

𝛼2

𝛽2

𝜂2

𝜂2

𝛽𝛽

𝛽

𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

Figure 2.3: Derivation using the tree-adjoining grammar G3 of Figure 2.2 (see Example 2.3.4).

Example 2.3.4 Figure 2.2 shows the elementary trees of an
example TAG G3. Only tree 1 is initial and foot nodes are marked
by a superscript asterisk ·∗ on the label. Whenever adjunction is
forbidden (i.e., empty set as selective adjunction constraint and
non-obligatory adjunction), we omit the constraints altogether.
Otherwise, the constraints are put next to the label. For example,
{2, 3}+ indicates that tree 2 or 3 must (+ = obligatory) be adjoined.
Figure 2.3 shows a derivation using G3. Note that we could stop
the derivation also after two or three steps since no obligatory
adjunction constraints are present in the respective trees.

2.4 Mild Context-Sensitivity

This section gives an overview of the landscape of mildly con-
text-sensitive formalisms and their most important properties.
The concepts introduced here provide additional background in-
formation for the interested reader and are intended to put our
contributions into a context.

It became evident that context-free grammar is not sufficient to
capture the expressivity of natural language; an example is the
aforementioned cross-serial word order in Dutch subordinate
clauses [84] (see Figure 1.3). This observation motivated the search
for formalisms that are sufficiently expressive and have beneficial
computational properties, and led to the introduction of mild
context-sensitivity.

2.4.1 Definition

The concept of mild context-sensitivity was originally introduced
by Joshi [37] as a property of formalisms. The following definition
concerning language classes is due to Kallmeyer, who gives an
overview over parsing algorithms for mildly context-sensitive
formalisms in her book [39].

2.4 Mild Context-Sensitivity 21

context-free

context-sensitive

LCFRS/MCFG

TAG CCG LIG sCFTG

Figure 2.4: Inclusion relation of the
two major mildly context-sensitive
language classes. The inclusions are
proper and mildly context-sensitive
formalisms (highlighted) depicted
in the same class have the same ex-
pressivity on strings, respectively.

Definition 2.4.1 (cf. [39, page 23]) A class 𝔏 of languages is mildly
context-sensitive iff

1. 𝔏 contains all context-free languages,
2. 𝔏 can describe cross-serial dependencies, i.e., there is an 𝑛 ≥ 2

such that {𝑤𝑘 | 𝑤 ∈ Σ∗} ∈ 𝔏 for all 𝑘 ≤ 𝑛,
3. the languages in 𝔏 are polynomially parsable, i.e., 𝔏 ⊆ 𝑃𝑇𝐼𝑀𝐸,

and
4. the languages in 𝔏 have the constant growth property.

Similarly, a formalism is mildly context-sensitive iff the set of lan-
guages that it can specify (i.e., generate or accept) is mildly
context-sensitive.

The constant growth property roughly means that, given a language,
when ordering its words by length, this length grows at most
linearly. Kallmeyer [39] gives the following formal definition,
which is a modified version of the definition by Weir [95]: Given a
language L, there is a constant 𝑐0 > 0 and a finite set of constants
𝐶 ⊆ ℕ+ so that for all words 𝑤 ∈ L with length |𝑤| > 𝑐0 there is a
word 𝑤′ ∈ L such that |𝑤| = |𝑤′| + 𝑐, where 𝑐 ∈ 𝐶. It is motivated
by the intuition that sentences in natural language are composed
of a finite set of clauses of bounded length.

There exist several natural classes of mildly context-sensitive lan-
guages, of which we will consider only the two major classes here.
The placement of these classes in the Chomsky hierarchy and
important formalisms generating them are shown in Figure 2.4.
For a more detailed overview, see Kallmeyer [39, page 215]. Our
main focus is on the tree-adjoining languages, because it is the
class generated by CCG.

2.4.2 Tree-Adjoining Languages

On the lowest level of expressivity are the formalisms TAG, CCG,
LIG, and sCFTG, which have the same expressive power on
strings [93]. TAG and sCFTG have also been shown to have the
same expressivity on trees [45]. They are usually referred to as
tree-adjoining languages since TAG is probably the most prominent

22 2 Preliminaries

and well-studied of these formalisms.55: This class is sometimes also re-
ferred to as nearly context-free, just-
non-context-free, or mildly non-context-
free [87].

Automaton representations
equivalent to TAG are the embedded push-down automaton [90]
for string languages and the linear top-down push-down tree
automaton [21] for tree languages. There also exist Chomsky–
Schützenberger characterizations of the string languages [95] and
tree languages [65] generated by TAG. Further, several logical
characterizations have been proposed [1, 66, 68, 71].

The counting language of degree 𝑚 is defined as {𝑎𝑛1 . . . 𝑎𝑛𝑚 | 𝑛 ≥ 1}
with alphabet Σ = {𝑎1 , . . . , 𝑎𝑚}. Examples for languages that can
be generated by TAG but not by CFG are are the counting languages
of degree 3 and 4 and the copy language

{
𝑤𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗

}
[37].

Being able to generate the cross-serial dependencies of Dutch
essentially boils down to being able to generate the copy language
[39, page 20].

Closure Properties The tree-adjoining languages are a substitu-
tion-closed full abstract family of languages (AFL) [90, Chapter 4.1].
In other words, they are closed under union, concatenation, in-
tersection with regular languages, Kleene-star, homomorphism,
inverse homomorphism, and additionally under substitution. On
the other hand, they are not closed under intersection, complement,
or under intersection with context-free languages.

When regarding the tree languages that can be generated by
TAG, the closure properties of simple monadic context-free tree
languages can be assumed. They are closed under union, relabeling,
𝛼-concatenation [32, Lemma 23], 𝛼-iteration [32, Lemma 25],6

6: The 𝛼-concatenation T1 ·𝛼 T2 of
two tree languages T1, T2 is obtained
by replacing each occurrence of the
leaf symbol 𝛼 in a tree in T1 (nonde-
terministically) by a tree in T2. The
𝛼-iterationT ∗

𝛼 is obtained by iterating
this process with tree language T .
These operations are also referred to
as 𝛼-substitution and 𝛼-substitution
closure [22] or as 𝛼-replacement and
𝛼-replacement iteration [32].

intersection with regular tree languages [69, Theorem 2.35], and
inverse linear tree homomorphism [70, Theorem 8.1]. On the other
hand, they are not closed under intersection or complement. The
first follows from the fact that their path languages7

7: The path language of a tree lan-
guage is the set of all paths that lead
from the root to some leaf in any of
the trees.

are context-
free [72, page 113]. Using the same technique as for showing
that context-free languages are not closed under intersection [27,
Theorem 6.4.2], it is possible to construct two sCFTGs whose
intersection has a path language that is non-context-free. That the
class is not closed under complement is a consequence of it being
closed under union but not under intersection.

Pumping Lemma The following pumping lemma for TAG has
been shown by Vĳay-Shanker. It can be used to show that a
language cannot be generated by TAG.

2.4 Mild Context-Sensitivity 23

Theorem 2.4.2 [90, Theorem 4.7, page 101] Let L = L(G) be a
language generated by a TAG G. Then there exists a constant 𝑛 such
that if 𝑤 ∈ L with |𝑤| > 𝑛, we can write 𝑤 = 𝑢1𝑣1𝑤1𝑣2𝑢2𝑣3𝑤2𝑣4𝑢3
with |𝑣1𝑤1𝑣2𝑣3𝑤2𝑣4| ≤ 𝑛 and |𝑣1𝑣2𝑣3𝑣4| ≥ 1 such that for all 𝑖 ≥ 0,
the word 𝑢1𝑣

𝑖
1𝑤1𝑣

𝑖
2𝑢2𝑣

𝑖
3𝑤2𝑣

𝑖
4𝑢3 ∈ L as well.

2.4.3 Multiple Context-Free Languages

On a higher level of expressivity we find two very similar for-
malisms that use the same idea, but have been developed indepen-
dently. They are called multiple context-free grammar (MCFG) [78]
and linear context-free rewriting systems (LCFRS) [94, 95]. They
extend CFG in such a way that during the derivation, each non-
terminal may store a tuple of strings that can be combined and
extended using the production rules. Due to this feature, a non-
terminal can generate a discontinuous part of the output string.
Increasing the fan-out of the grammar, i.e., the maximum number
of strings associated with a nonterminal, yields a hierarchy of
increasing expressivity [78, Theorem 3.4].

Notable languages generated by MCFG are the double copy language{
𝑤𝑤𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗

}
[39, page 110] and the counting languages

of higher degrees (depending on the fan-out) [78, Example 2.1].
The abovementioned languages cannot be generated by a TAG [37].
Let MIX =

{
𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ | |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐

}
, where |𝑤|𝑠 is

the number of occurrences of 𝑠 ∈ {𝑎, 𝑏, 𝑐} in 𝑤. MIX cannot be
generated by a TAG [43], but by an MCFG with fan-out 2 [73].

An important subclass is that of well-nested MCFG [40, 42], whose ex-
pressivity lies between that of TAG and MCFG. It can be generated
by a number of different formalisms and can therefore be consid-
ered as a natural class as well. Well-nested MCFG with fan-out 2
has the same expressive power as TAG [41, Theorem 5.2].

Combinatory Categorial
Grammar 3

3.1 Categories 25
3.2 Rules 26
3.3 Grammars 30

In this chapter, we will formally introduce the CCG formalism that
is used throughout this thesis. An informal introduction was given
in Section 1.1. The formalism is based on the definition given by
Vĳay-Shanker and Weir [93], but extends it by substitution rules.

We will start by introducing categories, which constitute the basic
building blocks of CCG derivations. Then, we will describe how
categories can be combined using rules, and also how these rules
can be restricted, instantiated, and how they interact inside a rule
system. Then, CCG is defined by combining the rule system and a
lexicon. While the lexicon stores syntactic information for the input
symbols in the form of categories, the rule system controls how to
project this syntactic information onto longer input sequences.

3.1 Categories

Categories are syntactic types that can either be primitive, like S
(“sentence”) or NP (“noun phrase”), or complex, like (S\NP)/NP
or S\NP. The intended interpretation of a complex category of
the general form 𝑋/𝑌 or 𝑋\𝑌 is that it takes an argument of
category 𝑌 and returns an object of category 𝑋. Thus, complex
categories constitute function types.

Formally, given an alphabet 𝐴 of atomic categories or atoms and the
set of slashes 𝐷 = {/, \}, we view categories as trees C(𝐴) = 𝑇𝐷,∅(𝐴),
which are binary trees whose internal nodes are slashes and whose
leaves are atomic categories. The slashes are left-associative by
convention, so by omitting unnecessary parentheses and using
infix notation, we can write each category as

𝑐 = 𝑎|1𝑐1 · · · |𝑘𝑐𝑘

where 𝑘 ≥ 0, 𝑎 ∈ 𝐴, and |𝑖 ∈ 𝐷, 𝑐𝑖 ∈ C(𝐴) for all 𝑖 ∈ [𝑘].
The atomic category 𝑎 is called the target of 𝑐 and denoted
by target(𝑐). The slash–category pairs |𝑖𝑐𝑖 are called arguments and
their number 𝑘 is called the arity of 𝑐 and written as arity(𝑐). Let
args(𝑐) =

{
|𝑖𝑐𝑖 | 𝑖 ∈ [𝑘]

}
be the set of all arguments of category 𝑐.

In addition, we write arg(𝑐, 𝑖) to access its 𝑖-th argument |𝑖𝑐𝑖 .

We distinguish two types of categories. In first-order categories, all ar-
guments are atomic, so 𝑐𝑖 ∈ 𝐴 for all 𝑖 ∈ [𝑘], whereas in higher-order
categories, the arguments can have arguments themselves. The set
of all first-order categories over 𝐴 is denoted by C0(𝐴).

26 3 Combinatory Categorial Grammar

Example 3.1.1 Category S\NP/NP is identical to (S\NP)/NP
due to left-associativity of slashes. It has target S and two argu-
ments \NP and /NP, thus it is a first-order category with arity 2.
Note that this category is different from S\(NP/NP), which is a
higher-order category with arity 1.

/

\

S NP

NP

\

/

NPNP

S

Figure 3.1: Categories (S\NP)/NP
(left) and S\(NP/NP) (right) de-
picted as trees.

It is noted that, from the tree perspective, a sequence of arguments
is a context 𝛼 = □ |1𝑐1 · · · |𝑘𝑐𝑘 , which is why we will also call it
argument context. We will sometimes omit the leading □ and write
an argument context simply as |1𝑐1 · · · |𝑘𝑐𝑘 . The number 𝑘 is the
length of 𝛼 and we write it as |𝛼|. We further let A(𝐴) ⊆ 𝐶𝐷,∅(𝐴)
be the set of all argument contexts over 𝐴. Finally, for every 𝑘 ∈ ℕ,
we define the sets C(𝐴, 𝑘) =

{
𝑐 ∈ C(𝐴) | arity(𝑐) ≤ 𝑘

}
and

A(𝐴, 𝑘) =
{
𝛼 ∈ A(𝐴) | 𝑘 ≥ |𝛼|

}
.

In Section 2.3, we introduced the notation 𝐶[𝑡] for the substitution
𝐶[𝑡]pos□(𝐶), where 𝑡 ∈ 𝑇Σ2 ,Σ1(Σ0) ∪ 𝐶Σ2 ,Σ1(Σ0) and 𝐶 ∈ 𝐶Σ2 ,Σ1(Σ0)
for some ranked set Σ. When substituting a category or argument
context 𝑡 ∈ C(𝐴) ∪A(𝐴) into an argument context 𝐶 ∈ A(𝐴), we
may simply write 𝑡𝐶.

For all categories and argument contexts 𝛼, 𝛼′ ∈ C(𝐴) ∪A(𝐴) we
write 𝛼 ⊑ 𝛼′ if there exists a position 𝑤 ∈ pos(𝛼′) ∩ {1}∗ such
that 𝛼 = 𝛼′|𝑤 (i.e., 𝛼 is a subtree of 𝛼′ that is located on the path
from the root to the left-most leaf). In other words, if 𝛼 ⊑ 𝛼′

and 𝛼′ = 𝑎|1𝑐1 · · · |ℓ 𝑐ℓ , then 𝛼 = 𝑎|1𝑐1 · · · |𝑖𝑐𝑖 for some 𝑖 ≤ ℓ . We
say that 𝛼 is a prefix of 𝛼′.

3.2 Rules

The rule system specifies how categories can be combined to derive
new categories. We use the binary rules of composition, their
special case of application, and substitution. We unify these binary
rule types using a compact schema. Each binary rule describes
how a primary category can be combined with a secondary category
to produce an output category, which is written below the input
categories. There is a forward and backward variant, differing in the
direction of a specific slash in the primary category. We will write
the respective forward rule on the left side and the backward rule
on the right side in following, with the respective primary category
being highlighted.

3.2.1 Combinatory Rules

We introduce combinatory rules as a compact schema that covers
both composition and substitution rules in a uniform manner. Each

3.2 Rules 27

combinatory rule has one of the forms

𝑏/𝑐𝛼 𝑐𝛼𝛽

𝑏𝛼𝛽

𝑐𝛼𝛽 𝑏\𝑐𝛼
𝑏𝛼𝛽

where 𝛼 and 𝛽 are sequences of slash–variable pairs such that
|𝛼| ≤ 1 and |𝛽| ≥ 0. The variables in 𝛼 and 𝛽 as well as 𝑏 and 𝑐

are category variables that range over C(𝐴). We shall refer to |𝑐𝛼
as bridging arguments and to the sequence 𝛼𝛽 as the excess. The
primary category expects the bridging arguments to be provided
by the secondary category. The leading slash of the argument |𝑐,
which is the argument that gets removed when the rule is applied,
specifies the direction where the secondary category is found. The
output category follows the form of the primary category with the
bridging arguments being replaced by the excess. It is noted that
we can write down combinatory rules more explicitly as

𝑏/𝑐𝛼 𝑐𝛼|1𝑐1 · · · |𝑘𝑐𝑘
𝑏𝛼|1𝑐1 · · · |𝑘𝑐𝑘

𝑐𝛼|1𝑐1 · · · |𝑘𝑐𝑘 𝑏\𝑐𝛼
𝑏𝛼|1𝑐1 · · · |𝑘𝑐𝑘

where 𝛼 ∈ {□, |𝑑} with | ∈ 𝐷, and for 𝑖 ∈ [𝑘], we have |𝑖 ∈ 𝐷,
and 𝑏, 𝑐, 𝑑 and 𝑐𝑖 are category variables that range over C(𝐴).
Rules with |𝛼| = 0 are composition rules, and rules with |𝛼| = 1 are
substitution rules; application rules have |𝛼| = |𝛽| = 0. The length
|𝛼| + |𝛽| is called the degree of the rule.

The form of combinatory rules presented above is generic in the
sense that it only specifies the type of rule, the length of the excess,
and the slash directions. As long as the input categories match
these conditions and their bridging arguments coincide, such a
rule can be applied. We call these rules unrestricted. For every 𝑘 ∈ ℕ

let R(𝐴, 𝑘) be the finite set of all unrestricted composition rules
over 𝐴 with degree at most 𝑘 and let R𝑠(𝐴, 𝑘) be the finite set of
all unrestricted composition and substitution rules over 𝐴 with
degree at most 𝑘.

3.2.2 Rule Restrictions

We can optionally restrict combinatory rules using two types of rule
restrictions. A target restriction can restrict the target of the variable 𝑏
to a specific atomic category. More specifically, it can restrict 𝑏 to
range over a set of the form

{
𝑐 ∈ C(𝐴) | target(𝑐) = 𝑎

}
with 𝑎 ∈ 𝐴.

A secondary restriction can restrict the variables 𝑐, 𝑑, and any of the
variables 𝑐𝑖 with 𝑖 ∈ {0, . . . , 𝑘} to some specific category in C(𝐴),
respectively. A combinatory rule with rule restrictions has thus

28 3 Combinatory Categorial Grammar

one of the forms

𝑎𝑥/𝑐𝛼 𝑐𝛼|1𝑐1 · · · |𝑘𝑐𝑘
𝑎𝑥𝛼|1𝑐1 · · · |𝑘𝑐𝑘

𝑐𝛼|1𝑐1 · · · |𝑘𝑐𝑘 𝑎𝑥\𝑐𝛼
𝑎𝑥𝛼|1𝑐1 · · · |𝑘𝑐𝑘

where 𝑎 ∈ 𝐴, 𝑐 ∈ C(𝐴)∪{𝑦}, 𝛼 ∈ {□, |𝑑}with | ∈ 𝐷, 𝑑 ∈ C(𝐴)∪{𝑧},
and |𝑖 ∈ 𝐷 and 𝑐𝑖 ∈ C(𝐴) ∪ {𝑦𝑖} for every 𝑖 ∈ [𝑘]. The category
variables 𝑦, 𝑧, 𝑦1 , . . . , 𝑦𝑘 can match any category of C(𝐴), while
the argument context variable 𝑥 can match any argument context
ofA(𝐴). Thus, 𝑐, 𝑑, 𝑐1 , . . . , 𝑐𝑘 can each be either a concrete category
of C(𝐴) or a category variable if no restriction is intended. Note
that in the primary category, we can only restrict the target and
the last argument in the case of composition rules; in substitution
rules, we can additionally restrict the second-to-last argument.

LetR(𝐴) be the set of all composition and substitution rules over 𝐴,
including both restricted and unrestricted rules.

3.2.3 Instantiation

Before a combinatory rule can be applied, it first has to be instanti-
ated by replacing the variables by concrete categories or argument
contexts, respectively, yielding a ground instance of the combinatory
rule. More specifically, in the unrestricted variant, variables 𝑏, 𝑐, 𝑑,
and 𝑐𝑖 for 𝑖 ∈ [𝑘] are replaced by concrete categories from C(𝐴); in
the restricted variant, variables 𝑦, 𝑧, and 𝑦𝑖 for 𝑖 ∈ [𝑘] are replaced
by concrete categories from C(𝐴) and the variable 𝑥 by a concrete
argument context from A(𝐴).

We would like to point out that for a fixed CCG there is only a finite
set of categories that the category variables 𝑐, 𝑑, and 𝑐𝑖 for 𝑖 ∈ [𝑘]
[respectively, 𝑦, 𝑧, and 𝑦𝑖 for 𝑖 ∈ [𝑘]] can be instantiated with
to yield useful rules. This is because all arguments of categories
occurring in derivations, and therefore all arguments occurring in
the applied ground instances, already appear in the lexicon [93,
Lemma 3.1] (see Section 3.3.3). Thus, the category variables listed
above only offer a more succinct rule description in the notion
of CCG. However, even if the secondary category contains no
variables, a combinatory rule still can have infinitely many useful
ground instances due to 𝑏 ranging over infinitely many categories
[respectively, 𝑥 ranging over infinitely many argument contexts].

Example 3.2.1 Consider the restricted forward composition
rule 𝑟 =

𝐶𝑥/𝐶 𝐶/𝐸 /𝐵
𝐶𝑥/𝐸 /𝐵 , where {𝐵, 𝐶, 𝐸} are atoms. It has bridg-

ing argument /𝐶 and excess /𝐸\𝐵. A possible ground instance
of this rule is 𝐶/𝐵/𝐸/𝐶 𝐶/𝐸 /𝐵

𝐶/𝐵/𝐸/𝐸 /𝐵 , where 𝑥 was replaced by argu-
ment context □/𝐵/𝐸. The primary category 𝑐1 = 𝐶/𝐵/𝐸/𝐶

3.2 Rules 29

has target(𝑐1) = 𝐶 and args(𝑐1) = {/𝐵, /𝐸, /𝐶}. As 𝑐1 takes
three atomic categories as arguments, it is a first-order cate-
gory and arity(𝑐1) = 3. The rule degree of composition rules
is determined by the number of arguments replacing the last
argument of the primary category, so 𝑟 has degree 𝑘 = 2. Note
that the category 𝐶/𝐵/𝐸/𝐶 can also be written as ((𝐶/𝐵)/𝐸)/𝐶,
which is different from (𝐶/𝐵)/(𝐸/𝐶). The latter is a higher-order
category. The rules 𝐶𝑥/(𝐸/𝐶) 𝐸/𝐶 /𝐵

𝐶𝑥 /𝐵 and 𝐶𝑥/(𝐸/𝐶) 𝐸/𝐶 /(𝐵/𝐵)
𝐶𝑥 /(𝐵/𝐵) are

both composition rules of degree 1.

Example 3.2.2 Let us now consider the restricted backward
substitution rule 𝐵/𝐸/𝑦1 𝐶𝑥\𝐵/𝐸

𝐶𝑥/𝐸/𝑦1
with bridging arguments \𝐵/𝐸

and excess /𝐸/𝑦1, where 𝑦1 is a category variable. Because the
excess consists of two arguments, the rule has degree 2. Further,
since the bridging arguments start with a backward slash, it
is a backward rule and the secondary category appears on the
left side. A possible instantiation of this rule is 𝐵/𝐸/(𝐵\𝐶) 𝐶\𝐵/𝐸

𝐶/𝐸/(𝐵\𝐶) ,
where 𝑥 was replaced by the empty context □ and 𝑦1 by the
category 𝐵\𝐶.

3.2.4 Rule System

A rule system is a pair Π = (𝐴, 𝑅) consisting of an alphabet 𝐴 and a
finite set 𝑅 ⊆ R(𝐴) of rules over 𝐴. The set of all ground instances
of Π induces a relation · ·

· Π ⊆ C(𝐴)2 × C(𝐴), which extends to a
relation ⇒Π ⊆ C(𝐴)∗ × C(𝐴)∗ by

⇒Π =
⋃

𝜑,𝜓∈C(𝐴)∗

{
(𝜑 𝑐 𝑐′𝜓, 𝜑 𝑐′′𝜓)

�� 𝑐 𝑐′
𝑐′′ Π

}
.

It describes how to derive from a sequence of categories a new
sequence of categories by repeatedly combining neighboring cate-
gories using the rules in 𝑅.

3.2.5 Type-Raising

Although it is not used by our CCG, type-raising [86, page 43] is
presented here because it plays a role in practical implementa-
tions of CCG. It is used to ‘turn arguments into functions over
functions-over-such-arguments’ [86, page 43]. Thereafter, a cat-
egory that would normally serve as an argument (i.e., be used
as a secondary category) can be composed with other function
type categories and participate in certain coordinating structures.
Type-raising is a unary rule, but as for binary rules, there exists a

30 3 Combinatory Categorial Grammar

forward and a backward variant. The rule has one of the forms

𝑐

𝑏/(𝑏\𝑐)
𝑐

𝑏\(𝑏/𝑐)

where 𝑏 and 𝑐 are category variables. However, they are limited to
a finite set of categories, thus infinite recursion is forbidden.

3.3 Grammars

We are now ready to give a formal definition of CCG based on
that of Vĳay-Shanker and Weir [93], but additionally allowing
substitution rules.

Definition 3.3.1 ([93]) A combinatory categorial grammar (CCG)
is a tuple G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) consisting of

▶ an alphabet Σ of input symbols,
▶ a rule system (𝐴, 𝑅),
▶ a set 𝐼 ⊆ 𝐴 of initial categories,
▶ and a finite relation 𝐿 ⊆ Σ≤1 × C(𝐴) called lexicon.

It is a 𝑘-CCG, for 𝑘 ∈ ℕ, if each 𝑟 ∈ 𝑅 has degree at most 𝑘.

The lexicon can assign categories not only to the possible input
symbols from Σ, but also to the empty word 𝜀. These lexicon
entries are called 𝜀-entries. A category 𝑐 occurring in some lexicon
entry 𝑐 ∈ 𝐿(𝛼) with 𝛼 ∈ Σ≤1 is called lexical category. Because
𝐿(Σ≤1) is finite, there exists 𝑘 ∈ ℕ such that 𝐿(Σ≤1) ⊆ C(𝐴, 𝑘). The
least such integer 𝑘 is called the arity of 𝐿 and denoted by arity(𝐿);
i.e., arity(𝐿) = max

{
arity(𝑐) | 𝑐 ∈ 𝐿(Σ≤1)

}
. If 𝐿 = ∅, then we

let arity(𝐿) = 0.

In a pure 𝑘-CCG, the rule system contains all unrestricted rules up
to degree 𝑘, either including or excluding substitution rules. Thus,
as long as the degree limit is respected, all instances of forward
and backward rules of the respective rule types can be applied.
Note how “non-pure” is different from “no rule restrictions”: For
example, a CCG that uses only unrestricted forward rules up to
some degree is not pure although it has no rule restrictions.

Definition 3.3.2 A 𝑘-CCG G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) is called pure if
𝑅 = R(𝐴, 𝑘) or 𝑅 = R𝑠(𝐴, 𝑘).

The classical categorial grammars of Ajdukiewicz and Bar-Hillel [8]
(AB-grammars) are 0-CCGs as they allow only application rules.
However, 0-CCGs are more general since they may use a subset of

3.3 Grammars 31

application rules or have rule restrictions, whereas AB-grammars
are pure.

Example 3.3.3 As an example, let G4 =
(
Σ, 𝐴,R(𝐴, 0), 𝐼 , 𝐿

)
be

the CCG given by the input alphabet Σ = {𝑏, 𝑐}, atomic cate-
gories 𝐴 = {𝐵, 𝐶}, initial categories 𝐼 = {𝐵}, and the lexicon 𝐿

with 𝐿(𝑏) = {𝐵/𝐶, 𝐵/𝐶/𝐵} and 𝐿(𝑐) = {𝐶}. Clearly, G4 is a
0-CCG and an AB-grammar. For a slightly more involved exam-
ple containing rule restrictions, we refer to Example 3.3.7.

𝑏
......

𝐵/𝐶/𝐵

𝑏
..

𝐵/𝐶

𝑐
..

𝐶

𝐵

𝐵/𝐶

𝑐
.........

𝐶

𝐵

Figure 3.2: Derivation using the
AB-grammar G4 of Example 3.3.3.

3.3.1 Generated String Language

The string language generated by a given CCG consists of those
strings that via the lexicon are associated with some sequence of
categories that the rule system can derive an initial category from.
Note that we may also use 𝜀-entries. Their categories can appear in
the sequence of lexical categories without contributing any input
symbols to the string as they correspond to the empty word 𝜀.

Definition 3.3.4 A CCG G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) generates the cate-
gory sequences CG ⊆ C(𝐴)∗ and the string language L(G) ⊆ Σ∗,
where Π = (𝐴, 𝑅),

CG =
{
𝜑 ∈ C(𝐴)∗

�� ∃𝑎0 ∈ 𝐼 : 𝜑 ⇒∗
Π
𝑎0

}
and

L(G) = 𝐿−1(CG) .

So the string languageL(G) contains all strings that can be relabeled
via the lexicon to a category sequence in CG .

Definition 3.3.5 A tree 𝑡 ∈ 𝑇C(𝐴),∅
(
𝐿(Σ≤1)

)
is a derivation tree

of G if 𝑡(𝑤1) 𝑡(𝑤2)
𝑡(𝑤) Π for every 𝑤 ∈ pos(𝑡) \ leaves(𝑡). The set of all

such trees is denoted by D(G). Note that it is not required that 𝑡(𝜀) ∈ 𝐼.

In other words, a derivation tree is a tree whose leaves are labeled
by lexical categories and whose internal nodes are labeled by
output categories of admissible rule applications that take as an
input the categories labeling the respective child nodes.

Following standard conventions for CCG, we draw derivation
trees with the root at the bottom. If the input symbol–category
mapping specified by the lexicon is indicated, we visualize it as
dotted lines (see Figure 1.1). However, when drawing derivation
trees we will usually omit lexical entries.

32 3 Combinatory Categorial Grammar

Figure 3.3: Derivation using the
CCG G5 of Example 3.3.7.

𝑏
................

𝐵

𝑏
.........

𝐵

𝑏
..

𝐵

𝑐
..

𝐶/𝐸/𝐶\𝐵
𝐶/𝐸/𝐶

𝑐
......

𝐶/𝐸/𝐶\𝐵
𝐶/𝐸/𝐸/𝐶\𝐵

𝐶/𝐸/𝐸/𝐶

𝑐
.............

𝐶/𝐸\𝐵
𝐶/𝐸/𝐸/𝐸\𝐵

𝐶/𝐸/𝐸/𝐸

𝑒
....................

𝐸

𝐶/𝐸/𝐸

𝑒
.......................

𝐸

𝐶/𝐸

𝑒
...........................

𝐸

𝐶

Example 3.3.6 The grammar of Example 3.3.3 generates the
string language L(G4) = {𝑏 𝑖𝑐 𝑖 | 𝑖 ≥ 1}, which is context-free but
not regular. A derivation tree for the string 𝑏𝑏𝑐𝑐 is shown in
Figure 3.2. Note that in this and the following derivations, we
do no longer explicitly label the rule instances with their names
(“forward application”, “backward composition”, etc.) as we did
in Figure 1.1.

Note that there can occur potentially infinitely many categories in
the derivation trees D(G) of a given CCG G, since their arity can
grow linearly in the length of the input string. This is illustrated
by the following example.

Example 3.3.7 Let G5 =
(
Σ, 𝐴, 𝑅, {𝐶}, 𝐿

)
be the 3-CCG given by

the alphabetΣ = {𝑏, 𝑐, 𝑒}, the atoms 𝐴 = {𝐵, 𝐶, 𝐸}, the lexicon 𝐿

with 𝐿(𝑏) = {𝐵}, 𝐿(𝑐) = {𝐶/𝐸\𝐵, 𝐶/𝐸/𝐶\𝐵}, 𝐿(𝑒) = {𝐸}, and
the rule set 𝑅 consisting of the rules

𝐶𝑥/𝐶 𝐶/𝐸/𝐶\𝐵
𝐶𝑥/𝐸/𝐶\𝐵

𝐶𝑥/𝐸 𝐸

𝐶𝑥

𝐶𝑥/𝐶 𝐶/𝐸\𝐵
𝐶𝑥/𝐸\𝐵

𝐵 𝐶𝑥\𝐵
𝐶𝑥

where 𝑥 ∈ A(𝐴). From a few sample derivations (see Figure 3.3)
we can convince ourselves that G5 generates the string lan-
guage L(G5) = { 𝑏 𝑖𝑐 𝑖𝑒 𝑖 | 𝑖 ≥ 1 }, which demonstrates that
3-CCGs can generate non-context-free string languages. In addi-
tion, the derivation treesD(G5) contain infinitely many categories
as labels.

3.3 Grammars 33

3.3.2 Generated Tree Language

The string language generated by a CCG can be obtained by
relabeling the leaf categories of the derivation trees rooted in an
initial category using the lexicon. For the generated tree language
we similarly allow a relabeling to avoid the restriction to the
particular symbols of C(𝐴). However, since the set C(𝐴) is infinite,
we restrict the possible relabelings such that they only depend on
the target and the last argument of a given category.

Definition 3.3.8 A category relabeling 𝜌 : C(𝐴) → Δ is a de-
terministic relabeling such that for all categories 𝑐, 𝑐′ ∈ C(𝐴) with
target(𝑐) = target(𝑐′) and arg

(
𝑐, arity(𝑐)

)
= arg

(
𝑐′, arity(𝑐′)

)
we

have 𝜌(𝑐) = 𝜌(𝑐′).

Definition 3.3.9 Assume we are given a CCG G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿)
and a category relabeling 𝜌 : C(𝐴) → Δ. Together, G and 𝜌 generate
the tree language T𝜌(G) ⊆ 𝑇Δ2 , ∅(Δ0) given by

T𝜌(G) =
{
𝜌(𝑡)

�� 𝑡 ∈ D(G), 𝑡(𝜀) ∈ 𝐼
}

.

A tree language T ⊆ 𝑇Δ2 ,∅(Δ0) is generatable G if there exists a
category relabeling 𝜌′ : C(𝐴) → Δ such that T = T𝜌′(G).

Note that for the sake of simplicity the above definition uses a de-
terministic relabeling, although the lexicon constitutes a nondeter-
ministic relabeling. This has no effect on the generative capacity.

3.3.3 Lexical Arguments

As mentioned above, all useful instantiations of secondary cat-
egories can only have lexical arguments (i.e., arguments of some
lexical category), limiting these instantiations to a finite number.
Similarly, primary categories can only have lexical arguments as
well, although their number of instantiations may be infinite (see
Example 3.3.7). The reason for this constraint on arguments is that
the application of combinatory rules can never create any new
arguments that were not present in the input categories already.
Thus, all arguments appearing in valid derivation trees have their
origin in the lexicon. We restate the following proposition [93,
Lemma 3.1], which expresses this property.

34 3 Combinatory Categorial Grammar

Proposition 3.3.10 (see [93, Lemma 3.1]) Let Π = (𝐴, 𝑅) be a rule
system, and let

𝑐1 · · · 𝑐𝑘 ⇒∗
Π
𝑐′1 · · · 𝑐′𝑘′

for some categories 𝑐1 , . . . , 𝑐𝑘 , 𝑐
′
1 , . . . , 𝑐

′
𝑘′ ∈ C(𝐴). Then 𝑘′ ≤ 𝑘 and

for each 𝑖 ∈ [𝑘′] the category 𝑐′
𝑖

is of the form 𝑐′
𝑖
= 𝑎𝑖|1𝑐′′1 · · · |ℓ 𝑐′′ℓ ,

where 𝑎𝑖 is the target of 𝑐 𝑗 for some 𝑗 ∈ [𝑘] and for each 𝑚 ∈ [ℓ] the
argument |𝑚𝑐′′𝑚 is an argument of the category 𝑐 𝑗𝑚 for some 𝑗𝑚 ∈ [𝑘].

Let args(𝐿) = ⋃
𝑐∈𝐿(Σ≤1) args(𝑐) be the set of lexical arguments. We

will often restrict ourselves to this finite set of arguments or to
categories using only these arguments. For this, we define the
set C𝐿(𝐴, 𝑘) =

{
𝑐 ∈ C(𝐴, 𝑘) | args(𝑐) ⊆ args(𝐿)

}
. The sets C𝐿(𝐴),

A𝐿(𝐴, 𝑘), and A𝐿(𝐴) are defined analogously.

Generative Power for
Low Rule Degrees 4

4.1 0-CCG 36
4.2 1-CCG 46

In this chapter, we investigate the tree-generative capacity of CCG
with rules of first and second degree. It is based on joint work with
Marco Kuhlmann and Andreas Maletti (see Section 1.5). As in most
of the formal work on CCG, we restrict our attention to the rules
of application and composition. Although the formalism we use
is based on the definition given by Vĳay-Shanker and Weir [93],
different from them, we will refrain from using 𝜀-entries. However,
our findings also show that their inclusion does not increase the
generative power for these CCGs. In the following, we will briefly
sketch the ideas behind our proofs.

CCG without composition operations can generate exactly those
regular tree languages where for each node there exists a short
path of bounded length to a leaf. Intuitively, application rules
shorten a category on the way from the leaf to the root. This is why
the maximal category length in the lexicon, which contains the
categories labeling leaves, puts a bound on this path length. In our
construction, we consider decompositions of trees into these short
paths and compile a lexicon containing categories modeling these
paths, which can then be assembled appropriately through the
CCG operations. For the construction, pure CCG is sufficient.

CCG allowing composition rules of first degree can generate exactly
the regular tree languages. To show this, we construct a CCG that
uses a certain finite set of categories, such that given a set of states
of a tree automaton, for each transition that could be present in
a tree automaton using these, there are corresponding categories
that could be combined via rules. The rule restrictions of the CCG
then control which of these rules are permitted, with the aim to
simulate only valid transitions of the given tree automaton.

If the 1-CCG is pure, as we will see in Section 5.2, it is less expressive
in terms of tree languages. Regarding string languages, it can still
generate all (𝜀-free) context-free languages. This is not immediately
clear, as pure CCG allows certain transformations of derivation
trees without affecting their acceptability. We show that, when
using the classical construction for showing weak equivalence of
CFG and categorial grammar [8], a pure 1-CCG with this lexicon
still generates the same string language as a pure 0-CCG.

36 4 Generative Power for Low Rule Degrees

4.1 0-CCG

In this section we characterize the tree languages generatable by
0-CCG. This has already been investigated by Buszkowski with a
focus on classical categorial grammar [10, Theorem 1.1]. We present
an alternative proof for this result. Let G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) be a
0-CCG. An important property of 0-CCG is that each category that
occurs in a derivation tree has arity at most arity(𝐿). Thus, the
derivation trees are built over a finite set of symbols.

Theorem 4.1.1 (see [8] and [89, Proposition 3.25]) The string
languages generated by 0-CCG are exactly the 𝜀-free context-free lan-
guages. Moreover, for each 0-CCG G the derivation tree language D(G)
and the tree languages generatable by G are regular.

Proof. It is rather easy to show that every 0-CCG generates a
context-free language.This also follows from the following fact
about its derivation tree language. It is considerably more com-
plicated to show that every 𝜀-free context-free language can be
generated by some 0-CCG, which has been proven by Bar-Hillel,
Gaifman, and Shamir [8].1

1: The result is considered to
be equivalent to the Greibach
normal-form theorem [26]. A CFG
G = (𝑁,Σ, 𝑆, 𝑃) in Greibach normal
form has only productions of the
form 𝑛 → 𝛼𝑛1 . . . 𝑛𝑚 , where 𝑚 ≥ 0,
𝑛, 𝑛1 , . . . , 𝑛𝑚 ∈ 𝑁 , and 𝛼 ∈ Σ. An
equivalent categorial grammar can
be constructed by using atoms 𝑁 ,
input symbols Σ, initial categories 𝑆,
and for each production a lexicon en-
try of the form 𝑛/𝑛𝑚/. . . /𝑛1 ∈ 𝐿(𝛼)
[67, Proposition 1.9].

By [89, Proposition 3.25], the tree lan-
guage D(G) is regular. Moreover, the regular tree languages are
closed under relabelings [22, Theorem 2.4.16] and intersection [22,
Theorem 2.4.2]. The intersection can be used to restrict D(G) to
those trees whose root symbol belongs to 𝐼. As a result, also T𝜌(G) is
regular for every category relabeling 𝜌.

To characterize the tree languages generatable by 0-CCG, we need
to introduce an additional structural property of the derivation
tree language D(G) and the generatable tree languages. Roughly
speaking, the min-height mht(𝑡) of a tree 𝑡 is the minimal length of
a path from the root to a leaf. Recall that the height coincides with
the maximal length of those paths. For all alphabets Σ2 and Σ0,
let mht : 𝑇Σ2 ,∅(Σ0) → ℕ be such that mht(𝑎) = 0 and

mht
(
𝑐(𝑡1 , 𝑡2)

)
= 1 + min

(
mht(𝑡1),mht(𝑡2)

)
for all 𝑎 ∈ Σ0, 𝑐 ∈ Σ2, and 𝑡1 , 𝑡2 ∈ 𝑇Σ2 ,∅(Σ0). A tree 𝑡 ∈ 𝑇Σ2 ,∅(Σ0)
is universally mht-bounded by ℎ ∈ ℕ if mht(𝑡|𝑤) ≤ ℎ for ev-
ery 𝑤 ∈ pos(𝑡). Finally, a tree language T ⊆ 𝑇Σ2 ,∅(Σ0) is universally
mht-bounded by ℎ if every 𝑡 ∈ T is universally mht-bounded
by ℎ, and it is universally mht-bounded if there exists ℎ ∈ ℕ such
that it is universally mht-bounded by ℎ. Note that “universally
mht-bounded” is a purely structural property of a tree as it only
depends on the shape of the tree, and is completely agnostic about
the node labels. The property is thus preserved by the application

4.1 0-CCG 37

of a relabeling. Consequently, 𝜌(T) is universally mht-bounded
by ℎ if and only if T is universally mht-bounded by ℎ for every
tree language T ⊆ 𝑇Σ2 ,∅(Σ0) and relabeling 𝜌 : (Σ2 ∪ Σ0) → Δ.

Example 4.1.2 Let us reconsider the 0-CCG G4 of Example 3.3.3.
The derivation tree language D(G4) is universally mht-bounded
by 1 (see Figure 3.3). The tree 𝛾

(
𝛼, 𝛾

(
𝛾(𝛼, 𝛼), 𝛾(𝛼, 𝛼)

))
shown

in Figure 4.1 also has min-height 1, but is only universally
mht-bounded by 2, since the subtree 𝛾

(
𝛾(𝛼, 𝛼), 𝛾(𝛼, 𝛼)

)
has

min-height 2.

𝛾

𝛼 𝛾

𝛾

𝛼 𝛼

𝛾

𝛼 𝛼

Figure 4.1: Tree with universal
mht-bound 2.

It turns out that exactly the universally mht-bounded regular tree
languages are generatable by 0-CCG. We already observed that
the tree languages generatable by 0-CCG are regular, but for the
converse we have to exploit the universal mht-bound. We first
show that indeed the tree languages generatable by 0-CCG are
universally mht-bounded.

Lemma 4.1.3 Let G be a 0-CCG. Then the tree language D(G) is
universally mht-bounded by arity(𝐿).

Proof. We first prove that mht(𝑡) ≤ arity(𝐿) − arity(𝑡(𝜀)) for ev-
ery 𝑡 ∈ D(G). For this, we use induction on 𝑡. In the induc-
tion base, for 𝑡 = 𝑐 ∈ 𝐿(Σ), we have arity(𝑐) ≤ arity(𝐿) and
thus mht(𝑐) = 0 ≤ arity(𝐿) − arity(𝑐). In the induction step,
let 𝑡 = 𝑐(𝑡1 , 𝑡2) with 𝑐 ∈ C(𝐴) and 𝑡1 , 𝑡2 ∈ D(G). Since G is a
0-CCG, we can only use application rules. As a result, we have
arity(𝑐) ≤ max

(
arity(𝑡(1)), arity(𝑡(2))

)
−1, which we call (†). By the

induction hypothesis (IH), we have mht(𝑡1) ≤ arity(𝐿)− arity(𝑡(1))
and mht(𝑡2) ≤ arity(𝐿) − arity(𝑡(2)). Thus, we obtain

mht
(
𝑐(𝑡1 , 𝑡2)

)
= 1 + min

(
mht(𝑡1),mht(𝑡2)

)
(IH)
≤ 1 + min

(
arity(𝐿) − arity

(
𝑡(1)

)
, arity(𝐿) − arity

(
𝑡(2)

))
= 1 + arity(𝐿) − max

(
arity

(
𝑡(1)

)
, arity

(
𝑡(2)

))
(†)
≤ 1 + arity(𝐿) −

(
arity(𝑐) + 1

)
= arity(𝐿) − arity

(
𝑡(𝜀)

)
as required. This completes the induction. Now let 𝑡 ∈ D(G)
and 𝑤 ∈ pos(𝑡). Then 𝑡|𝑤 ∈ D(G) is a derivation tree, and
thus mht(𝑡|𝑤) ≤ arity(𝐿) by the auxiliary statement, which proves
that 𝑡 is universally mht-bounded by arity(𝐿).

38 4 Generative Power for Low Rule Degrees

Since the universal mht-bound is a structural property, we can
transfer it from the derivation trees to the relabeled trees. The
following corollary is a direct consequence of Lemma 4.1.3.

Corollary 4.1.4 There exist regular tree languages T ⊆ 𝑇Σ2 ,∅(Σ0)
that are not generatable by any 0-CCG.

Proof. The tree language T = 𝑇Σ2 ,∅(Σ0) for non-empty alphabets
Σ2 andΣ0 is not generatable by any 0-CCG since it is not universally
mht-bounded.

We have thus established that the tree languages generatable by
0-CCG are regular and universally mht-bounded. We note that
this result does not concern weak generative capacity. In partic-
ular, every (binary) regular tree language can be converted into
a universally mht-bounded one that yields the same strings; this
implies that a formalism that is able to generate all universally
mht-bounded regular tree languages will still be weakly equiva-
lent to the full class of regular tree languages, and therefore, to
context-free (string) grammars.

The remainder of this section will be devoted to proving the inverse
direction of Theorem 4.1.1. More precisely, we will show that every
universally mht-bounded regular tree language can be generated
by a 0-CCG, which will actually be pure. The construction uses
the universal mht-bound, which yields short paths to a leaf. We
utilize those paths to decompose the tree into spines, which are
short paths in the tree that lead from a node to a leaf and are never
longer than the universal min-height. When starting from a lexical
category, the primary categories for the applications are placed
along those spines and each spine terminates in an atomic category
that can be combined with a category from another spine.

We will start by introducing the necessary notions and present-
ing the construction before proving its correctness. Therefore, let
T ⊆ 𝑇Σ2 ,∅(Σ0) be a tree language that is regular and universally
mht-bounded by some ℎ ∈ ℕ. Since T is regular, there exists a
CFG G = (𝑁, Γ, 𝑆, 𝑃) and a deterministic relabeling 𝜌 [22, The-
orem 2.9.5] such that T =

{
𝜌(𝑡) | 𝑡 ∈ D(G), 𝑡(𝜀) ∈ 𝑆

}
. Without

loss of generality, we can assume that 𝑁 does not contain useless
nonterminals.2

2: We require that for every non-
terminal 𝑛 ∈ 𝑁 there exist
strings 𝑤, 𝑤1 , 𝑤2 ∈ Γ∗ and a
start nonterminal 𝑛0 ∈ 𝑆 such
that 𝑛0 ⇒∗

G 𝑤1𝑛𝑤2 ⇒∗
G 𝑤.

Since the composition of two (deterministic) rela-
belings (seen as relations) is again a (deterministic) relabeling, it is
sufficient to prove that there exists a pure 0-CCG G′ and a category
relabeling 𝜌′ such that T𝜌′(G′) =

{
𝑡 ∈ D(G) | 𝑡(𝜀) ∈ 𝑆

}
. We observe

that D(G) is also universally mht-bounded by ℎ.

4.1 0-CCG 39

S

VP

NP

NP

lightred

the

ran

NP

carthe

⟨S, 2⟩

⟨VP, 1⟩

⟨NP, 2⟩

⟨NP, 2⟩

lightred

the

ran

⟨NP, 1⟩

carthe

𝑟1
𝑟2

𝑟3

Figure 4.2: CFG derivation tree and
a decomposition into spinal runs.
(Trivial spines consisting of a single
node are omitted.)

First, we will annotate each nonterminal of the CFG derivation
trees with a direction 𝛿 ∈ [2] that indicates which successor
continues the spine, where 1 indicates left and 2 indicates right (see
Figure 4.2). Based on these annotations, the derivation trees can be
decomposed into spinal runs, which are trees consisting of a path
from some node to a leaf following the spine, together with the
(unannotated) children located next to the spine (see Figure 4.3).
For each spinal run 𝑟, we define direct spine access via 𝑟[𝑖] ∈ Γ∪𝑁 ,
which is the (unannotated) 𝑖-th node label on the spine. The base
base(𝑟) ∈ Γ of the spine is the label of the leaf at its bottom.

Definition 4.1.5 For every 𝑟 ∈ 𝑇𝑁×[2],∅(Γ ∪ 𝑁) we let 𝑟[0] = 𝑟

if 𝑟 ∈ Γ ∪ 𝑁 and 𝑟[0] = 𝑛 if 𝑟 = ⟨𝑛, 𝛿⟩(𝑟1 , 𝑟2) for some 𝑛 ∈ 𝑁 ,
𝛿 ∈ [2], and 𝑟1 , 𝑟2 ∈ 𝑇𝑁×[2],∅(Γ ∪ 𝑁).

The set SR(G) of spinal runs of G is defined as the smallest set
𝑀 ⊆ 𝑇𝑁×[2],∅(Γ ∪ 𝑁) such that

(i) Γ ⊆ 𝑀, and
(ii) ⟨𝑛, 𝛿⟩(𝑟1 , 𝑟2) ∈ 𝑀 for every 𝑛 ∈ 𝑁 , 𝛿 ∈ [2], 𝑟3−𝛿 ∈ Γ ∪ 𝑁 ,

and 𝑟𝛿 ∈ 𝑀 with
(
𝑛 → 𝑟1[0] · 𝑟2[0]

)
∈ 𝑃.

For 𝑟 ∈ SR(G) and 𝑖 ∈ [ht(𝑟)], direct spine access 𝑟[𝑖] ∈ Γ ∪ 𝑁

is inductively defined through 𝑟[0] and, if 𝑟 = ⟨𝑛, 𝛿⟩(𝑟1 , 𝑟2) for
some 𝑛 ∈ 𝑁 , 𝛿 ∈ [2], 𝑟3−𝛿 ∈ Γ∪𝑁 , and 𝑟𝛿 ∈ SR, by 𝑟[𝑖] = 𝑟𝛿[𝑖−1].

Additionally, let base(𝑟) = 𝑟[ht(𝑟)].

Since D(G) is universally mht-bounded by ℎ, we are interested
only in those spines of length at most ℎ. Thus, let us define the
set SR =

{
𝑟 ∈ SR(G) | ht(𝑟) ≤ ℎ

}
. It is clearly finite, so we can use

it to build the atomic categories 𝐴 = (Γ ∪ 𝑁) × SR × (Γ ∪ 𝑁). Each
atomic category thus stores two symbols, which are required for
relabeling, and a spinal run to enforce consistency.

Each short spinal run can then be transformed into an argument
context that will be used to simulate the respective spine in the CCG
derivation tree. For this, the node that is placed at the bottom of the

40 4 Generative Power for Low Rule Degrees

⟨S, 2⟩

NP ⟨VP, 1⟩

ran NP

/

\

□ ⟨NP, 𝑟1 ,VP⟩

⟨NP, 𝑟1 , ran⟩

𝑟1[0] = S 𝑟1[1] = VP

𝑟1[2] = base(𝑟1) = ran

⟨NP, 2⟩

the ⟨NP, 2⟩

red light

\

\

□ ⟨the, 𝑟3 ,NP⟩

⟨red, 𝑟3 , light⟩

𝑟3[0] = NP 𝑟3[1] = NP

𝑟3[2] = base(𝑟3) = light
Figure 4.3: Two spinal runs 𝑟1 (left) and 𝑟3 (right) indicated in Figure 4.2 together with their argument contexts
argc(𝑟1 , 𝑟1) and argc(𝑟3 , 𝑟3) and their bases base(𝑟1) and base(𝑟3).

spinal run needs to be transformed into the outermost argument,
since it will be removed first in the CCG derivation. The labels of
a spinal node and its non-spinal neighbor are stored in a single
argument, which will be used to relabel the primary category and
the combining secondary category that correspond to these nodes,
respectively. The notion of spinal runs and the construction of the
argument context are illustrated in Figure 4.3.

We formally specify this construction using the function argc(𝑟, 𝑟′),
where 𝑟 is the spinal run that the argument context to be constructed
is based on, and 𝑟′ will be stored in each atom, indicating the spinal
run that the atom belongs to and started the construction. When
the construction is started, 𝑟 and 𝑟′ coincide.

Definition 4.1.6 We construct the argument context argc(𝑟, 𝑟′),
which is an element of A(𝐴, ℎ), for all spinal runs 𝑟, 𝑟′ ∈ SR as
follows:

▶ if 𝑟 ∈ Γ, then argc(𝑟, 𝑟′) = □,
▶ if 𝑟 = ⟨𝑛, 𝛿⟩(𝑟1 , 𝑟2) for some 𝑛 ∈ 𝑁 , 𝛿 ∈ [2], 𝑟3−𝛿 ∈ Γ ∪ 𝑁 ,

and 𝑟𝛿 ∈ SR, then3
3: For better readability, we
write |(□, 𝑐) using the infix
notation □ | 𝑐. argc

(
𝑟, 𝑟′

)
= argc

(
𝑟𝛿 , 𝑟

′) [□ | 〈𝑟3−𝛿 , 𝑟
′, 𝑟𝛿[0]

〉]
where | = / if 𝛿 = 1 and | = \ otherwise.

Now we are ready to define the pure 0-CCG that simulates G
and the associated category relabeling 𝜌′. Each of the constructed
argument contexts can be combined with any target storing the
correct root symbol of the spinal run that the argument context
belongs to, and is associated with the base of the spinal run via
the lexicon.

4.1 0-CCG 41

⟨S, 𝑟3 , light⟩

⟨NP, 𝑟1 ,VP⟩

⟨NP, 𝑟1 ,VP⟩/⟨car, 𝑟2 , the⟩ ⟨car, 𝑟2 , the⟩

⟨S, 𝑟3 , light⟩\⟨NP, 𝑟1 ,VP⟩

⟨S, 𝑟3 , light⟩\⟨NP, 𝑟1 ,VP⟩/⟨NP, 𝑟1 , ran⟩ ⟨NP, 𝑟1 , ran⟩

⟨the, 𝑟3 ,NP⟩ ⟨NP, 𝑟1 , ran⟩\⟨the, 𝑟3 ,NP⟩

⟨red, 𝑟3 , light⟩ ⟨NP, 𝑟1 , ran⟩\⟨the, 𝑟3 ,NP⟩\⟨red, 𝑟3 , light⟩

Figure 4.4: Derivation tree of the 0-CCG with the symbol resulting after relabeling underlined. It is based on the
decomposition into spinal runs indicated in Figure 4.2. Note that, despite our conventions for CCG derivation trees, the
root is drawn at the top to make the correspondence to Figure 4.2 more evident.

Definition 4.1.7 Given CFG G = (𝑁, Γ, 𝑆, 𝑃) without useless non-
terminals and with D(G) being universally mht-bounded by ℎ, the
0-CCG G′ =

(
Γ, 𝐴,R(𝐴, 0), 𝑆 × SR × (Γ ∪ 𝑁), 𝐿

)
is defined on

the basis of SR =
{
𝑟 ∈ SR(G) | ht(𝑟) ≤ ℎ

}
, atomic categories

𝐴 = (Γ ∪ 𝑁) × SR × (Γ ∪ 𝑁), and the lexicon given by

𝐿(𝛾) =
{

argc
(
𝑟, 𝑟

) [〈
𝑟[0], 𝑟′, 𝑔

〉]�� 𝑟, 𝑟′ ∈ SR, base(𝑟) = 𝛾, 𝑔 ∈ Γ ∪ 𝑁
}

for every 𝛾 ∈ Γ.

Category relabeling 𝜌′ : C(𝐴) → Γ∪𝑁 is given by 𝜌′
(
⟨𝑔, 𝑟, 𝑔′⟩

)
= 𝑔

and 𝜌′
(
𝑐 | ⟨𝑔, 𝑟, 𝑔′⟩

)
= 𝑔′ for all ⟨𝑔, 𝑟, 𝑔′⟩ ∈ 𝐴, 𝑐 ∈ C(𝐴), and | ∈ 𝐷

and is irrelevant for all other categories.

Example 4.1.8 The construction is illustrated in Figure 4.4. It
shows the CCG derivation tree that is based on the decomposition
into spinal runs indicated in Figure 4.2. Consider for example
the rightmost run, which is 𝑟3. In the CCG derivation tree, the
leaf at the bottom of this run is a primary category that has two
arguments, which store besides 𝑟3 the labels of nodes on the
spine and their siblings. Following the spine towards the root,
these arguments are removed through application rules, until
only the target remains. It stores 𝑟1, which is the run that 𝑟3 gets
combined with.

Theorem 4.1.9 Let T ⊆ 𝑇Σ2 ,∅(Σ0) be a tree language. Then the
following are equivalent:

▶ T is generatable by some 0-CCG.
▶ T is generatable by some pure 0-CCG.
▶ T is regular and universally mht-bounded.

42 4 Generative Power for Low Rule Degrees

Proof. The inclusion of the tree languages generatable by 0-CCG in
the regular and universally mht-bounded tree languages is trivially
true by Theorem 4.1.1 and Lemma 4.1.3. The step from the second
to the first statement is also immediately apparent since each pure
0-CCG is a 0-CCG. In the following, we will show the remaining
step: that each regular, universally mht-bounded tree language T
is generated by some pure 0-CCG.

For this, we employ the construction specified in Definition 4.1.7.
As already elaborated above, let ℎ ∈ ℕ be such that T is universally
mht-bounded by ℎ. Moreover, let CFG G = (𝑁, Γ, 𝑆, 𝑃) and a deter-
ministic relabeling 𝜌 be chosen such that G does not contain useless
nonterminals and such that T =

{
𝜌(𝑡) | 𝑡 ∈ D(G), 𝑡(𝜀) ∈ 𝑆

}
[22,

Theorem 2.9.5]. Then the pure 0-CCG G′ and the category re-
labeling 𝜌′ are constructed in accordance with Definition 4.1.7.
Note that 𝜌 ◦ 𝜌′ is still a category relabeling. It remains to prove
that T𝜌′(G′) =

{
𝑡 ∈ D(G) | 𝑡(𝜀) ∈ 𝑆

}
.

Let us start with the observation that all categories that can occur
in D(G′) are of a certain form. It is clear that all categories of 𝐿(Γ)
are left-spinal (i.e., all right children are leaves; see Figure 4.3).
Thus, all arguments contain only atomic categories. Together with
the fact that we can only use application rules, we obtain that all
categories that can occur in derivations of D(G′) must be subtrees
of the categories in 𝐿(Γ). Consequently, let C ⊆ C(𝐴) be that subset
of all categories.4

4: Although we defined the cate-
gory relabeling 𝜌′ : C(𝐴) → Γ ∪ 𝑁

for a wider domain, it could in fact
be restricted to the subset C as the
remaining categories cannot occur
in derivations of D(G′).

Moreover, if an argument of a category 𝑐 ∈ C is
decorated with the spinal run 𝑟, then the category 𝑐 is a subtree of
a category built from argc(𝑟, 𝑟) in the definition of 𝐿.

We first prove the auxiliary statement 𝜌′
(
D(G′)

)
= D(G).

We start with the direction 𝜌′
(
D(G′)

)
⊆ D(G) using induction. In

the induction base we regard 𝑐 ∈ 𝐿(Γ). Now we distinguish two
cases: If 𝑐 = ⟨𝑔, 𝑟′, 𝑔′⟩ ∈ 𝐴 is atomic, then 𝜌′(𝑐) = 𝑔 = base(𝑟) ∈ Γ

for some 𝑟 ∈ SR by construction of the lexicon. Otherwise we
have 𝑐 = 𝑐′|⟨𝑔, 𝑟′, 𝑔′⟩ for some 𝑐′ ∈ C, | ∈ 𝐷, and ⟨𝑔, 𝑟′, 𝑔′⟩ ∈ 𝐴.
Moreover, 𝑐 was obtained from the argument context argc(𝑟, 𝑟) for
some 𝑟 ∈ SR by substitution. In this case 𝜌′(𝑐) = 𝑔′ = base(𝑟) ∈ Γ

by the definition of “argc”. Consequently, we have 𝜌′(𝑐) ∈ Γ

and Γ ⊆ D(G), which completes the induction base.

In the induction step, let 𝑑 = 𝑔(𝑑1 , 𝑑2) ∈ 𝜌′(D(G′)) with 𝑔 ∈ Γ ∪ 𝑁

and 𝑑1 , 𝑑2 ∈ 𝜌′
(
D(G′)

)
. Thus, there exist 𝑐 ∈ C and 𝑡1 , 𝑡2 ∈ D(G′)

such that 𝑐(𝑡1 , 𝑡2) ∈ D(G′) and 𝜌′
(
𝑐(𝑡1 , 𝑡2)

)
= 𝑔(𝑑1 , 𝑑2). Moreover,

𝑑1 , 𝑑2 ∈ D(G) by the induction hypothesis. It remains to prove
that 𝑔 → 𝑑1(𝜀) · 𝑑2(𝜀) ∈ 𝑃, and thus 𝑔(𝑑1 , 𝑑2) ∈ D(G). We al-
ready remarked that only left-spinal categories can occur in D(G′),
hence

{
𝑡1(𝜀), 𝑡2(𝜀)

}
= {𝑐|𝑎, 𝑎} for some | ∈ 𝐷 and 𝑎 ∈ 𝐴. More-

over, let 𝑎 = ⟨𝑔1 , 𝑟 , 𝑔2⟩ for some 𝑔1 , 𝑔2 ∈ Γ ∪ 𝑁 and 𝑟 ∈ SR.
We assume that 𝑡1(𝜀) = 𝑎 and 𝑡2(𝜀) = 𝑐\𝑎. The remaining case,

4.1 0-CCG 43

in which 𝑡1(𝜀) = 𝑐/𝑎 and 𝑡2(𝜀) = 𝑎, is analogous. By the def-
inition of 𝜌′, we obtain that 𝑑1(𝜀) = 𝑔1 and 𝑑2(𝜀) = 𝑔2. More-
over, we already remarked that 𝑐\𝑎 must be a subtree of a cat-
egory in 𝐿(Γ). More precisely, it must be a subtree of the cate-
gory argc(𝑟, 𝑟)[⟨𝑟[0], 𝑟′, 𝑔⟩] for some 𝑟′ ∈ SR and 𝑔 ∈ Γ ∪ 𝑁 be-
cause we have the spinal run 𝑟 annotated to an argument. Clearly,
the left-spinal property makes it easy for us to locate the required
subtree.

We distinguish two cases according to the definition of 𝜌′. If 𝑐 is
atomic, then 𝑐 = ⟨𝑟[0], 𝑟′, 𝑔⟩ and 𝑟[0] = 𝑔 by the definition of 𝜌′.
By the construction of the argument context ‘argc(𝑟, 𝑟)’ we have

𝑟(𝜀) = ⟨𝑟[0], 2⟩ = ⟨𝑔, 2⟩
𝑟(1) = 𝑔1 = 𝑑1(𝜀)
𝑟(2) = ⟨𝑟[1], 𝛿⟩ = ⟨𝑔2 , 𝛿⟩ = ⟨𝑑2(𝜀), 𝛿⟩

for some 𝛿 ∈ [2]. Since 𝑟 ∈ SR we have 𝑟[0] → 𝑟(1) · 𝑟[1] ∈ 𝑃,
which yields 𝑔 → 𝑑1(𝜀) · 𝑑2(𝜀) ∈ 𝑃 as desired with the help
of the equations above. In the remaining case 𝑐 is not atomic.
Let 𝑐 = 𝑐′|⟨𝑔′, 𝑟 , 𝑔′′⟩ for some 𝑐′ ∈ C, | ∈ 𝐷, and 𝑔′, 𝑔′′ ∈ Γ ∪ 𝑁 .
The definition of 𝜌′ yields that 𝑔′′ = 𝑔. Since ‘argc’ reverses the
order (see Figure 4.3), our subtree 𝑐\𝑎 corresponds to an initial frag-
ment of 𝑟. Thus, let 𝑟 = 𝐶[𝑟′′]with𝐶 ∈ 𝐶𝑁×[2],∅(Γ∪𝑁) and 𝑟′′ ∈ SR
such that 𝑐\𝑎 = argc

(
𝐶[𝑟′′(𝜀)], 𝑟

)
[⟨𝑟[0], 𝑟′, 𝑔⟩]. Let 𝑤 = pos□(𝐶).

Since we have at least two arguments in 𝑐\𝑎, the definition
of ‘argc’ yields |𝑤| ≥ 2, so let 𝑤 = 𝑤′𝛿1𝛿2 with 𝑤′ ∈ [2]∗
and 𝛿1 , 𝛿2 ∈ [2]. Then the last two arguments are constructed
by □ |⟨𝑔′, 𝑟 , 𝑔′′⟩\⟨𝑔1 , 𝑟 , 𝑔2⟩ = argc

(
𝐶|𝑤′[𝑟′′(𝜀)], 𝑟

)
and thus

𝑟(𝑤′𝛿1) = ⟨𝑔′′, 𝛿2⟩ = ⟨𝑔, 2⟩
𝑟(𝑤′𝛿11) = 𝑔1 = 𝑑1(𝜀)
𝑟(𝑤′𝛿12) = ⟨𝑔2 , 𝛿

′⟩ = ⟨𝑑2(𝜀), 𝛿′⟩

for some 𝛿′ ∈ [2]. Since 𝑟 ∈ SR, we can infer that there is a
production 𝑟|𝑤′𝛿1[0] → 𝑟|𝑤′𝛿1(1) · 𝑟|𝑤′𝛿1[1] ∈ 𝑃, which together
with the equalities above yields the existence of the produc-
tion 𝑔 → 𝑑1(𝜀) · 𝑑2(𝜀) ∈ 𝑃 as required. Hence, 𝜌′(D(G′)) ⊆ D(G).

For the converse inclusion D(G) ⊆ 𝜌′
(
D(G′)

)
we first prove an aux-

iliary statement. Let 𝑡 ∈ D(G′) be a derivation with arity
(
𝑡(𝜀)

)
= 0

(i.e., it terminates in an atomic category). Further, let 𝑡(𝜀) = ⟨𝑔, 𝑟, 𝑔⟩
for some 𝑔, 𝑔 ∈ Γ ∪ 𝑁 and 𝑟 ∈ SR. Then for every 𝑟′ ∈ SR
and 𝑔′ ∈ Γ ∪ 𝑁 there exists a derivation 𝑡𝑟′,𝑔′ ∈ D(G′) such
that 𝑡𝑟′,𝑔′(𝜀) = ⟨𝑔, 𝑟′, 𝑔′⟩ and 𝜌′(𝑡𝑟′,𝑔′) = 𝜌′(𝑡). In other words, in
any derivation with an atomic category at the root we can adjust
the derivation such that the root label contains any desired spinal
run 𝑟′ ∈ SR and third component 𝑔′ ∈ Γ ∪ 𝑁 . The resulting tree is

44 4 Generative Power for Low Rule Degrees

still a derivation and relabels to the same tree as 𝑡. This statement is
very easy to prove using Proposition 3.3.10, which shows that 𝑡(𝜀)
is the target of a category of 𝐿(Γ). However, by the construction
of 𝐿(Γ) those targets always allow each spinal run 𝑟′ as second
component and each 𝑔′ as third component.

We return to the main proof that D(G) ⊆ 𝜌′
(
D(G′)

)
. We rather

prove the stronger statement that

D
(
G
)
⊆ 𝜌′

(
D0(G′)

)
(†)

with D0(G′) =
{
𝑡 ∈ D(G′) | arity

(
𝑡(𝜀)

)
= 0

}
by induction. This means that we restrict ourselves on the right-hand
side to those derivations D0(G′) that finish in an atomic category.

In the induction base, let 𝑢 = 𝛾 ∈ Γ. Then there is an atomic
category ⟨𝛾, 𝑟 , 𝑔⟩ ∈ 𝐿(𝛾) ∩D0(G′) for every 𝑟 ∈ SR and 𝑔 ∈ Γ∪𝑁 ,
and thus 𝑢 ∈ 𝜌′

(
D0(G′)

)
by the definition of 𝜌′. In the induction

step, we have 𝑢 ∉ Γ and for all proper subtrees 𝑣 of 𝑢 the desired
property 𝑣 ∈ 𝜌′

(
D0(G′)

)
is true.

For every 𝑢′ ∈ D(G) and 𝑤 ∈ pos(𝑢′) such that 𝑢′(𝑤) ∈ Γ we
construct a spinal run 𝑟𝑤,𝑢′ as follows:

▶ If 𝑤 = 𝜀, then 𝑟𝑤,𝑢′ = 𝑢′.
▶ If 𝑤 = 𝛿𝑤′ and 𝑢′ = 𝑛(𝑢′

1 , 𝑢
′
2) for some 𝛿 ∈ [2], 𝑤′ ∈ pos(𝑢′

𝛿),
𝑛 ∈ 𝑁 , and 𝑢′

1 , 𝑢
′
2 ∈ D(G), then the spinal run 𝑟𝑤,𝑢′ is given

by 𝑟𝑤,𝑢′(𝜀) = ⟨𝑛, 𝛿⟩, 𝑟𝑤,𝑢′|𝛿 = 𝑟𝑤′,𝑢′
𝛿
, and 𝑟𝑤,𝑢′|3−𝛿 = 𝑢′

3−𝛿(𝜀).

Roughly speaking, the spinal run 𝑟𝑤,𝑢′ leads from the root of 𝑢′ to
the leaf located at 𝑤. It is easily checked that 𝑟𝑤,𝑢′ is a spinal run
of G (i.e., 𝑟𝑤,𝑢′ ∈ SR(G)) and ht(𝑟𝑤,𝑢′) = |𝑤|.

Now we return to the tree 𝑢 ∈ D(G). Since 𝑢 is universally
mht-bounded by ℎ, there exists a position 𝑤 ∈ pos(𝑢) such
that |𝑤| ≤ ℎ and 𝑢(𝑤) ∈ Γ. Thus, we select such a leaf 𝑤

with a short path from the root arbitrarily and let 𝑤 = 𝛿1 · · · 𝛿ℓ
with 𝛿1 , . . . , 𝛿ℓ ∈ [2]. Consequently, the spinal run 𝑟 = 𝑟𝑤,𝑢 ∈ SR(G)
has height ℓ ≤ ℎ, which yields that 𝑟 ∈ SR. We first deal with the
positions outside the spine. For every 𝑖 ∈ [ℓ], let 𝛿𝑖 = 3 − 𝛿𝑖 , so we
have 𝛿𝑖 = 1 if 𝛿𝑖 = 2, and 𝛿𝑖 = 2 if 𝛿𝑖 = 1. Moreover, we define the
positions 𝑤𝑖 = 𝛿1 · · · 𝛿𝑖−1𝛿𝑖 , which refer to the positions outside
the spine of 𝑟. Similarly, for every 0 ≤ 𝑖 ≤ ℓ , let 𝑤𝑖 = 𝛿1 · · · 𝛿𝑖
be the 𝑖-th position on the spine of 𝑟. Trivially, 𝑟(𝑤𝑖) = 𝑢(𝑤𝑖) for
all 𝑖 ∈ [ℓ] by the construction of 𝑟 = 𝑟𝑤,𝑢 . By the induction hypoth-
esis, for every 𝑖 ∈ [ℓ] we know that 𝑢|𝑤𝑖

∈ 𝜌′(D0(G′)) and together
with the auxiliary statement we obtain that there exists a deriva-
tion 𝑡𝑖 ∈ D0(G′) such that 𝑢|𝑤𝑖

∈ 𝜌′(𝑡𝑖) and 𝑡𝑖(𝜀) = ⟨𝑢(𝑤𝑖), 𝑟 , 𝑢(𝑤𝑖)⟩.
By construction, we have 𝑟[𝑖] = 𝑢(𝑤𝑖) for all 0 ≤ 𝑖 ≤ ℓ . In par-
ticular, base(𝑟) = 𝑢(𝑤). Let 𝑟′ ∈ SR be an arbitrary spinal run

4.1 0-CCG 45

and 𝑔′ ∈ Γ ∪ 𝑁 . Consider category 𝑐 = argc(𝑟, 𝑟)[⟨𝑟[0], 𝑟′, 𝑔′⟩],
which is in 𝐿(𝑢(𝑤))by construction of 𝐿, since base(𝑟) = 𝑢(𝑤). More
precisely, let 𝑐 = ⟨𝑟[0], 𝑟′, 𝑔′⟩|1𝑎1|2 · · · |ℓ 𝑎ℓ for some |1 , . . . , |ℓ ∈ 𝐷

and 𝑎1 , . . . , 𝑎ℓ ∈ 𝐴. Note that the categories 𝑎1 , . . . , 𝑎ℓ are atomic
because all relevant categories are left-spinal. By the construc-
tion of 𝑐 we know for every 𝑖 ∈ [ℓ] that (i) |𝑖 = / if and only
if 𝛿𝑖 = 1, and (ii) 𝑎𝑖 = 𝑡𝑖(𝜀). Now we can construct the required
derivation of D0(G′) by combining this category 𝑐 with the sub-
derivations 𝑡𝑖 ∈ D0(G′). Let 𝑡′

ℓ
= 𝑐 and for every 𝑖 ∈ ℤℓ let

𝑡′𝑖(𝜀) = ⟨𝑟[0], 𝑟′, 𝑔′⟩|1𝑎1|2 · · · |𝑖𝑎𝑖
𝑡′𝑖 |𝛿𝑖+1 = 𝑡′𝑖+1 𝑡′𝑖 |𝛿𝑖+1

= 𝑡𝑖+1 .

Finally, we set 𝑡′ = 𝑡′0. A simple check shows that 𝑡′ ∈ D0(G′).
It remains to show that 𝑢 = 𝜌′(𝑡′). Obviously, pos(𝑢) = pos(𝑡′),
so we need to show that 𝑢(𝑤) = 𝜌′

(
𝑡′(𝑤)

)
for every 𝑤 ∈ pos(𝑢).

If𝑤 = 𝑤𝑖𝑤
′ for some 𝑖 ∈ [ℓ] and𝑤′ ∈ pos(𝑢|𝑤𝑖

), then this is trivially
true because 𝑡′|𝑤𝑖

= 𝑡𝑖 and we already observed that 𝑢|𝑤𝑖
∈ 𝜌′(𝑡𝑖).

Consequently, we only need to prove the property for all the
prefixes 𝑤𝑖 (with 𝑖 ∈ ℤℓ+1) of 𝑤. Let 𝑖 ∈ ℤℓ+1. By the construc-
tion of 𝑡′ we have 𝑡′(𝑤𝑖) = ⟨𝑟[0], 𝑟′, 𝑔′⟩|1𝑎1|2 · · · |𝑖𝑎𝑖 . For 𝑖 = 0,
we thus obtain 𝜌′

(
⟨𝑟[0], 𝑟′, 𝑔′⟩

)
= 𝑟[0] = 𝑢(𝜀). For all 𝑖 ∈ [ℓ]

we have 𝜌′
(
𝑡′(𝑤𝑖)

)
= 𝑢(𝑤𝑖) since 𝑎𝑖 = 𝑡𝑖(𝜀) = ⟨𝑢(𝑤𝑖), 𝑟 , 𝑢(𝑤𝑖)⟩.

Consequently, we established the stronger statement (†) and thus
also D(G) ⊆ 𝜌′

(
D(G′)

)
.

We have thus shown the two main statements 𝜌′
(
D(G′)

)
= D(G)

and 𝜌′
(
D0(G′)

)
= D(G). With the help of the latter statement, we

can now reason as follows:

T𝜌′(G′) =
{
𝜌′(𝑡) | 𝑡 ∈ D0(G′), 𝑡(𝜀) ∈ 𝑆 × SR × (Γ ∪ 𝑁)

}
=

{
𝑡 ∈ D(G) | 𝑡(𝜀) ∈ 𝑆

}
,

which concludes the proof.

The good closure properties of regular tree languages allow us to
derive a number of closure results for the tree languages gener-
atable by 0-CCG (see Table 7.1). We have seen that, while classi-
cal categorial grammars and context-free grammars are weakly
equivalent, they are not strongly equivalent when considered
as tree-generating devices. More specifically, the class of deriva-
tion tree languages of classical categorial grammars are a proper
subclass of the class of local tree languages (i.e., derivation tree
languages of context-free grammars). This result is similar to a
result by Schabes, Abeillé, and Joshi [75] showing that context-free
grammars are not closed under strong lexicalization, meaning that
there are context-free grammars such that no lexicalized grammar5

5: A CFG is called lexicalized if ev-
ery production contains a terminal
symbol.

generates the same derivation tree language.

46 4 Generative Power for Low Rule Degrees

4.2 1-CCG

In this section we will consider 1-CCG, which allows rules of
degree at most 1. Thus, the secondary categories appearing in
derivation trees have at most one additional argument after the
category that is consumed by the composition. We will prove that
1-CCG generates exactly the regular tree languages by showing
inclusion in both directions. Regarding the first direction of the
equivalence proof, it has already been reasoned in the literature [19,
49] that the derivation trees of 1-CCG can be simulated by CFG.

Lemma 4.2.1 (see [19, Proposition 4] and [49, Section 3.1]) For
each 1-CCG G the derivations D(G) and the generated tree language
are regular.

Proof. The derivation tree language D(G) contains only a finite
number of arguments. Furthermore, there exist only finitely many
secondary categories, since the degree of the rules is limited [49].
A rule of degree 1 only replaces the last argument of the primary
category by another argument. As a consequence, the arity of
the primary category cannot increase through composition. So
we have only a finite number of categories and can use the same
construction that was used in [89, Proposition 3.25] for 0-CCG
to show that D(G) is regular. Analogous to the proof for 0-CCG,
T𝜌(G) is regular for every relabeling 𝜌 as well since regular tree
languages are closed under relabelings [22, Theorem 2.4.16] and
intersection [22, Theorem 2.4.2].

The following lemma establishes a normal form for regular tree
grammar that is easily achieved using standard techniques. The
construction is illustrated in Example 4.2.3. An RTG (𝑁,Σ, 𝑆, 𝑃)
is a tree automaton (TA) if for each production (𝑛 → 𝑟) ∈ 𝑃 there
exist 𝜎 ∈ Σ and 𝑛′, 𝑛′′ ∈ 𝑁 such that 𝑟 = 𝜎 or 𝑟 = 𝜎(𝑛′, 𝑛′′).

Lemma 4.2.2 For each RTG there exist a TA G′ = (ℤ𝑚 ,Σ, 𝑆
′, 𝑃′)

that accepts the same tree language and a mapping 𝜋 : ℤ𝑚 → Σ such
that every nonterminal 𝑛 ∈ ℤ𝑚 generates a uniquely defined terminal
symbol 𝜋(𝑛); i.e., for all 𝑛 ∈ ℤ𝑚 and 𝑡 ∈ 𝑇Σ with 𝑛 ⇒+

G′ 𝑡 we
have 𝑡(𝜀) = 𝜋(𝑛).

Proof. For each RTG there exists an equivalent TA G = (𝑁,Σ, 𝑆, 𝑃)
by [22, Theorem 2.3.6]. Given a TA G in which a nonterminal 𝑛
can produce terminals 𝜎1 and 𝜎2 with 𝜎1 ≠ 𝜎2, we can construct
an equivalent TA G′ by creating copies 𝑛𝜎1 and 𝑛𝜎2 of 𝑛. Produc-
tions with 𝑛 on the left-hand side like 𝑛 → 𝜎(𝑛′, 𝑛′′) and 𝑛 → 𝜎

4.2 1-CCG 47

with 𝜎 ∈ {𝜎1 , 𝜎2} are replaced by 𝑛𝜎 → 𝜎(𝑛′, 𝑛′′) and 𝑛𝜎 → 𝜎, re-
spectively. On the other hand, productions with 𝑛 on the right-hand
side [e.g., 𝑛′ → 𝜎(𝑛, 𝑛′′)] are replaced by one copy of the produc-
tion for each copy of 𝑛 [e.g., 𝑛′ → 𝜎(𝑛𝜎1 , 𝑛

′′) and 𝑛′ → 𝜎(𝑛𝜎2 , 𝑛
′′)].

Each copy 𝑛𝜎 of a start nonterminal 𝑛 ∈ 𝑆 becomes part of the
new set of start nonterminals. The nonterminal set ℤ𝑚 is obtained
by applying a bĳection 𝜋 : 𝑁 ′ → ℤ|𝑁 ′|, where 𝑁 ′ contains all
copied and unmodified nonterminals of 𝑁 . It is easy to see that
G′ generates the same tree language as G.

Example 4.2.3 Let G = (𝑁,Σ, 𝑆, 𝑃) be the TA that is given
by 𝑁 = {𝑠, 𝑎, 𝑏, 𝑐}, Σ = {𝜎, 𝜏}, 𝑆 = {𝑠}, and

𝑃 =
{
𝑠 → 𝜎(𝑎, 𝑏), 𝑎 → 𝜎(𝑏, 𝑐), 𝑎 → 𝜏, 𝑏 → 𝜎, 𝑐 → 𝜎

}
.

Nonterminal 𝑎 can produce the terminal symbol 𝜎 or 𝜏, so
our intermediate TA G′ = (𝑁 ′,Σ, 𝑆, 𝑃′) has the nonterminal
alphabet 𝑁 ′ = {𝑠, 𝑎𝜎 , 𝑎𝜏 , 𝑏, 𝑐}, the production 𝑎 → 𝜎(𝑏, 𝑐)
has been replaced by 𝑎𝜎 → 𝜎(𝑏, 𝑐), and 𝑎 → 𝜏 has been re-
placed by 𝑎𝜏 → 𝜏. Instead of 𝑠 → 𝜎(𝑎, 𝑏), the two copies
𝑠 → 𝜎(𝑎𝜎 , 𝑏) and 𝑠 → 𝜎(𝑎𝜏 , 𝑏) are contained in 𝑃′. After map-
ping 𝑁 ′ to ℤ5, we obtain the productions

𝑃′′ =
{
0 → 𝜎(1, 3), 0 → 𝜎(2, 3),
1 → 𝜎(3, 4), 2 → 𝜏, 3 → 𝜎, 4 → 𝜎

}
.

𝑎0 𝑎1 𝑎2 𝑎3

𝑎0 𝑎0/𝑎0 𝑎0/𝑎1 𝑎0/𝑎2 𝑎0/𝑎3

𝑎1 𝑎1/𝑎0 𝑎1/𝑎1 𝑎1/𝑎2 𝑎1/𝑎3

𝑎2 𝑎2/𝑎0 𝑎2/𝑎1 𝑎2/𝑎2 𝑎2/𝑎3

𝑎3 𝑎3/𝑎0 𝑎3/𝑎1 𝑎3/𝑎2 𝑎3/𝑎3

Figure 4.5: The category matrix con-
tains all first-order categories of ar-
ity 1 with only forward slashes in a
CCG with four atoms. Each category
is the result of the forward compo-
sition of a category taken from the
same row and one from the same
column, respectively. The 𝑖-th en-
try of each row can be combined
with the 𝑖-th entry of each column.
Thus, each category 𝑎/𝑎′ is the re-
sult of four different forward compo-
sitions combining 𝑎/𝑎′′ and 𝑎′′/𝑎′
(with four choices for 𝑎′′).

Given a TA G = (ℤ𝑚 ,Σ, 𝑆, 𝑃) in the normal form of Lemma 4.2.2
with mapping 𝜋 : ℤ𝑚 → Σ, we are allowed to regard only the
nonterminals of G when constructing an equivalent 1-CCG. Our
goal is to find a 1-CCG G′ = (Σ′, 𝐴, 𝑅, 𝐼, 𝐿) and a category re-
labeling 𝜌 : C(𝐴) → ℤ𝑚 such that T (G) = T𝜋◦𝜌(G′). Because 𝜌
maps from categories to nonterminals, but T (G) is labeled by
terminal symbols, we use 𝜋 : ℤ𝑚 → Σ to map from nontermi-
nals to terminals. Given a production 𝑛 → 𝜎(𝑛1 , 𝑛2) ∈ 𝑃 and
a category relabeling 𝜌 : C(𝐴) → ℤ𝑚 , there have to exist cate-
gories 𝑐1 ∈ 𝜌−1(𝑛1) and 𝑐2 ∈ 𝜌−1(𝑛2) for each category 𝑐 ∈ 𝜌−1(𝑛)
such that 𝑐1 𝑐2

𝑐 is a valid ground instance of a rule in 𝑅. This
ensures that each category can be derived by the composition of
two categories mapped to matching nonterminals. We only regard
first-order categories with at most one argument. Starting from any
nonterminal, the productions in 𝑃 allow the direct derivation of at
most all ordered pairs of nonterminals as children. The number
of ordered pairs ℤ2

𝑚 increases quadratically in 𝑚, whereas the
number of different composition input pairs resulting in a fixed
category increases only linearly in |𝐴|: The category matrix depicted
in Figure 4.5 illustrates that a first-order category with one argu-
ment is the result of the forward compositions of |𝐴| different

48 4 Generative Power for Low Rule Degrees

Figure 4.6: The relabeling ma-
trix illustrates how a 1-CCG
with nine atoms is relabeled via
𝜌G : C(ℤ2

3) → ℤ3, obtained from
a TA G with three nonterminals
by applying Definition 4.2.4. Sup-
pose we want to find two cate-
gories projected to nonterminals
(𝑔, ℎ) = (0, 2) whose composition
yields ⟨𝑖 , 𝑗⟩/⟨𝑖′, 𝑗′⟩ = ⟨0, 1⟩/⟨0, 1⟩.
These are the categories ⟨0, 1⟩/⟨1, 0⟩
and ⟨1, 0⟩/⟨0, 1⟩ because

⟨𝑘, ℓ⟩ = ⟨ℎ − 𝑗′ mod 3, 𝑔 − 𝑖 mod 3⟩
= ⟨2 − 1 mod 3, 0 − 0 mod 3⟩
= ⟨1, 0⟩ .

⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 2⟩ ⟨2, 0⟩ ⟨2, 1⟩ ⟨2, 2⟩
⟨0, 0⟩ 0 1 2 0 1 2 0 1 2

⟨0, 1⟩ 0 1 2 0 1 2 0 1 2

⟨0, 2⟩ 0 1 2 0 1 2 0 1 2

⟨1, 0⟩ 1 2 0 1 2 0 1 2 0

⟨1, 1⟩ 1 2 0 1 2 0 1 2 0

⟨1, 2⟩ 1 2 0 1 2 0 1 2 0

⟨2, 0⟩ 2 0 1 2 0 1 2 0 1

⟨2, 1⟩ 2 0 1 2 0 1 2 0 1

⟨2, 2⟩ 2 0 1 2 0 1 2 0 1

category pairs. In addition to composition rules, application rules
are necessary to obtain an atomic initial category. Based on these
observations, we construct the 1-CCG 𝐶G with 𝑚2 atoms in the
following way.

Definition 4.2.4 Given a TA G = (ℤ𝑚 ,Σ, 𝑆, 𝑃) in the normal form
of Lemma 4.2.2, we construct the 1-CCG

𝐶G =
(
Σ0 , ℤ

2
𝑚 , 𝑅, 𝜌

−1
G (𝑆) ∩ℤ2

𝑚 , 𝐿
)

and the category relabeling 𝜌G : C(ℤ2
𝑚) → ℤ𝑚 such that

𝑅 =
⋃
𝜎∈Σ2

𝑎,𝑏,𝑐∈ℤ2
𝑚

({ 𝑎𝑥/𝑏 𝑏

𝑎𝑥

��� 𝜌G(𝑎) → 𝜎
(
𝜌G(𝑎/𝑏), 𝜌G(𝑏)

)
∈ 𝑃

}
∪

{ 𝑎𝑥/𝑏 𝑏/𝑐
𝑎𝑥/𝑐

��� 𝜌G(𝑎/𝑐) → 𝜎
(
𝜌G(𝑎/𝑏), 𝜌G(𝑏/𝑐)

)
∈ 𝑃

})
,

𝐿(𝛼) =
⋃

𝑎,𝑏∈ℤ2
𝑚

({
𝑎
�� 𝜌G(𝑎) → 𝛼 ∈ 𝑃

}
∪

{
𝑎/𝑏

�� 𝜌G(𝑎/𝑏) → 𝛼 ∈ 𝑃
})

for all 𝛼 ∈ Σ0 ,

and 𝜌G
(
⟨𝑖 , 𝑗⟩

)
= 𝑖 as well as 𝜌G

(
⟨𝑖 , 𝑗⟩/⟨𝑖′, 𝑗′⟩

)
= 𝑖 + 𝑗′ mod 𝑚 for

all 𝑖 , 𝑖′, 𝑗 , 𝑗′ ∈ ℤ𝑚 . The relabeling on all other categories is irrelevant.

Lemma 4.2.5 Every regular tree language T is generatable by a
1-CCG.

Proof. By definition there exists an RTG G such that T (G) = T . By
Lemma 4.2.2 there exists an equivalent TA G′ = (ℤ𝑚 ,Σ, 𝑆, 𝑃) and a
mapping 𝜋 : ℤ𝑚 → Σ with the properties specified in Lemma 4.2.2
(i.e., each nonterminal symbol 𝑛 ∈ ℤ𝑚 generates a uniquely de-

4.2 1-CCG 49

fined terminal symbol 𝜋(𝑛)). In the following, we show that the
1-CCG 𝐶G′ =

(
Σ0 ,ℤ

2
𝑚 , 𝑅, 𝜌

−1
G′ (𝑆) ∩ℤ2

𝑚 , 𝐿
)

given in Definition 4.2.4
generates the tree language T = T (G′) using the category relabel-
ing 𝜋 ◦ 𝜌G′ . We achieve this by arguing that D(G′) = 𝜌G′

(
D(𝐶G′)

)
,

which by the choice 𝜌−1
G′ (𝑆) ∩ ℤ2

𝑚 of initial categories and the
definition of 𝜌G′ already proves the main statement.

The category ⟨𝑖 , 𝑗⟩/⟨𝑖′, 𝑗′⟩ results from composing ⟨𝑖 , 𝑗⟩/⟨𝑘, ℓ⟩
and ⟨𝑘, ℓ⟩/⟨𝑖′, 𝑗′⟩, where 𝑖 , 𝑖′, 𝑗 , 𝑗′, 𝑘, ℓ ∈ ℤ𝑚 . Figure 4.6 illustrates
the category relabeling 𝜌G′ by means of a relabeling matrix, which
is a matrix indexed by atoms 𝑎 and 𝑎′ with entries indicating the
relabeling 𝜌G′(𝑎/𝑎′). The row and column labels of this matrix
follow lexicographic order. When we slice the matrix evenly into
blocks of size 𝑚 × 𝑚, we can observe that the entries in the rows
cycle through the nonterminals, whereas in a single column, each
block has only a single nonterminal in all 𝑚 entries. This is because
when looking up category ⟨𝑖 , 𝑗⟩/⟨𝑖′, 𝑗′⟩, the value of 𝑗′ changes in
every entry, whereas the value of 𝑖 changes only every 𝑚 entries.
Nonetheless, a complete column of the whole relabeling matrix
contains all 𝑚 nonterminals. Relabeling in this manner ensures
that all pairs (𝑔, ℎ) of nonterminals are covered for each output
category 𝑎/𝑎′: We can find an atom 𝑎′′ such that 𝑎/𝑎′′ relabels
to 𝑔 and 𝑎′′/𝑎′ relabels to ℎ and their composition yields 𝑎/𝑎′ as
required.

Formally, when given a category ⟨𝑖 , 𝑗⟩/⟨𝑖′, 𝑗′⟩ and an ordered
pair (𝑔, ℎ) ∈ ℤ2

𝑚 of nonterminals, we need to verify that there ex-
ist 𝑘, ℓ ∈ ℤ𝑚 with 𝜌G′

(
⟨𝑖 , 𝑗⟩/⟨𝑘, ℓ⟩

)
= 𝑔 and 𝜌G′

(
⟨𝑘, ℓ⟩/⟨𝑖′, 𝑗′⟩

)
= ℎ.

Since 𝑔 = 𝑖 + ℓ mod 𝑚 and ℎ = 𝑘 + 𝑗′ mod 𝑚, we can con-
clude that ℓ = 𝑔 − 𝑖 mod 𝑚 and 𝑘 = ℎ − 𝑗′ mod 𝑚. Furthermore,
assume we are given an arbitrary atom ⟨𝑖 , 𝑗⟩ and nontermi-
nals 𝑔, ℎ ∈ ℤ𝑚 , and want to find a category ⟨𝑖 , 𝑗⟩/⟨𝑘, ℓ⟩ and
an atom ⟨𝑘, ℓ⟩ such that 𝜌G′

(
⟨𝑖 , 𝑗⟩/⟨𝑘, ℓ⟩

)
= 𝑔 and 𝜌G′

(
⟨𝑘, ℓ⟩

)
= ℎ.

From the definition of the relabeling we have 𝜌G′
(
⟨𝑘, ℓ⟩

)
= 𝑘, so

𝑘 = ℎ and ℓ = 𝑔 − 𝑖 mod 𝑚.

It is straightforward to show that each derivation of 𝐶G′ relabels
(via 𝜌G′) to a derivation of G′ due to the definition of 𝑅 and 𝐿.
For the converse, suppose we would like to simulate a produc-
tion 𝑛 → 𝜎(𝑔, ℎ) ∈ 𝑃 and have already settled on category 𝑎/𝑎′
for 𝑛. We already argued that we can always find suitable preim-
ages 𝑎/𝑎′′ and 𝑎′′/𝑎′ that relabel to 𝑔 and ℎ, respectively. So for
every derivation 𝑑 ∈ D(G′) we can find a derivation of 𝐶G′ that
relabels to 𝑑. Due to the fact that the categories occurring in deriva-
tion trees of 𝐶G′ cannot have higher order or arity greater than 1,
they never leave the relevant domain of 𝜌G′ .

50 4 Generative Power for Low Rule Degrees

𝑎𝑥/(𝑏𝑦) 𝑏𝑦𝛼/𝑐
𝑎𝑥𝛼/𝑐 𝑐

𝑎𝑥𝛼

R1−→ 𝑎𝑥/(𝑏𝑦)
𝑏𝑦𝛼/𝑐 𝑐

𝑏𝑦𝛼

𝑎𝑥𝛼

𝑐

𝑎𝑥/(𝑏𝑦) 𝑏𝑦𝛼\𝑐
𝑎𝑥𝛼\𝑐

𝑎𝑥𝛼

R3−→ 𝑎𝑥/(𝑏𝑦)
𝑐 𝑏𝑦𝛼\𝑐

𝑏𝑦𝛼

𝑎𝑥𝛼

𝑐

𝑏𝑦𝛼\𝑐 𝑎𝑥\(𝑏𝑦)
𝑎𝑥𝛼\𝑐

𝑎𝑥𝛼

R2−→
𝑐 𝑏𝑦𝛼\𝑐

𝑏𝑦𝛼 𝑎𝑥\(𝑏𝑦)
𝑎𝑥𝛼

𝑏𝑦𝛼/𝑐 𝑎𝑥\(𝑏𝑦)
𝑎𝑥𝛼/𝑐 𝑐

𝑎𝑥𝛼

R4−→
𝑏𝑦𝛼/𝑐 𝑐

𝑏𝑦𝛼 𝑎𝑥\(𝑏𝑦)
𝑎𝑥𝛼

Figure 4.7: Rule schemes of [50] with 𝑎, 𝑏 ∈ 𝐴, 𝑥, 𝑦, 𝛼 ∈ A(𝐴), and 𝑐 ∈ C(𝐴).

6: Note that 0-CCG is included in
1-CCG.

Theorem 4.2.6 The tree languages generatable by 1-CCG are exactly
the regular tree languages.

Because the yield languages of the regular tree languages are exactly
the context-free languages, we obtain the following generalization6

of Theorem 4.1.1.

Corollary 4.2.7 The string languages generated by 1-CCG are exactly
the 𝜀-free context-free languages. Moreover, for each 1-CCG G the
derivation tree language D(G) and the tree languages generatable by G
are regular.

4.2.1 Pure 1-CCG

In Section 5.2, we will see that pure 𝑘-CCG cannot even gen-
erate all local tree languages. Thus, pure 1-CCG has a reduced
tree-generative capacity compared to 1-CCG with rule restrictions.
Although it follows from Corollary 4.2.7 that pure 1-CCG cannot
generate non-context-free languages, it is not immediately clear
that it can generate all context-free languages. This is due to the
existence of several transformation schemes that allow to change
the order of consecutive application and non-application opera-
tions [50]. This reordering of the subtrees of derivation trees is also
referred to as tree rotation. The transformation schemes are depicted
in Figure 4.7. In pure CCG, their applicability cannot be prevented,
such that for each derivation tree, also all derivation trees arising
from the application of these transformations are valid as well.
However, the following theorem demonstrates that pure 1-CCG
can indeed still generate all (𝜀-free) context-free languages.

Theorem 4.2.8 The string languages generated by pure 1-CCG are
exactly the 𝜀-free context-free languages.

Proof. We use the classical construction for pure 0-CCG [8]. Given
a CFG, a pure 0-CCG generating the same string language is con-

4.2 1-CCG 51

7: Alternatively, the simpler con-
struction outlined on page 36 can be
employed, resulting in a grammar
with all lexical categories containing
only forward slashes.

structed, such that lexicon entries contain only atomic arguments
with leading backward slashes.7 As a consequence, each derivation
tree generated by a CCG with this lexicon can use only backward
rules, and all secondary categories of application rules are atomic.
Now consider some derivation tree of the pure 1-CCG with the
same lexicon, such that the root category is an initial atomic cate-
gory. If a composition rule appears in the derivation tree, we can
find a position where a composition is followed by an application.
This is because the root category, as it is atomic, is always obtained
through application. We transform the derivation tree by repeated
use of rule scheme R2 (see Figure 4.7) into a derivation tree that
uses only application rules. Note that each use of the transfor-
mation rule eliminates a composition from the derivation tree,
since 𝑦 and 𝛼 are empty due to the properties of the grammar. The
transformation does not change the string that labels the leaves,
since this particular rotation does not change the order of the three
involved subtrees. This shows that the corresponding pure 0-CCG
can generate the same string. Thus, the pure 1-CCG generates the
same string language as the pure 0-CCG, and therefore the desired
context-free language.

Generative Power 5
5.1 Inclusion in the

Simple Monadic
Context-Free Tree
Languages 54

5.2 Proper Inclusion for
Pure CCG 64

5.3 Spine Grammar 65
5.4 Decomposition into

Spines 70
5.5 Moore Push-Down

Automata 74
5.6 CCG Construction . . 80
5.7 Strong Equivalence . . 94

In this chapter, we study the generative power of CCG with compo-
sition rules of arbitrary degree and rule restrictions, but consider
also pure CCG. The first two sections are based on joint work with
Marco Kuhlmann and Andreas Maletti, and the five remaining
sections on joint work with Andreas Maletti (see Section 1.5). To
keep the presentation simple, we assume without loss of generality
that all secondary categories of rules in 𝑅 are concrete categories
of C(𝐴) and that the targets of primary categories are specified; i.e.,
we disallow rules with category variables. Thus, each combinatory
rule of degree 𝑘 has one of the forms

𝑎𝑥/𝑐 𝑐|1𝑐1 · · · |𝑘𝑐𝑘
𝑎𝑥|1𝑐1 · · · |𝑘𝑐𝑘

𝑐|1𝑐1 · · · |𝑘𝑐𝑘 𝑎𝑥\𝑐
𝑎𝑥|1𝑐1 · · · |𝑘𝑐𝑘

with 𝑎 ∈ 𝐴, 𝑐 ∈ C(𝐴), and |𝑖 ∈ 𝐷 and 𝑐𝑖 ∈ C(𝐴) for every 𝑖 ∈ [𝑘].
The only remaining variable is the argument context variable 𝑥 in
the primary category.

We start by showing that the tree languages generatable by CCG
are included in those generated by sCFTG (Section 5.1). Next, we
show that this inclusion is proper for pure CCG (Section 5.2). The
next four sections are devoted to showing the inverse direction
of Section 5.1; namely, that each sCFTG can be simulated by a
CCG. Our construction proceeds roughly as follows. We begin
with a spine grammar, which is a variant of sCFTG that is strongly
equivalent to TAG up to relabeling (Section 5.3). Then, we encode
its spines using a context-free grammar (Section 5.4). These in turn
can be represented by a special variant of push-down automata
(Section 5.5). Finally, the runs of the push-down automaton are
simulated by a CCG such that the stack operations of the automaton
are realized by adding and removing arguments of categories
(Section 5.6). In conclusion, each spine of primary categories of a
CCG derivation tree corresponds to a run of the automaton, which
in turn corresponds to a spine of the spine grammar. An overview
of the construction is shown in Figure 5.4. Finally, in Section 5.7,
we combine the results proven up to that point and discuss their
ramifications. The main results are the strong equivalence of sCFTG
and CCG, and as a consequence the strong equivalence of TAG and
CCG. Another important finding that we would like to emphasize
is the fact that CCG without 𝜀-entries is as expressive as CCG
with them. In addition, rule degree 2 and first-order categories are
sufficient to give CCG its full expressive power.

54 5 Generative Power

5.1 Inclusion in the Simple Monadic
Context-Free Tree Languages

In this section, we will show that the tree languages generatable
by CCG are included in the simple monadic context-free tree lan-
guages. However, this is complicated by the presence of potentially
infinitely many categories in the derivation trees D(G) for a CCG G,
while classical tree language theory only handles finitely many
labels. The CCG G5 of Example 3.3.7 illustrates this problem. There-
fore, instead of directly generating derivation trees, we construct
an sCFTG that generates the rule trees of the CCG. Rule trees can
represent derivation trees while using only a finite set of symbols.
Using a category relabeling, they can be relabeled in the same
manner as derivation trees.

We construct an sCFTG that uses nonterminals representing either
categories or CCG rules. The derivation takes place by gradually
extending a spine and by using branching productions to start new
spines that are attached to superordinate spines. Nonterminals can
only be replaced by terminal symbols when they represent either
categories present in the lexicon or rules permitted by the CCG
rule system.

Rule Trees

The idea behind rule trees is to label the internal nodes of these
trees not by categories, but by the rules that are applied at them to
obtain the respective categories, whereas the leaves are still labeled
by lexical categories. We introduce the following abbreviations. We
let T = 𝑇𝑅,∅

(
𝐿(Σ)

)
be the set of all rule trees. Moreover, for all alpha-

bets 𝑁1 and 𝑁0 we define the set SF(𝑁1 , 𝑁0) = 𝑇𝑅,𝑁1

(
𝐿(Σ) ∪ 𝑁0

)
of sentential forms of a sCFTG with unary nonterminals 𝑁1 and
nullary nonterminals 𝑁0.

Definition 5.1.1 Let G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) be a CCG. A tree 𝑡 ∈ T is
a rule tree of G if catG(𝑡) ∈ 𝐼, where catG : T → C(𝐴) is the partial
mapping that is inductively defined by

▶ catG(𝑐) = 𝑐 for all 𝑐 ∈ 𝐿(Σ),
▶ catG

(𝑎𝑥/𝑐 𝑐𝛾
𝑎𝑥𝛾 (𝑡1 , 𝑡2)

)
= 𝑎𝛼𝛾 for all trees 𝑡1 , 𝑡2 ∈ T such

that catG(𝑡1) = 𝑎𝛼/𝑐 and catG(𝑡2) = 𝑐𝛾, and
▶ catG

(𝑐𝛾 𝑎𝑥 /𝑐
𝑎𝑥𝛾 (𝑡1 , 𝑡2)

)
= 𝑎𝛼𝛾 for all trees 𝑡1 , 𝑡2 ∈ T such

that catG(𝑡1) = 𝑐𝛾 and catG(𝑡2) = 𝑎𝛼\𝑐

and is undefined for all other cases. The set of all rule trees of G is
denoted by R(G).

5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 55

Through rule trees, the derivation trees of a CCG can be encoded
in a natural way while using only finitely many labels. More
precisely, there is an (obvious) bĳection between the derivation
trees D(G) and the domain of the function catG . An example rule
tree alongside the corresponding CCG derivation tree is depicted
in Figure 5.1. Note, however, that all 𝑡 ∈ R(G) have catG(𝑡) ∈ 𝐼,
which does not apply to the depicted rule tree.

sCFTG Construction

In the following, let G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿) be a CCG. Our goal is
to construct an sCFTG that generates exactly the rule tree lan-
guage R(G). To this end, we first need to limit the number of
categories. Let 𝑘 ∈ ℕ be the maximal arity of a category in

𝐼 ∪ 𝐿(Σ) ∪
{
𝑐𝛾

��� 𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾
∈ 𝑅

}
∪

{
𝑐𝛾

��� 𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

∈ 𝑅
}

,

i.e., the maximal arity of the categories that occur as initial category,
in the lexicon, or as the secondary category of a rule of 𝑅. Roughly
speaking, the constructed sCFTG will use the categories C𝐿(𝐴, 𝑘) as
nullary nonterminals and tuples ⟨𝑎, |𝑐, 𝛾⟩ consisting of an atomic
category 𝑎 ∈ 𝐴, a single argument |𝑐 ∈ args(𝐿), and an argument
context 𝛾 ∈ A𝐿(𝐴, 𝑘) as unary nonterminals.1

1: Recall that C𝐿(𝐴, 𝑘) and A𝐿(𝐴, 𝑘)
may only use arguments in args(𝐿),
which are those present in the lexi-
con (see Section 3.3.3).

The unary nontermi-
nals represent rules, where 𝑎 is the target of the primary category,
|𝑐 is the bridging argument, and 𝛾 is the excess. Recall that we
write substitutions 𝛼[𝑡] as 𝑡𝛼 for 𝛼 ∈ A(𝐴) and 𝑡 ∈ C(𝐴) ∪A(𝐴).

Definition 5.1.2 The sCFTG G′ =
(
𝑁1 ∪ 𝑁0 , 𝑅 ∪ 𝐿(Σ), 𝑆, 𝑃

)
is

given by

▶ 𝑁1 =
{
⟨𝑎, |𝑐, 𝛾⟩ | 𝑎 ∈ 𝐴, |𝑐 ∈ args(𝐿), 𝛾 ∈ A𝐿(𝐴, 𝑘)

}
and 𝑁0 =

{
⟨𝑐⟩ | 𝑐 ∈ C𝐿(𝐴, 𝑘)

}
,

▶ 𝑆 =
{
⟨𝑎0⟩ | 𝑎0 ∈ 𝐼

}
, and

▶ the set 𝑃 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4 ∪ 𝑃5 of productions with

𝑃1 =
{
⟨𝑐⟩ → 𝑐 | 𝑐 ∈ 𝐿(Σ)

}
(5.1)

𝑃2 =

{
⟨𝑎, /𝑐, 𝛾⟩ → 𝑟

(
□, ⟨𝑐𝛾⟩

) ��� 𝑟 = 𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾
∈ 𝑅

}
(5.2)

𝑃3 =

{
⟨𝑎, \𝑐, 𝛾⟩ → 𝑟

(
⟨𝑐𝛾⟩, □

) ��� 𝑟 = 𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

∈ 𝑅
}

(5.3)

𝑃4 =
{
⟨𝑎𝛼𝛾⟩ → ⟨𝑎, |𝑐, 𝛾⟩

(
⟨𝑎𝛼|𝑐⟩

)
(5.4)

| 𝑎 ∈ 𝐴, 𝛼, 𝛾 ∈ A𝐿(𝐴), |𝑐 ∈ args(𝐿), |𝛼| < 𝑘, |𝛼𝛾| ≤ 𝑘
}

𝑃5 =
{
⟨𝑎, |𝑐, 𝛾⟩ → ⟨𝑎, |′𝑐′, □⟩

(
⟨𝑎, |𝑐, 𝛾|′𝑐′⟩(□)

)
(5.5)

| 𝑎 ∈ 𝐴, |𝑐, |′𝑐′ ∈ args(𝐿), 𝛾 ∈ A𝐿(𝐴, 𝑘 − 1)
}

56 5 Generative Power

We still have to establish that G′ indeed generates exactly R(G).
This will be achieved by showing both inclusions in the next chain
of lemmas.

Only Rule Trees are Generated

We will start by showing that the sCFTG G′ can only generate valid
rule trees of G.

Lemma 5.1.3 T (G′) ⊆ R(G)

Proof. We will start with an auxiliary statement. For all sentential
forms 𝜉 ∈ SF(𝑁1 , 𝑁0) and 𝑡 ∈ T such that 𝜉 ⇒+

G′ 𝑡, we prove that

(i) if 𝜉(𝜀) = ⟨𝑐⟩ ∈ 𝑁0, then catG(𝑡) = 𝑐, and
(ii) if 𝜉(𝜀) = ⟨𝑎, |𝑐, 𝛾⟩ ∈ 𝑁1, 𝜉|1 ∈ T, and catG(𝜉|1) = 𝑎𝛼|𝑐

with 𝛼 ∈ A𝐿(𝐴), then catG(𝑡) = 𝑎𝛼𝛾.

Note that the statement does not concern trees𝜉with𝜉(𝜀) ∉ 𝑁0∪𝑁1.
For the remaining trees, we prove this statement by induction on
the length of the derivation.

We have 𝜉 ⇒G′,𝜀 𝜁 ⇒ℓ
G′ 𝑡 for some 𝜁 ∈ SF(𝑁1 , 𝑁0) and ℓ ∈ ℕ,

where we applied the first derivation step at the root and ⇒ℓ
G′ is

the ℓ -fold composition of ⇒G′ with itself. We distinguish five
cases based on the production 𝑝 ∈ 𝑃 used at the root in the first
derivation step:

(1) If 𝑝 = ⟨𝑐⟩ → 𝑐 ∈ 𝑃1 is a production of type (5.1), then 𝑐 ∈ 𝐿(Σ),
𝜉 = ⟨𝑐⟩, and 𝜁 = 𝑡 = 𝑐. Since 𝑐 ∈ 𝐿(Σ), we trivially
have catG(𝑡) = 𝑐, which proves statement (i).2

2: This also proves statement (ii) in
this case since its precondition is
not fulfilled. We omit such obvious
observations in the next cases.

(2) If 𝑝 = ⟨𝑎, /𝑐, 𝛾⟩ → 𝑟
(
□, ⟨𝑐𝛾⟩

)
∈ 𝑃2 is a production of

type (5.2), we have 𝜉(𝜀) = ⟨𝑎, /𝑐, 𝛾⟩ and we only need to
prove statement (ii). Thus, let 𝜉|1 ∈ T and catG(𝜉|1) = 𝑎𝛼/𝑐
for some 𝛼 ∈ A𝐿(𝐴). From derivation 𝜁 = 𝑟

(
𝜉|1 , ⟨𝑐𝛾⟩

)
⇒ℓ

G′ 𝑡,
we can conclude that ⟨𝑐𝛾⟩ ⇒ℓ ′

G′ 𝑡|2 for some 1 ≤ ℓ ′ < ℓ .
The latter yields catG(𝑡|2) = 𝑐𝛾 by the induction hypoth-
esis. From the facts 𝑟 =

𝑎𝑥/𝑐 𝑐𝛾
𝑎𝑥𝛾 ∈ 𝑅, catG(𝑡|1) = 𝑎𝛼/𝑐,

and catG(𝑡|2) = 𝑐𝛾, we conclude that catG(𝑡) = 𝑎𝛼𝛾.
(3) If 𝑝 = ⟨𝑎, \𝑐, 𝛾⟩ → 𝑟

(
⟨𝑐𝛾⟩, □

)
∈ 𝑃3 is a production of

type (5.3), we need to prove statement (ii), which can be
done in the same way as in the previous case (2).

(4) If 𝑝 = ⟨𝑎𝛼𝛾⟩ → ⟨𝑎, |𝑐, 𝛾⟩
(
⟨𝑎𝛼|𝑐⟩

)
∈ 𝑃4 is a production of

type (5.4), we need to prove statement (i). By context-freeness,
we can rearrange the derivation 𝜁 ⇒ℓ

G′ 𝑡 such that

𝜁 = ⟨𝑎, |𝑐, 𝛾⟩
(
⟨𝑎𝛼|𝑐⟩

)
⇒ℓ ′

G′ ⟨𝑎, |𝑐, 𝛾⟩
(
𝑡′
)
⇒ℓ ′′

G′ 𝑡

5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 57

𝑎 𝑐/𝑎\𝑎
𝑐/𝑎

𝑎/𝑏/𝑏 𝑏/𝑐\𝑐
𝑎/𝑏/𝑐\𝑐

𝑎/𝑏/𝑐/𝑎 𝑎

𝑎/𝑏/𝑐

𝑎𝑥/𝑎 𝑎
𝑎𝑥

𝑐/𝑎 𝑎𝑥\𝑐
𝑎𝑥/𝑎

𝑎 𝑐𝑥\𝑎
𝑐𝑥

𝑎 𝑐/𝑎\𝑎

𝑎𝑥/𝑏 𝑏/𝑐\𝑐
𝑎𝑥/𝑐\𝑐

𝑎/𝑏/𝑏 𝑏/𝑐\𝑐

𝑎

𝑎𝑥/𝑎 𝑎
𝑎𝑥

𝑐/𝑎 𝑎𝑥\𝑐
𝑎𝑥/𝑎

⟨𝑐/𝑎⟩ 𝑎𝑥/𝑏 𝑏/𝑐\𝑐
𝑎𝑥/𝑐\𝑐

𝑎/𝑏/𝑏 ⟨𝑏/𝑐\𝑐⟩

⟨𝑎⟩

⟨𝑎, /𝑎, □⟩

⟨𝑎, \𝑐, /𝑎⟩

⟨𝑎, /𝑏, /𝑐\𝑐⟩

⟨𝑎/𝑏/𝑏⟩

Figure 5.1: CCG derivation tree (without lexical entries), corresponding rule tree 𝑡, spinal(𝑡), and its encoding enc(𝑡). The
derivation tree is depicted with the root at the top to make the correspondence to the other trees more apparent.

for some 𝑡′ ∈ T and ℓ ′, ℓ ′′ ≥ 1 such that ℓ = ℓ ′ + ℓ ′′. Conse-
quently, we have a subderivation ⟨𝑎𝛼|𝑐⟩ ⇒ℓ ′

G′ 𝑡
′, from which

we conclude that catG(𝑡′) = 𝑎𝛼|𝑐 by the induction hypothesis.
Now we established the preconditions of statement (ii) for
the subderivation ⟨𝑎, |𝑐, 𝛾⟩

(
𝑡′
)
⇒ℓ ′′

G′ 𝑡, so catG(𝑡) = 𝑎𝛼𝛾 by
the induction hypothesis.

(5) If 𝑝 = ⟨𝑎, |𝑐, 𝛾⟩ → ⟨𝑎, |′𝑐′, □⟩
(
⟨𝑎, |𝑐, 𝛾|′𝑐′⟩(□)

)
∈ 𝑃5 is a

production of type (5.5), then we need to prove statement (ii).
Let 𝜉|1 ∈ T and catG(𝜉|1) = 𝑎𝛼|𝑐 for some 𝛼 ∈ A𝐿(𝐴). We
can again reorder the derivation 𝜁 ⇒ℓ

G′ 𝑡 such that

𝜁 = ⟨𝑎, |′𝑐′, □⟩
(
⟨𝑎, |𝑐, 𝛾|′𝑐′⟩(𝜉|1)

)
⇒ℓ ′

G′ ⟨𝑎, |′𝑐′, □⟩
(
𝑡′
)
⇒ℓ ′′

G′ 𝑡

for some 𝑡′ ∈ T and ℓ ′, ℓ ′′ ≥ 1 such that ℓ = ℓ ′ + ℓ ′′. In
the first subderivation we find ⟨𝑎, |𝑐, 𝛾|′𝑐′⟩(𝜉|1) ⇒ℓ ′

G′ 𝑡′.
Since 𝜉|1 ∈ T and catG(𝜉|1) = 𝑎𝛼|𝑐, we meet the require-
ments of statement (ii), obtaining catG(𝑡′) = 𝑎𝛼𝛾|′𝑐′ by the
induction hypothesis. Once more we now have established
that 𝑡′ ∈ T and catG(𝑡′) = 𝑎𝛼𝛾|′𝑐′, so we satisfy the re-
quirements of statement (ii) of the induction hypothesis
applied to the second subderivation ⟨𝑎, |′𝑐′, □⟩

(
𝑡′
)
⇒ℓ ′′

G′ 𝑡.
Consequently, catG(𝑡) = 𝑎𝛼𝛾.

This completes the proof of the auxiliary statement. We can apply
the auxiliary statement to derive that catG(𝑡) = 𝑎0 ∈ 𝐼 for all 𝑡 ∈ T
and ⟨𝑎0⟩ ∈ 𝑆 such that ⟨𝑎0⟩ ⇒+

G′ 𝑡. Consequently, T (G′) ⊆ R(G).

Decomposition of Rule Trees

For the converse, we decompose and encode rule trees in a more
compact manner. These encodings will help us to structure the
derivation of rule trees, as we can use them as components and
intermediate steps of the complete derivation. First, we translate a

58 5 Generative Power

rule tree into its primary spine form. It uses terminal symbols when
following the spine in the direction of primary categories, but
the subtrees located next to the spine are abbreviated to nullary
nonterminals.

Definition 5.1.4 The primary spine form of a rule tree is defined by
the function spinal : T → 𝑇𝑅,∅

(
𝐿(Σ) ∪ 𝑁0

)
that is given by

spinal
(
𝑏
)
= 𝑏

spinal
(𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾
(𝑡1 , 𝑡2)

)
=

𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾

(
spinal(𝑡1), ⟨𝑐𝛾⟩

)
spinal

(𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

(𝑡1 , 𝑡2)
)
=

𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

(
⟨𝑐𝛾⟩, spinal(𝑡2)

)
where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐿(Σ), |𝑐 ∈ args(𝐿), 𝛾 ∈ A𝐿(𝐴, 𝑘), and 𝑡1 , 𝑡2 ∈ T.

Additionally, we encode rule trees using only the nonterminals ofG′.
These represent exactly the nodes of the rule tree that are located on
the spine following the direction of primary categories.

Definition 5.1.5 The encoding of a rule tree is defined by the
function enc : T → 𝑇∅,𝑁1(𝑁0) that is given by

enc(𝑏) = ⟨𝑏⟩

enc
(𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾
(𝑡1 , 𝑡2)

)
= ⟨𝑎, /𝑐, 𝛾⟩

(
enc(𝑡1)

)
enc

(𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

(𝑡1 , 𝑡2)
)
= ⟨𝑎, \𝑐, 𝛾⟩

(
enc(𝑡2)

)
where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐿(Σ), |𝑐 ∈ args(𝐿), 𝛾 ∈ A𝐿(𝐴, 𝑘), and 𝑡1 , 𝑡2 ∈ T.

The primary spine form and the encoding are demonstrated in
Figure 5.1. We will show that ⟨catG(𝑡)⟩ ⇒∗

G′ enc(𝑡) ⇒∗
G′ spinal(𝑡)

for every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘) in the following sequence
of lemmas. We begin by proving the second, easier part.

Deriving the Primary Spine Form

Lemma 5.1.6 For every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘) there exists a
derivation enc(𝑡) ⇒∗

G′ spinal(𝑡).

Proof. The proof is by induction on 𝑡. In the induction base, we
have 𝑡 ∈ 𝐿(Σ). Therefore, we have enc(𝑡) = ⟨𝑡⟩ and spinal(𝑡) = 𝑡.
Since 𝑡 ∈ 𝐿(Σ), we can apply a production of type (5.1) to ob-
tain enc(𝑡) = ⟨𝑡⟩ ⇒G′ 𝑡 = spinal(𝑡) as desired.

5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 59

⟨𝑎/𝑏/𝑐⟩ ⇒G′

⟨𝑎, /𝑏, /𝑐⟩

⟨𝑎/𝑏/𝑏⟩
⇒G′

⟨𝑎, \𝑐, □⟩

⟨𝑎, /𝑏, /𝑐\𝑐⟩

⟨𝑎/𝑏/𝑏⟩

⇒G′

⟨𝑎, /𝑎, □⟩

⟨𝑎, \𝑐, /𝑎⟩

⟨𝑎, /𝑏, /𝑐\𝑐⟩

⟨𝑎/𝑏/𝑏⟩

Figure 5.2: Derivation of the encod-
ing enc(𝑡) depicted in Figure 5.1. In
each step the nonterminal at the root
is expanded.

In the induction step, let 𝑡 = 𝑟(𝑡1 , 𝑡2) with 𝑟 =
𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾 ∈ 𝑅.
The case of a backward composition is analogous. Then we
have enc(𝑡) = ⟨𝑎, /𝑐, 𝛾⟩(enc(𝑡1)) and spinal(𝑡) = 𝑟(spinal(𝑡1), ⟨𝑐𝛾⟩).
Consequently,

enc(𝑡) = ⟨𝑎, /𝑐, 𝛾⟩
(
enc(𝑡1)

)
⇒∗

G′ ⟨𝑎, /𝑐, 𝛾⟩
(
spinal(𝑡1)

)
⇒G′ 𝑟

(
spinal(𝑡1), ⟨𝑐𝛾⟩

)
= spinal(𝑡) ,

where we used the induction hypothesis in the first step and then
a production of type (5.2).

Deriving the Encoding

We now turn to the first part and show that ⟨catG(𝑡)⟩ ⇒∗
G′ enc(𝑡)

for every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘). This will be dealt with in
the next two lemmas. For this purpose, we need to introduce some
additional notation. Recall the sets 𝑁1 and 𝑁0 of nonterminals from
Definition 5.1.2. We let Enc = 𝑇∅, 𝑁1(𝑁0) be the set of all potential
encodings. Encodings are essentially strings, so pos(𝑒) ⊆ {1}∗
for all 𝑒 ∈ Enc. Instead of a position 1ℎ we write just ℎ in an
encoding. Moreover, we write |𝑒| instead of |pos(𝑒)|. In other
words, we identify the set pos(𝑒) with the corresponding set ℤ|𝑒|
of nonnegative integers.

Definition 5.1.7 Let 𝑒 ∈ Enc be an encoding with pos(𝑒) = ℤℓ+1
such that 𝑒(ℓ) = ⟨𝑎𝛼⟩ and 𝑒(𝑖) = ⟨𝑎𝑖 , |𝑖𝑐𝑖 , 𝛾𝑖⟩ for all 𝑖 < ℓ . It is
consistent if

▶ 𝑎 = 𝑎𝑖 for all 𝑖 < ℓ , and
▶ there exist 𝛼0 , . . . , 𝛼ℓ−1 such that 𝛼 = 𝛼ℓ−1|ℓ−1𝑐ℓ−1 and

𝛼𝑖𝛾𝑖 = 𝛼𝑖−1|𝑖−1𝑐𝑖−1 for all 𝑖 ∈ [ℓ − 1].

We let catG(𝑒|ℓ) = 𝑎𝛼 and catG(𝑒|𝑖) = 𝑎𝛼𝑖𝛾𝑖 for all 𝑖 < ℓ .

Roughly speaking, an encoding is consistent if it represents a
possible sequence of rule applications along some spine of primary
categories.

60 5 Generative Power

3: In other words, 𝛾 is a strict sub-
tree on the left spine of 𝛾′(see Sec-
tion 3.1).

Definition 5.1.8 Let 𝑒 , 𝑒′ ∈ Enc be two encodings. We write 𝑒 ≺ 𝑒′

if there exist positions 𝑖 ∈ pos(𝑒) and 𝑖′ ∈ pos(𝑒′) with 𝑖 ≤ 𝑖′ such
that

▶ 𝑒(𝑗) = ⟨𝑎 𝑗 , |𝑗𝑐 𝑗 , □⟩ for all 𝑗 < 𝑖, and
▶ 𝑒|𝑖 = ⟨𝑎, |𝑐, 𝛾⟩(𝑒) and 𝑒′|𝑖′ = ⟨𝑎, |𝑐, 𝛾′⟩(𝑒) with 𝛾 ⊏ 𝛾′.

Thus, encodings 𝑒 , 𝑒′ ∈ Enc with 𝑒 ≺ 𝑒′ have the same subtree 𝑒

below position 𝑖 resp. 𝑖′, all labels of 𝑒 at positions 𝑗 < 𝑖 have □ in the
third component, and at position 𝑖 resp. 𝑖′, the third component 𝛾
in 𝑒 is a proper prefix of the third component 𝛾′ in 𝑒′.3 It is
clear that ≺ is a strict partial order (irreflexive and transitive) on
encodings. Indeed the positions 𝑖 and 𝑖′ that demonstrate 𝑒 ≺ 𝑒′

are unique.

Finally, we let 𝑓 : Enc2 → ℤ be such that 𝑓 (𝑒 , 𝑒′) = |𝑒′| − |𝑒| for
all 𝑒 , 𝑒′ ∈ Enc. It is obvious that 𝑓 (𝑒 , 𝑒′) ∈ ℕ provided that 𝑒 ≺ 𝑒′.

Lemma 5.1.9 Let 𝑒 , 𝑒′ ∈ Enc be two consistent encodings such
that catG(𝑒) = catG(𝑒′) and 𝑒 ≺ 𝑒′. Then 𝑒 ⇒+

G′ 𝑒
′.

Proof. Let 𝑖 ≤ 𝑖′ be the unique positions required to show that 𝑒 ≺ 𝑒′,
and 𝑒|𝑖 = ⟨𝑎, |𝑐, 𝛾⟩(𝑒) and 𝑒′|𝑖′ = ⟨𝑎, |𝑐, 𝛾′⟩(𝑒). We addition-
ally let 𝑎𝛽 = catG(𝑒) = catG(𝑒′) and 𝑎𝛼|𝑐 = catG(𝑒). Then obvi-
ously catG(𝑒|𝑖) = 𝑎𝛼𝛾. Moreover, 𝑖 = |𝛼𝛾| − |𝛽| because the third
component is □ for all labels at positions strictly smaller than 𝑖,
which yields that catG(𝑒|𝑖−𝑗) = (𝑎𝛼𝛾)|𝑗 for all 𝑗 ≤ 𝑖. Similarly, we
have catG(𝑒′|𝑖′) = 𝑎𝛼𝛾′ with |𝛼𝛾′| > |𝛼𝛾|. Since we can only re-
move a single argument in each step, we obtain that |𝛼𝛾′|− |𝛽| ≤ 𝑖′.

We now prove the statement by induction on 𝑓 (𝑒 , 𝑒′). In the induc-
tion base, we assume that 𝑓 (𝑒 , 𝑒′) = |𝑒′| − |𝑒| = 0. Consequently,
we have 𝑖 = 𝑖′ and |𝛼𝛾′| − |𝛽| ≤ 𝑖′ = 𝑖 = |𝛼𝛾| − |𝛽| < |𝛼𝛾′| − |𝛽|,
which is a contradiction. Hence this case cannot occur.

In the induction step, let 𝑓 (𝑒 , 𝑒′) = |𝑒′| − |𝑒| > 0. Thus, 𝑖 < 𝑖′.
Let 𝛾′ = 𝛾|′𝑐′𝛾′′ for some |′𝑐′ ∈ args(𝐿) and 𝛾′′ ∈ A𝐿(𝐴, 𝑘 − 1).
Using an application of a production of type (5.5) we obtain

𝑒|𝑖 = ⟨𝑎, |𝑐, 𝛾⟩(𝑒) ⇒G′ ⟨𝑎, |′𝑐′, □⟩
(
⟨𝑎, |𝑐, 𝛾|′𝑐′⟩(𝑒)

)
= 𝑒 .

Let 𝑒′′ = 𝑒[𝑒]𝑖 , which immediately yields |𝑒′′| > |𝑒|. Then 𝑒′′ is
again a consistent encoding because catG(𝑒) = 𝑎𝛼𝛾, which is also
the category of the replaced subtree 𝑒|𝑖 . Consequently, the newly
constructed encoding 𝑒′′ has the same category as 𝑒 and 𝑒′.

Next we prove that 𝑒′′ ⪯ 𝑒′. If 𝑒′′ = 𝑒′, then trivially 𝑒′′ ⪯ 𝑒′. Thus,
let 𝑒′′ ≠ 𝑒′. Since 𝑒′′|𝑖+2 = 𝑒′|𝑖′+1, let 𝑗′′ ≤ 𝑖 + 1 be the largest integer
such that 𝑒′′(𝑗′′) ≠ 𝑒′(𝑗′), where 𝑗′ = 𝑖′ − (𝑖 + 1) + 𝑗′′. Clearly, such

5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 61

an integer 𝑗′′ must exist because 𝑒′′ ≠ 𝑒′. Now we prove by case
analysis on 𝑗′′ ≤ 𝑖 + 1 that 𝑒′′ ⪯ 𝑒′.

▶ If 𝑗′′ = 𝑖 + 1, then 𝑗′ = 𝑖′. Since the labels of 𝑒′′ at 𝑗′′ = 𝑖 + 1
and of 𝑒′ at 𝑗′ = 𝑖′ differ, although their first two components
are the same, we obtain that 𝛾|′𝑐′ ≠ 𝛾′ = 𝛾|′𝑐′𝛾′′ and
thus 𝛾′′ ≠ □. Then trivially 𝑒′′ ≺ 𝑒′ using the positions
𝑗′′ = 𝑖 + 1 and 𝑗′ = 𝑖′, for which we know 𝑖 + 1 ≤ 𝑖′ and
all labels of 𝑒′′ at strict prefixes of 𝑖 + 1 have □ in the third
component (for all positions strictly smaller than 𝑖 this is
true since the labels of 𝑒′′ and 𝑒 coincide and for 𝑖 it is true
by the definition of 𝑒′′).

▶ Otherwise, we have 𝑗′′ < 𝑖 + 1. Let 𝑒′′|𝑗′′ = ⟨𝑎, |′′𝑐′′, □⟩(ℎ′′)
and 𝑒′|𝑗′ = ⟨𝑎, |′′′𝑐′′′, 𝛼′⟩(ℎ′). Obviously, we have ℎ′′ = ℎ′

because we selected the maximal 𝑗′′. Consequently, we also
have |′′′𝑐′′′ = |′′𝑐′′ by consistency. Since the labels are differ-
ent, we must have □ ⊏ 𝛼′. Then 𝑒′′ ≺ 𝑒′ using the positions
𝑗′′ and 𝑗′, for which we know that 𝑗′′ = 𝑗′ − 𝑖′ + (𝑖 + 1) ≤ 𝑗′

because 𝑖 + 1 ≤ 𝑖′. Moreover, all labels of 𝑒′′ at strict prefixes
of 𝑗′′ ≤ 𝑖 have □ in the third component since those labels
coincide in 𝑒′′ and 𝑒.

Hence 𝑒′′ ⪯ 𝑒′.

Now we return to the main statement. If we have 𝑒′′ = 𝑒′, then
clearly 𝑒 ⇒+

G′ 𝑒
′′ = 𝑒′. Otherwise, we have consistent encodings

𝑒′′ and 𝑒′ with catG(𝑒′′) = catG(𝑒′) such that 𝑒′′ ≺ 𝑒′. Since |𝑒′′| > |𝑒|,
we additionally have 𝑓 (𝑒′′, 𝑒′) = |𝑒′| − |𝑒′′| < |𝑒′| − |𝑒| = 𝑓 (𝑒 , 𝑒′).
Consequently, we can apply the induction hypothesis to 𝑒′′ and 𝑒′

and obtain that there is a derivation 𝑒′′ ⇒+
G′ 𝑒

′, which together
with 𝑒 ⇒G′ 𝑒′′ yields 𝑒 ⇒+

G′ 𝑒
′ as desired.

It is obvious that for every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴) the encod-
ing enc(𝑡) is consistent and has the same category catG(𝑡). For the
proof of ⟨catG(𝑡)⟩ ⇒∗

G′ enc(𝑡) for all 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘),
we define a modification of the encoding.

Definition 5.1.10 The function enc′ : T → 𝑇∅,𝑁1(𝑁0) is defined as
follows. For all 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘), we let

enc′(𝑡) = ⟨catG(𝑡)⟩ .

Otherwise, we let

enc′
(𝑎𝑥/𝑐 𝑐𝛾

𝑎𝑥𝛾
(𝑡1 , 𝑡2)

)
= ⟨𝑎, /𝑐, 𝛾⟩

(
enc′(𝑡1)

)
enc′

(𝑐𝛾 𝑎𝑥\𝑐
𝑎𝑥𝛾

(𝑡1 , 𝑡2)
)
= ⟨𝑎, \𝑐, 𝛾⟩

(
enc′(𝑡2)

)
where 𝑎 ∈ 𝐴, |𝑐 ∈ args(𝐿), 𝛾 ∈ A𝐿(𝐴, 𝑘), and 𝑡1 , 𝑡2 ∈ T.

62 5 Generative Power

As for the encoding enc(𝑡), for every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴), the
encoding enc′(𝑡) is consistent and has the same category catG(𝑡).
Note how this is different from the previous encoding enc(𝑡). While
before, we only added a nullary nonterminal if the input consisted
of a single node labeled by 𝑐 ∈ 𝐿(Σ), we now compress a complete
subtree whose category is in C𝐿(𝐴, 𝑘) to a nullary nonterminal.
In the following, we will show that we can derive the original
encoding from this shortened variant.

Lemma 5.1.11 For every 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴) there exists a
derivation enc′(𝑡) ⇒∗

G′ enc(𝑡).

Proof. We prove it by induction on 𝑡. In the induction base, we
let 𝑡 ∈ 𝐿(Σ). As a consequence, we have 𝑡 = catG(𝑡) ∈ C𝐿(𝐴, 𝑘)
and enc′(𝑡) = ⟨catG(𝑡)⟩ = enc(𝑡), which proves the induction base.

In the induction step, let 𝑡 = 𝑟(𝑡1 , 𝑡2) for some rule 𝑟 ∈ 𝑅

and 𝑡1 , 𝑡2 ∈ T. We only consider forward compositions. Thus,
let 𝑟 =

𝑎𝑥/𝑐 𝑐𝛾
𝑎𝑥𝛾 . By assumption, we have catG(𝑡) ∈ C𝐿(𝐴), so

let catG(𝑡) = 𝑎𝛼𝛾 for some 𝛼 ∈ A𝐿(𝐴). Now we distinguish three
cases depending on the arities of the categories of 𝑡 and 𝑡1:

▶ Suppose that catG(𝑡) = 𝑎𝛼𝛾 ∉ C(𝐴, 𝑘). Then

enc′(𝑡) = ⟨𝑎, /𝑐, 𝛾⟩
(
enc′(𝑡1)

)
⇒∗

G′ ⟨𝑎, /𝑐, 𝛾⟩
(
enc(𝑡1)

)
= enc(𝑡) ,

where we used the induction hypothesis applied to 𝑡1.
▶ Now suppose that catG(𝑡) = 𝑎𝛼𝛾 ∈ C𝐿(𝐴, 𝑘) and also sup-

pose that catG(𝑡1) = 𝑎𝛼/𝑐 ∉ C(𝐴, 𝑘). Let ⟨𝑎𝛽|𝑐′⟩ be the
leaf of enc′(𝑡1), so 𝑎𝛽|𝑐′ ∈ C𝐿(𝐴, 𝑘). Note that the cate-
gories of subtrees of enc′(𝑡1) for all strictly smaller positions
are not in C(𝐴, 𝑘). Consequently, we have 𝑎𝛽 ⊏ 𝑎𝛼𝛾, so
let 𝛾′ ∈ A𝐿(𝐴, 𝑘) be such that 𝑎𝛽𝛾′ = 𝑎𝛼𝛾. In addition,

enc′(𝑡) = ⟨𝑎𝛼𝛾⟩ ⇒G′ ⟨𝑎, |𝑐′, 𝛾′⟩
(
⟨𝑎𝛽|𝑐′⟩

)
= 𝑒 .

Clearly, 𝑒 = ⟨𝑎, |𝑐′, 𝛾′⟩
(
⟨𝑎𝛽|𝑐′⟩

)
is consistent and has cate-

gory 𝑎𝛼𝛾, which is also true for 𝑒′ = ⟨𝑎, /𝑐, 𝛾⟩
(
enc′(𝑡1)

)
.

Next we show that 𝑒 ≺ 𝑒′. Let ℓ = |𝑒′| − 1. It is clear
that 𝑒|1 = ⟨𝑎𝛽|𝑐′⟩ = 𝑒′|ℓ and due to 𝑒′ being consistent
also 𝑒′

ℓ−1 = ⟨𝑎, |𝑐′, 𝛾′′⟩ for some 𝛾′′ ∈ A𝐿(𝐴, 𝑘). It remains to
prove that 𝛾′ ⊏ 𝛾′′. For all non-zero positions strictly smaller
than ℓ − 1, the encoding 𝑒′ has subtrees whose respective
categories are not in C(𝐴, 𝑘). Hence 𝑎𝛽𝛾′ = 𝑎𝛼𝛾 ∈ C𝐿(𝐴, 𝑘)
must be a proper prefix of all those categories, including
𝑎𝛽𝛾′′. Consequently, we have 𝑒 ≺ 𝑒′ for these consistent

5.1 Inclusion in the Simple Monadic Context-Free Tree Languages 63

encodings with catG(𝑒) = catG(𝑒′), so we use Lemma 5.1.9 to
conclude that 𝑒 ⇒+

G′ 𝑒
′. Thus, in summary we have

enc′(𝑡) = ⟨𝑎𝛼𝛾⟩
⇒G′ ⟨𝑎, |𝑐′, 𝛾′⟩

(
⟨𝑎𝛽|𝑐′⟩

)
= 𝑒

⇒+
G′ 𝑒

′ = ⟨𝑎, /𝑐, 𝛾⟩
(
enc′(𝑡1)

)
⇒∗

G′ ⟨𝑎, /𝑐, 𝛾⟩
(
enc(𝑡1)

)
= enc(𝑡) .

▶ Finally, suppose that catG(𝑡) = 𝑎𝛼𝛾 ∈ C𝐿(𝐴, 𝑘) and also
suppose that catG(𝑡1) = 𝑎𝛼/𝑐 ∈ C𝐿(𝐴, 𝑘). Then

enc′(𝑡) = ⟨𝑎𝛼𝛾⟩
⇒G′ ⟨𝑎, /𝑐, 𝛾⟩

(
⟨𝑎𝛼/𝑐⟩

)
= ⟨𝑎, /𝑐, 𝛾⟩

(
enc′(𝑡1)

)
⇒∗

G′ ⟨𝑎, /𝑐, 𝛾⟩
(
enc(𝑡1)

)
= enc(𝑡) .

This concludes the proof of the statement. A particular case
is the desired derivation ⟨catG(𝑡)⟩ ⇒∗

G′ enc(𝑡) for every 𝑡 ∈ T
with catG(𝑡) ∈ C𝐿(𝐴, 𝑘).

An example of a derivation of the form ⟨catG(𝑡)⟩ ⇒∗
G′ enc(𝑡) is

presented in Figure 5.2.

Deriving the Rule Tree

Combining Lemmas 5.1.6 and 5.1.11, we can conclude that there
is a derivation ⟨catG(𝑡)⟩ ⇒∗

G′ enc(𝑡) ⇒∗
G′ spinal(𝑡) for every 𝑡 ∈ T

with catG(𝑡) ∈ C𝐿(𝐴, 𝑘). This will prove extremely useful in the
following.

Lemma 5.1.12 R(G) ⊆ T (G′)

Proof. We first show the auxiliary statement that for every rule
tree 𝑡 ∈ T with catG(𝑡) ∈ C𝐿(𝐴, 𝑘) we have ⟨catG(𝑡)⟩ ⇒∗

G′ 𝑡. The
proof is by induction. In the induction base we have 𝑡 ∈ 𝐿(Σ),
which also yields 𝑡 = catG(𝑡) ∈ C𝐿(𝐴, 𝑘), and thus ⟨𝑡⟩ ⇒G′ 𝑡 by a
production of type (5.1). In the induction step, we use Lemmas 5.1.6
and 5.1.11 to obtain ⟨𝑐⟩ ⇒∗

G′ spinal(𝑡), and we apply the induction
hypothesis to the nullary nonterminals present in spinal(𝑡) to
conclude the proof of the auxiliary statement. With the help of
the auxiliary statement, we immediately obtain that for every
rule tree 𝑡 ∈ R(G) we have ⟨catG(𝑡)⟩ ⇒∗

G′ 𝑡 because catG(𝑡) ∈ 𝐼.
Moreover, ⟨catG(𝑡)⟩ ∈ 𝑆 and hence 𝑡 ∈ T (G′).

64 5 Generative Power

4: As in the complete chapter, we
ignore substitution rules here.

Theorem 5.1.13 The rule tree language R(G) of a CCG G can be
generated by an sCFTG.

5.2 Proper Inclusion for Pure CCG

Recall that a CCG (Σ, 𝐴, 𝑅, 𝐼, 𝐿) is called pure if 𝑅 = R(𝐴, 𝑘) for
some 𝑘 ∈ ℕ.4 In this section, we show that there exist CFG deriva-
tion tree languages that cannot be generated by any pure CCG.
In particular, this shows that the inclusion demonstrated in the
previous section is proper for pure CCG. We start with our coun-
terexample CFG. We will use nonterminals that are pairs of integers,
and we will use standard arithmetic. In fact, to make the text more
readable, we assume henceforth that all computations with the
integers inside of nonterminals are performed modulo 3.

Example 5.2.1 Let us consider the CFG Gex =
(
𝑁, Γ, {⟨0, 0⟩}, 𝑃

)
with the nonterminals 𝑁 =

{
⟨𝑖 , 𝑗⟩ | 𝑖 , 𝑗 ∈ ℤ3

}
, the termi-

nals Γ = {𝛼}, and the set 𝑃 of productions containing ex-
actly ⟨𝑖 , 𝑗⟩ → ⟨𝑖+1, 𝑗⟩ ⟨𝑖 , 𝑗+1⟩ and ⟨𝑖 , 𝑗⟩ → 𝛼 for every ⟨𝑖 , 𝑗⟩ ∈ 𝑁 .
Clearly, the tree languageD(Gex) is not universally mht-bounded.

Theorem 4.1.9 already shows that the tree language D(Gex) is not
generatable by any 0-CCG. Similarly, it is impossible to gener-
ate D(Gex) with a pure CCG. This follows from the transformation
schemes of [50] that change the order of consecutive application
and non-application operations, resulting in derivation trees with
reordered subtrees and therefore with the wrong shape after re-
labeling. They are depicted in Figure 4.7 of Section 4.2.1, where
we already have encountered them. Due to the absence of rule
restrictions in pure CCG, the applicability of these transformations
cannot be prevented.

Theorem 5.2.2 The tree language D(Gex) is not generatable by any
pure CCG.

Proof. For the sake of a contradiction, suppose that there ex-
ists a pure CCG G =

(
Σ, 𝐴,R(𝐴, 𝑘), 𝐼 , 𝐿

)
and a (category) re-

labeling 𝜌 such that T𝜌(G) = D(Gex). Let 𝑡 ∈ D(Gex) be such
that mht(𝑡) > arity(𝐿). Since the derivation tree language D(Gex)
is not universally mht-bounded, such a tree exists. By Lemma 4.1.3,
the CCG G has to use non-application operations to produce trees
with the shape of 𝑡, so 𝑘 ≥ 1. Let 𝑢 ∈ D(G) be such that 𝑡 ∈ 𝜌(𝑢).
Moreover, select the first (i.e., least with respect to the shortlex
order5

5: In the shortlex order, strings are
first ordered by their length, and
strings of the same length are or-
dered lexicographically [81, page 14].) position 𝑤 ∈ pos(𝑢) at which an application rule is applied

5.3 Spine Grammar 65

⟨𝑖 , 𝑗⟩

⟨𝑖 + 1, 𝑗⟩

⟨𝑖 + 2, 𝑗⟩ ⟨𝑖 + 1, 𝑗 + 1⟩

⟨𝑖 , 𝑗 + 1⟩
R1
⇒

⟨𝑖 , 𝑗⟩

⟨𝑖 + 2, 𝑗⟩ ??

⟨𝑖 + 1, 𝑗 + 1⟩ ⟨𝑖 , 𝑗 + 1⟩

⟨𝑖 , 𝑗⟩

⟨𝑖 + 1, 𝑗⟩ ⟨𝑖 , 𝑗 + 1⟩

⟨𝑖 + 1, 𝑗 + 1⟩ ⟨𝑖 , 𝑗 + 2⟩

R3
⇒

⟨𝑖 , 𝑗⟩

⟨𝑖 + 1, 𝑗 + 1⟩ ??

⟨𝑖 + 1, 𝑗⟩ ⟨𝑖 , 𝑗 + 2⟩

⟨𝑖 , 𝑗⟩

⟨𝑖 + 1, 𝑗⟩ ⟨𝑖 , 𝑗 + 1⟩

⟨𝑖 + 1, 𝑗 + 1⟩ ⟨𝑖 , 𝑗 + 2⟩

R2
⇒

⟨𝑖 , 𝑗⟩

??

⟨𝑖 + 1, 𝑗⟩ ⟨𝑖 + 1, 𝑗 + 1⟩

⟨𝑖 , 𝑗 + 2⟩

⟨𝑖 , 𝑗⟩

⟨𝑖 + 1, 𝑗⟩

⟨𝑖 + 2, 𝑗⟩ ⟨𝑖 + 1, 𝑗 + 1⟩

⟨𝑖 , 𝑗 + 1⟩
R4
⇒

⟨𝑖 , 𝑗⟩

??

⟨𝑖 + 2, 𝑗⟩ ⟨𝑖 , 𝑗 + 1⟩

⟨𝑖 + 1, 𝑗 + 1⟩

Figure 5.3: Rule schemes of [50] with the relabeling indicated based on the input tree. The roots of equal subtrees
occurring at the wrong position are marked in red and blue. See Figure 4.7 for the rule schemes before relabeling.

followed by a non-application operation. Such a position must
exist since the rule applied at the root is always an application rule
(because every initial category is atomic). This yields one of the
cases listed left of the ⇒-symbol in Figure 4.7. We apply the such
identified transformation rule of Figure 4.7 that matches at 𝑤 to
obtain another tree 𝑢′ ∈ D(G) [50]. However, as we illustrate in
Figure 5.3, each transformation rule leads to a derivation tree of
the wrong shape (i.e., one that can be relabeled in an undesirable
manner).

Let us walk through one case in detail. Suppose that the first
transformation rule of Figure 4.7 applies at position 𝑤. More-
over, assume that 𝑢(𝑤) relabels to ⟨𝑖 , 𝑗⟩ for some 𝑖 , 𝑗 ∈ ℤ3 be-
cause 𝑡 ∈ 𝜌(𝑢) ⊆ D(Gex). Then we know that 𝑢(𝑤2) relabels
to ⟨𝑖 , 𝑗 + 1⟩ because 𝜌(𝑢) ⊆ D(Gex). However, after applying
the transformation (i.e., in the tree 𝑢′), the subtree 𝑢|𝑤2 now
occurs at 𝑢′|𝑤22, which creates the wrong shape. We can conclude
that 𝜌(𝑢′) ⊈ D(Gex), contradicting T𝜌(G) = D(Gex).

5.3 Spine Grammar

In the following four sections, we will prove the inverse direction
of Theorem 5.1.13. More precisely, we will show that each tree
language generated by an sCFTG can also be generated by a CCG.
We already outlined the general approach of the construction
at the beginning of this chapter. Figure 5.4 depicts a schematic
overview of the involved steps. The construction starts from a spine
grammar, which is the formalism that we will introduce in the
following. We also cover its normal form and how it is established,
and lay the foundations for the decomposition of generated trees
by introducing spinal trees.

66 5 Generative Power

spine grammar G

Section 5.3

CFG G′ for
spines S(G)

Section 5.4

reassembled
to F

(
S(G)

)
Moore PDA A
short spines L1

Section 5.5

reassembled to
F

(
L(A) ∪ L1

)
CCG GA,L1

Section 5.6

Figure 5.4: Overview of the conversion from spine grammar to CCG with the most relevant notations.

Spine grammars [21] were originally defined as a restriction of
CFTG and possess the same expressive power as sCFTG, which
follows from the normal form for spine grammars. Although sCFTG
are more established, we elect to utilize spine grammars because
of their essential notion of spines and use a variant of their normal
form. Deviating from the original definition [21, Definition 3.2],
we treat spine grammars as a restriction on sCFTG and equip
the terminal symbols with a “spine direction” (instead of the
nonterminals, which is not useful in sCFTG).6

6: In the original definition, produc-
tions are not necessarily linear or
nondeleting, and the nonterminals
may have rank greater than 1. Non-
terminals are equipped with a head
that specifies the direction where
the spine continues. The spine of the
right-hand side of a production is
the path from the root to the unique
appearance of the variable that is in
head direction of the (non-nullary)
nonterminal on the left-hand side.
All other variables on the left-hand
side of productions have to appear
as children of spinal nodes on the
right-hand side if they appear at all.

By creating copies
of binary terminal symbols it can be shown that both variants
are equivalent modulo relabeling. More specifically, under our
definition, each spine grammar is clearly itself an sCFTG and for
each sCFTG G there exist a spine grammar G′ and a deterministic
relabeling 𝜌 such that T (G) =

{
𝜌(𝑡) | 𝑡 ∈ T (G′)

}
.

Consider some sCFTG production (𝑛 → 𝐶) ∈ 𝑃 with 𝑛 ∈ 𝑁1. The
spine of 𝐶 is simply the path from the root of 𝐶 to the unique
occurrence pos□(𝐶) of □. The special feature of a spine grammar
is that the symbols along the spine indicate exactly in which
direction the spine continues. Since only the binary terminal
symbols offer branching, the special feature of spine grammars is
the existence of a map 𝑑 : Σ2 → [2] that tells us for each binary
terminal symbol 𝜎 ∈ Σ2 whether the spine continues to the left, in
which case 𝑑(𝜎) = 1, or to the right, in which case 𝑑(𝜎) = 2. This
map 𝑑, called spine direction, applies to all instances of the binary
terminal symbol 𝜎 in all productions with spines.

Definition 5.3.1 Let G = (𝑁,Σ, 𝑆, 𝑃) be an sCFTG. It is called
spine grammar if there exists a map 𝑑 : Σ2 → [2] such that for
every production (𝑛 → 𝐶) ∈ 𝑃 with 𝑛 ∈ 𝑁1 and every posi-
tion 𝑤 ∈ Pref

(
pos□(𝐶)

)
with 𝐶(𝑤) ∈ Σ2 also 𝑤𝑖 ∈ Pref

(
pos□(𝐶)

)
with 𝑖 = 𝑑

(
𝐶(𝑤)

)
.

We will use the term spine also to refer to the paths that follow
the spine direction in a tree generated by a spine grammar. These
paths do not necessarily have to start at the root. In this manner,
each such tree can be decomposed into a set of spines. Hence-
forth, let G = (𝑁,Σ, 𝑆, 𝑃) be a spine grammar with associated
map 𝑑 : Σ2 → [2].

5.3 Spine Grammar 67

𝑛 𝛼

𝑛
𝑏

𝛼

(a) start

𝑛

𝑏1

𝑏2

□

(b) chain

𝑛
𝜎

𝑎□

𝑛
𝜎

□𝑎

(c) terminal

Figure 5.5: Types of productions of
spine grammars in normal form (see
Definition 5.3.2).

Normal Form

In spine grammars in normal form each production has one
of the three production types that are illustrated in Figure 5.5.
Additionally, there is a single start nonterminal 𝑠 that is isolated
and cannot occur on the right-hand sides.

Definition 5.3.2 A spine grammar G is in normal form if 𝑆 = {𝑠}
and each (𝑛 → 𝑟) ∈ 𝑃 is of one of the forms

(i) start: 𝑟 = 𝑏(𝛼) or 𝑟 = 𝛼 for some 𝑏 ∈ 𝑁1 and 𝛼 ∈ Σ0,
(ii) chain: 𝑟 = 𝑏1

(
𝑏2(□)

)
for some 𝑏1 , 𝑏2 ∈ 𝑁1, or

(iii) terminal: 𝑟 = 𝜎(□, 𝑎) or 𝑟 = 𝜎(𝑎, □) for some 𝜎 ∈ Σ2
and 𝑎 ∈ 𝑁0 \ 𝑆.

Spinal Trees

Using a single start production followed by a number of chain
and terminal productions, a nullary nonterminal 𝑛 can be rewrit-
ten to a tree 𝑡 that consists of a spine of terminals, where each
non-spinal child is a nullary nonterminal. Formally, for every
nullary nonterminal 𝑛 ∈ 𝑁0 let

𝐼G(𝑛) =
{
𝑡 ∈ 𝑇Σ2 , ∅(Σ0 ∪ 𝑁0)

�� 𝑛 (⇒G ; ⇒∗
G′) 𝑡

}
where G′ is the spine grammar G without start productions; i.e.,
G′ = (𝑁,Σ, 𝑆, 𝑃′) with productions 𝑃′ =

{
(𝑛 → 𝑟) ∈ 𝑃 | 𝑛 ∈ 𝑁1

}
.

So we perform a single derivation step using the productions of G
followed by any number of derivation steps using only productions
of G′. The elements of 𝐼G(𝑛) are called spinal trees for 𝑛 and their
spine generator is 𝑛. By a suitable renaming of nonterminals we can
always achieve that the spine generator does not occur in any of
its spinal trees. Accordingly, the spine grammar G is normalized if
it is in normal form and 𝐼G(𝑛) ⊆ 𝑇Σ2 , ∅

(
Σ0 ∪ (𝑁0 \ {𝑛})

)
for every

nullary nonterminal 𝑛 ∈ 𝑁0.

68 5 Generative Power

𝑠 ⇒G
𝑡

𝛿
⇒G

𝑎

𝑏′

𝛿

⇒G

𝑎

𝑏

𝑐

𝛿

⇒G

𝑎

𝑎

𝑏′

𝑐

𝛿

⇒G

𝑎

𝑎

𝑏

𝑐

𝑐

𝛿

⇒G

𝑎

𝑎

𝛽2

𝑏𝑐

𝑐

𝛿

⇒G

𝑎

𝑎

𝛽2

𝑒

𝛽

𝑐

𝑐

𝛿

⇒G

𝑎

𝑎

𝛽2

𝜂2

𝛽𝑒

𝑐

𝑐

𝛿

⇒∗
G

𝛼2

𝛼2

𝛽2

𝜂2

𝛽𝑒

𝛾2

𝑐𝛾2

𝑐𝛿

𝑎

𝑎

⇒∗
G

𝛼2

𝛼2

𝛽2

𝜂2

𝛽𝛽

𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

Figure 5.6: Derivation of the normalized spine grammar G of Example 5.3.3.

Example 5.3.3 The spine grammar G =
(
𝑁,Σ, {𝑠}, 𝑃

)
with

𝑁1 = {𝑡 , 𝑎, 𝑏, 𝑐, 𝑏′, 𝑒}, 𝑁0 = {𝑠, 𝑎, 𝑏, 𝑐, 𝑒}, Σ2 = {𝛼2 , 𝛽2 , 𝛾2 , 𝜂2},
Σ0 = {𝛼, 𝛽, 𝛾, 𝛿}, and 𝑃 as shown below is clearly normalized.

𝑎 → 𝛼 𝑡 → 𝑎
(
𝑏′(□)

)
𝑎 → 𝛼2(𝑎, □)

𝑠 → 𝑡(𝛿) 𝑏 → 𝛽 𝑏′ → 𝑏
(
𝑐(□)

)
𝑏 → 𝛽2(□, 𝑏)

𝑏 → 𝑒(𝛽) 𝑐 → 𝛾 𝑏 → 𝑎
(
𝑏′(□)

)
𝑐 → 𝛾2(□, 𝑐)

𝑒 → 𝛽 𝑒 → 𝑒
(
𝑒(□)

)
𝑒 → 𝜂2(𝑒 , □)

Figure 5.6 shows a derivation using G. The generated tree is also
depicted in Figure 5.7a with the spines marked by thick edges.
The spinal tree corresponding to the main spine (i.e., the spine
containing the root) of the tree is shown in Figure 5.7b. The yield
of T (G) is {𝛼𝑛 𝛿 𝛾𝑛 𝛽𝑚 | 𝑛, 𝑚 ∈ ℕ+}. Note that T (G) coincides
with the tree language generated by the TAG G3 of Example 2.3.4.

Normalization

In the following, we will show that we can always transform a spine
grammar into a strongly equivalent normalized spine grammar.
This result is a variant of Theorem 1 of Fujiyoshi and Kasai [21].

Theorem 5.3.4 For every spine grammar there is a strongly equivalent
normalized spine grammar.

5.3 Spine Grammar 69

Proof. The normal form of Fujiyoshi and Kasai [21, Definition 4.2]
is different from that of Definition 5.3.2 in the following three
aspects.

▶ The first case of productions of type (i) has right-hand side
𝑟 = 𝑏(𝑎) with 𝑏 ∈ 𝑁1, 𝑎 ∈ 𝑁0.

▶ Productions of type (ii) have a right-hand side of the form
𝑟 = 𝑏1(· · · (𝑏𝑚(□)) · · ·) with 𝑚 ∈ ℕ and 𝑏𝑖 ∈ 𝑁1 for 𝑖 ∈ [𝑚].

▶ In productions of type (iii) the start nonterminal is not
excluded from the set of nonterminals that can be produced.

When starting from their normal form, standard techniques can
be used to modify the grammar such that all productions 𝑛 → 𝑟

with 𝑟 = 𝑏1(· · · (𝑏𝑚(□)) · · ·) have 𝑚 = 2, that the start nonterminal
is isolated, and that no spinal tree contains its own spine generator.
We therefore assume that these conditions are already met.

Let G = (𝑁,Σ, 𝑆, 𝑃) be a spine grammar that is already in the
desired form except for 𝑃1 =

{
𝑛 → 𝑏(𝑎) | 𝑛, 𝑎 ∈ 𝑁0 , 𝑏 ∈ 𝑁1

}
⊆ 𝑃.

We define the spine grammar G′ = (𝑁0 ∪ 𝑁 ′
1 ,Σ, 𝑆, 𝑃

′) with unary
nonterminals 𝑁 ′

1 = 𝑁1 ∪ 𝑁0 × Σ0 and productions

𝑃′ =
(
𝑃 \ 𝑃1

)
∪{

𝑛 → ⟨𝑛, 𝛼⟩(𝛼)
�� 𝑛 → 𝑏(𝑎) ∈ 𝑃1 , 𝛼 ∈ Σ0

}
∪{

⟨𝑛, 𝛼⟩ → 𝑏
(
⟨𝑎, 𝛼⟩(□)

) �� 𝑛 → 𝑏(𝑎) ∈ 𝑃1 , 𝛼 ∈ Σ0
}
∪{

⟨𝑎, 𝛼⟩ → □
�� 𝑎 → 𝛼 ∈ 𝑃

}
.

When a nonterminal is expanded to a non-trivial spine, the terminal
symbol at the bottom of that spine is guessed. That symbol is
immediately produced and stored in its parent nonterminal. If the
original nonterminal corresponding to the parent can be replaced
by the guessed terminal symbol in the original grammar, the parent
can be removed instead since the terminal symbol was already
produced (see also [61, Section 5] for a similar construction). It is
easy to verify that G′ still generates the same tree language as G.

The set 𝑃′ contains collapsing productions 𝑎 → □ with 𝑎 ∈ 𝑁1 that
are not allowed in our normal form. They are subsequently removed
using the standard techniques for removal of 𝜀-productions and
unit productions from CFG [27, Section 4.3] to obtain a spine
grammar in the desired normal form.

70 5 Generative Power

𝛼2

𝛼2

𝛽2

𝜂2

𝛽𝛽

𝛾2

𝛾𝛾2

𝛾𝛿

𝛼

𝛼

(a) generated tree

𝛼2

𝛼2

𝛽2

𝑏𝛾2

𝑐𝛾2

𝑐𝛿

𝑎

𝑎

(b) spinal tree

𝛼2
𝑎 𝑠

𝛼2
𝑎 𝑠

𝛽2

𝑠 𝑏

𝜂2

𝑒 𝑏

𝛽
𝑏𝛽𝑒

𝛾2
𝑠 𝑐

𝛾𝑐
𝛾2
𝑠 𝑐

𝛾𝑐𝛿𝑠

𝛼𝑎

𝛼𝑎

(c) reassembled tree

Figure 5.7: Tree generated by spine grammar G, a spinal tree in 𝐼G(𝑠) (see Example 5.3.3), and a tree in F(S(G))𝑠
reassembled from spines (see Example 5.4.6).

5.4 Decomposition into Spines

In this section, we proceed with the construction starting from
the normalized spine grammar G. We construct a CFG G′ whose
generated string language—the set of spines S(G)—is a represen-
tation of spinal trees of G. Then, we define the operation F that
reassembles these spines such that the resulting tree language is
strongly equivalent to T (G) (up to relabeling). The reassembled
spines as a representation of the original tree language will prove
useful as an intermediate step later when showing the correctness
of our CCG construction in Section 5.6.

Context-Free Grammar of Spines

First, we construct a CFG that captures all information of G. It
represents the spinal trees (from bottom to top) as strings and
enriches the symbols with the spine generator (initialized by
start productions and preserved by chain productions) and the
non-spinal child (given by terminal productions). The order of
these annotations depends on the spine direction of the symbol.
The leftmost symbol of the generated strings has only a spine
generator annotated since the bottom of the spine has no children.
To simplify the notation, we write 𝑛𝑔 for (𝑛, 𝑔) ∈ 𝑁2, 𝛼𝑛 for
(𝛼, 𝑛) ∈ Σ0 × 𝑁 , and 𝜎

𝑛1 𝑛2
for (𝜎, 𝑛1 , 𝑛2) ∈ Σ2 × 𝑁2.

5.4 Decomposition into Spines 71

Definition 5.4.1 Let spine grammar G be normalized and ⊤ ∉ 𝑁 .
The spines S(G) = L(G′) of G are the strings generated by the CFG
G′ = ({⊤} ∪𝑁2 ,Σ′, {⊤}, 𝑃′) with Σ′ = (Σ0 ×𝑁) ∪ (Σ2 ×𝑁2) and
productions 𝑃′ = 𝑃0 ∪ 𝑃1 ∪ 𝑃2 given by

𝑃0 =
{
⊤ → 𝛼𝑛

�� (𝑛 → 𝛼) ∈ 𝑃
}
∪{

⊤ → 𝛼𝑛 𝑏𝑛
�� (
𝑛 → 𝑏(𝛼)

)
∈ 𝑃

}
𝑃1 =

⋃
𝑔∈𝑁

{
𝑛𝑔 → 𝑏′𝑔 𝑏𝑔

�� (
𝑛 → 𝑏

(
𝑏′(□)

))
∈ 𝑃

}
𝑃2 =

⋃
𝑔∈𝑁

({
𝑛𝑔 → 𝜎

𝑔 𝑛′
�� (
𝑛 → 𝜎(□, 𝑛′)

)
∈ 𝑃

}
∪{

𝑛𝑔 → 𝜎
𝑛′ 𝑔

�� (
𝑛 → 𝜎(𝑛′, □)

)
∈ 𝑃

})
.

For each start production we obtain a single production since the
nonterminal on the left-hand side becomes the spine generator.
On the other hand, for each chain or terminal production we have
to combine them with all nonterminals, as we do not know the
spine generator of the nonterminal on the left-hand side of the
original production. When a string is derived, the spine generators
are pulled through originating from start productions and are
consistent throughout the string. The construction is illustrated by
the following example.

Example 5.4.2 We list some corresponding productions of the
spine grammar G (left) of Example 5.3.3 and the CFG G′ (right)
for its spines S(G).

𝑎 → 𝛼 : ⊤ → 𝛼𝑎

𝑠 → 𝑡(𝛿) : ⊤ → 𝛿𝑠𝑡𝑠

𝑡 → 𝑎
(
𝑏′(□)

)
: 𝑡𝑠 → 𝑏′𝑠𝑎𝑠 𝑡𝑎 → 𝑏′𝑎 𝑎𝑎 𝑡

𝑏
→ 𝑏′

𝑏
𝑎
𝑏

. . .

𝑎 → 𝛼2(𝑎, □) : 𝑎𝑠 →
𝛼2

𝑎 𝑠
𝑎𝑎 →

𝛼2

𝑎 𝑎
𝑎
𝑏
→ 𝛼2

𝑎 𝑏
. . .

The language generated by G′ is

S(G) = L(G′) =
{
𝛿𝑠

𝛾2

𝑠 𝑐

𝑛 𝛽2

𝑠 𝑏

𝛼2

𝑎 𝑠

𝑛 ��� 𝑛 ∈ ℕ+

}
∪{

𝛽
𝑏

𝜂2

𝑒 𝑏

𝑚 ���𝑚 ∈ ℕ
}
∪

{
𝛼𝑎 , 𝛽𝑒 , 𝛾𝑐

}
.

Note that each string that is generated by the CFG belongs
to (Σ0 × 𝑁)(Σ2 × 𝑁2)∗. The spine generator of a symbol in such a
string can be accessed as follows.

72 5 Generative Power

Definition 5.4.3 The generator gen: (Σ0 × 𝑁) ∪ (Σ2 × 𝑁2) → 𝑁

is the nonterminal in spine direction and is given by

gen(𝑎) =
{
𝑛 if 𝑎 = 𝛼𝑛 ∈ Σ0 × 𝑁

𝑛𝑑(𝜎) if 𝑎 = 𝜎
𝑛1 𝑛2

∈ Σ2 × 𝑁2 .

Reassembling Spines

Next, we define how to reassemble those spines to form trees
again, which then relabel to the original trees generated by G. The
operation given in the following definition describes how a string
generated by the CFG can be transformed into a tree by attaching
subtrees in the non-spinal direction of each symbol, whereby the
non-spinal child annotation of the symbol and the spinal annotation
of the root of the attached tree have to match.

Definition 5.4.4 We are given a set of trees T ⊆ 𝑇Σ2×𝑁2 ,∅(Σ0 × 𝑁)
and a string 𝑤 ∈ 𝑊 = (Σ0 × 𝑁)(Σ2 × 𝑁2)∗. For 𝑛 ∈ 𝑁 , let
T𝑛 =

{
𝑡 ∈ T

�� gen
(
𝑡(𝜀)

)
= 𝑛

}
be those trees of T whose root

label stores spine generator 𝑛. We recursively define the tree language
attachT (𝑤) ⊆ 𝑇Σ2×𝑁2 ,∅(Σ0 × 𝑁) by attachT (𝛼𝑛) = {𝛼𝑛} for all
𝛼𝑛 ∈ Σ0 × 𝑁 , and

attachT
(
𝑤

𝜎
𝑛1 𝑛2

)
=

{
𝜎

𝑛1 𝑛2
(𝑡1 , 𝑡2)

����� 𝑡𝑑(𝜎) ∈ attachT (𝑤)
𝑡3−𝑑(𝜎) ∈ T𝑛3−𝑑(𝜎)

}
for all 𝑤 ∈ 𝑊 and 𝜎

𝑛1 𝑛2
∈ Σ2 × 𝑁2.

To obtain the tree language defined by G, it is necessary to apply
this operation recursively on the set of spines.

Definition 5.4.5 Let L ⊆ (Σ0×𝑁)(Σ2×𝑁2)∗. We inductively define
the tree language F(L) generated by L as the smallest tree language F
such that attachF (𝑤) ⊆ F for every 𝑤 ∈ L.

Example 5.4.6 The CFG G′ of Example 5.4.2 generates the set
of spines S(G) and F(S(G))𝑠 contains the correctly assembled
trees formed from these spines. Figure 5.7c shows a tree of
F(S(G))𝑠 since the generator of the main spine is 𝑠, which is
stored in spinal direction in the root label 𝛼2

𝑎 𝑠
. We can observe

the correspondence of annotations in non-spinal direction and
the spine generator of the respective child in the same direction.

5.4 Decomposition into Spines 73

Next we prove thatF
(
S(G)

)
𝑠

and T (G) coincide modulo relabeling.
This shows that the context-free languageS(G) of spines completely
describes the tree language T (G) generated by G. The relabeling 𝜋
simply removes the annotations that were added to the symbols
when S(G) was constructed through G′. The difference can be
observed in the trees of Figures 5.7a and 5.7c.

Theorem 5.4.7 Let spine grammar G be normalized, and let the
relabeling𝜋 : (Σ0×𝑁)∪(Σ2×𝑁2) → Σ0∪Σ2 be given by𝜋(𝛼𝑛) = 𝛼
and 𝜋

(
𝜎

𝑛1 𝑛2

)
= 𝜎 for all 𝛼 ∈ Σ0, 𝜎 ∈ Σ2, and 𝑛, 𝑛1 , 𝑛2 ∈ 𝑁 .

Then 𝜋
(
F(S(G))𝑠

)
= T (G).

Proof. We will prove a more general statement. Let G′ be the
CFG constructed for G in Definition 5.4.1. Given 𝑛 ∈ 𝑁0, we will
show that the tree language 𝜋

(
F(S(G))𝑛

)
coincides with the set of

trees
{
𝑡 ∈ 𝑇Σ2 ,∅(Σ0) | 𝑛 ⇒∗

G 𝑡
}
, which can be derived in G starting

from nullary nonterminal 𝑛. To this end, we show inclusion in
both directions.

The inclusion (⊆) is proved by induction on the size of 𝑡 ∈ F
(
S(G)

)
𝑛
.

Clearly, the construction of 𝑡 was carried out on the basis of a
string 𝑤 = 𝛼𝑛

𝜎1
𝑛1,1 𝑛1,2

· · · 𝜎𝑚
𝑛𝑚,1 𝑛𝑚,2

∈ S(G) with spine generator 𝑛

and 𝑛𝑖 ,𝑑(𝜎𝑖) = 𝑛 for all 𝑖 ∈ [𝑚]. Hence, there is a derivation⊤ ⇒∗
G′ 𝑤,

where ⊤ is the start nonterminal of G′. Each production applied
during this derivation uniquely corresponds to a production of
the spine grammar G. This yields a derivation 𝑛 ⇒∗

G 𝑡𝑤 of a spinal
tree 𝑡𝑤 ∈ 𝐼G(𝑛), where the spine of 𝑡𝑤 is labeled (from bottom to
top) by 𝜋(𝑤). If 𝑡 consists of a single node, we are finished. Else,
besides the spine, 𝑡𝑤 contains only leaf nodes that for 𝑖 ∈ [𝑚] are
attached below 𝜎𝑖 in the non-spinal direction 3 − 𝑑(𝜎𝑖) and are
labeled by nullary nonterminals 𝑛𝑖 ,3−𝑑(𝜎𝑖), respectively. For better
readability, let 𝑛𝑖 = 𝑛𝑖 ,3−𝑑(𝜎𝑖) in the following. Each nonterminal
annotation 𝑛𝑖 in 𝑤 implies the attachment of a tree 𝑡𝑖 ∈ F

(
S(G)

)
𝑛𝑖

.
These attached trees are smaller than 𝑡, so we can use the induction
hypothesis and conclude that there is a derivation 𝑛𝑖 ⇒∗

G 𝜋(𝑡𝑖).
Combining those derivations, we obtain a derivation 𝑛 ⇒∗

G 𝜋(𝑡).

For the other direction (⊇), we use induction on the length of the
derivation 𝑛 ⇒∗

G 𝑡 to show that there exists a tree 𝑡′ ∈ F
(
S(G)

)
𝑛

with 𝜋(𝑡′) = 𝑡. To this end, we reorder the derivation such that
a spinal tree 𝑢 ∈ 𝐼G(𝑛) is derived first (i.e., 𝑛 ⇒∗

G 𝑢 ⇒∗
G 𝑡). Sup-

pose that this spinal tree 𝑢 has the nullary terminal symbol 𝛼 at
the bottom and contains 𝑚 binary terminal symbols 𝜎1 , . . . , 𝜎𝑚
(from bottom to top). Let 𝑛𝑖 be the non-spinal child of 𝜎𝑖 . It is
attached in direction 3 − 𝑑(𝜎𝑖). Due to the construction of G′, there
is a corresponding derivation ⊤ ⇒∗

G′ 𝑤, for which the derived
string 𝑤 ∈ S(G) has the form 𝑤 = 𝛼𝑛

𝜎1
𝑛1,1 𝑛1,2

· · · 𝜎𝑚
𝑛𝑚,1 𝑛𝑚,2

with

74 5 Generative Power

𝑛𝑖 ,𝑑(𝜎𝑖) = 𝑛 and 𝑛𝑖 ,3−𝑑(𝜎𝑖) = 𝑛𝑖 for all 𝑖 ∈ [𝑚]. If 𝑚 = 0, we are
finished. Else, the remaining nonterminals in 𝑢 are replaced by
subderivations 𝑛𝑖 ⇒∗

G 𝑡𝑖 for all 𝑖 ∈ [𝑚]. These subderivations
are shorter than the overall derivation 𝑛 ⇒∗

G 𝑡, so by the in-
duction hypothesis, there exist trees 𝑡′

𝑖
∈ F

(
S(G)

)
𝑛𝑖

such that
𝜋(𝑡′

𝑖
) = 𝑡𝑖 for all 𝑖 ∈ [𝑚]. Attaching those trees 𝑡′

𝑖
to 𝑤, we obtain

the tree 𝑡′ ∈ F
(
S(G)

)
𝑛
. As required, we have 𝜋(𝑡′) = 𝑡.

We thus have proved that the set 𝜋
(
F(S(G))𝑠

)
of reassembled and

relabeled spines coincides with
{
𝑡 ∈ 𝑇Σ2 ,∅(Σ0) | 𝑠 ⇒∗

G 𝑡
}
. Hence,

𝜋
(
F(S(G))𝑠

)
= T (G).

5.5 Moore Push-Down Automata

In this section, we will introduce a Moore variant of push-down
automata [3] that is geared towards our needs and still accepts the
context-free languages (of strings of length ≥ 2). It will be similar
to the push-down Moore machines of Decker, Leucker, and Thoma
[14]. After defining the automaton model and characterizing its
generative power, we will discuss two properties that can always
be established, namely a coherence between popped symbol and
entered state, and a form of lookahead. Finally, we use the thus
prepared automaton model to represent the spines defined in
the previous section and show that, when used in conjunction
with a set L1 for spines of length 1, its generated language can be
reassembled in the same manner as before to yield a tree language
that can be relabeled to the original tree language T (G).

Instead of processing input symbols as part of transitions (as
in Mealy machines), Moore machines output a unique input
symbol in each state [18]. Recall that for every alphabet Γ we
have Γ≤1 = {𝜀} ∪ Γ and additionally let Γ≥2 =

{
𝑤 ∈ Γ∗ | 2 ≤ |𝑤|

}
be the strings of length at least 2.

Definition 5.5.1 A Moore push-down automaton (MPDA) is
defined as a tuple A = (𝑄,Σ, Γ, 𝛿, 𝜏, 𝐼 , 𝐹) that consists of

(i) finite sets 𝑄, Σ, and Γ of states, input symbols, and stack
symbols, respectively,

(ii) a set 𝛿 ⊆
(
𝑄×Γ≤1×Γ≤1×𝑄

)
\
(
𝑄×Γ×Γ×𝑄

)
of transitions,

(iii) an output function 𝜏 : 𝑄 → Σ, and
(iv) sets 𝐼 , 𝐹 ⊆ 𝑄 of initial and final states, respectively.

Due to the definition of 𝛿, as for the PDA of Definition 2.2.3, in
a single step we can either push or pop a single stack symbol or
ignore the stack. In the following, let A = (𝑄,Σ, Γ, 𝛿, 𝜏, 𝐼 , 𝐹) be an

5.5 Moore Push-Down Automata 75

MPDA. On the set ConfA = 𝑄 × Γ∗ of configurations of A the move
relation ⊢A ⊆ Conf2

A is

⊢A =
⋃

(𝑞,𝛾,𝛾′,𝑞′)∈𝛿
𝛼∈Γ∗

{(
⟨𝑞, 𝛾𝛼⟩, ⟨𝑞′, 𝛾′𝛼⟩

)
∈ Conf2

A

��� 𝛾𝛼 ≠ 𝜀
}

and a configuration ⟨𝑞, 𝛼⟩ ∈ ConfA is initial [respectively, final]
if 𝑞 ∈ 𝐼 and 𝛼 ∈ Γ [respectively, 𝑞 ∈ 𝐹 and 𝛼 = 𝜀]. An accept-
ing run is defined in the same manner as for PDAs. However,
note that contrary to PDAs we can start with an arbitrary symbol
on the stack. The language L(A) accepted by A contains exactly
those strings 𝑤 ∈ Σ∗ for which there exists an accepting run
⟨𝑞0 , 𝛼0⟩, . . . , ⟨𝑞𝑛 , 𝛼𝑛⟩ such that 𝑤 = 𝜏(𝑞0) · · · 𝜏(𝑞𝑛). Thus, we ac-
cept the strings that are output symbol-by-symbol by the states
attained during an accepting run. As usual, two MPDAs are
equivalent if they accept the same language. Because no initial
configuration is final, each accepting run has length at least 2, so
we can only accept strings of length at least 2. While we could
adjust the model to remove this restriction, the presented version
serves our later purposes best.

Theorem 5.5.2 MPDA accept the context-free languages of strings of
length at least 2.

Proof. The straightforward part of the proof is to show that each
language accepted by an MPDA is context-free. Given some MPDA,
an equivalent PDA can easily be constructed by moving the output
from a state to its outgoing transitions. As the MPDA starts with
an arbitrary symbol on the stack, and the classical PDA starts with
the bottom symbol ⊥, we add two additional states. A new unique
initial state has an outgoing 𝜀-transition to each original initial
state for each symbol 𝛾 ∈ Γ, pushing that symbol to the stack. A
new unique final state is reachable by each original final state via
a transition that pops ⊥ and realizes the output of that original
final state. Note that the inclusion of 𝜀-entries does not increase
the generative power of PDAs [3, page 143].7

7: That PDA with 𝜀-transitions have
the same expressivity as PDA with-
out them (i.e., real-time PDA) is a
consequence of the Greibach normal
form for CFG (see page 36).

Hence, the language
accepted by the constructed PDA is context-free.

For the converse, let L ⊆ Σ≥2 be a context-free language and
let A = (𝑄,Σ, Γ, 𝛿, 𝐼 ,⊥, 𝐹) be a PDA such that L(A) = L. We
assume without loss of generality that the initial states of A have
no incoming transitions and that the final states of A have no
outgoing transitions and all their incoming transitions pop ⊥. We
construct an MPDA A′ with L(A′) = L in the spirit of the classical
conversion from Mealy to Moore machines [18]. The main idea is
to shift the input symbol 𝑎 from the transition (𝑞, 𝑎, 𝛾, 𝛾′, 𝑞′) ∈ 𝛿
to the target state 𝑞′. Additionally, since there is always one more

76 5 Generative Power

configuration compared to the number of moves (and thus involved
transitions) in an accepting run, the first move needs to be avoided
in A′. If the corresponding transition pushes a symbol to the stack,
we have to store it in the target state of the transition. This state
becomes an initial state of A′. To be able to discern if the stored
symbol can be deleted, A′ needs to be aware whether the stack
currently contains only one symbol, since in A the symbol pushed
in the first transition lies above the bottom symbol. Since we clearly
cannot store the size of the current stack in the state, we need to
mark the symbol at the bottom of the stack.

Recall that Γ⊥ = Γ ∪ {⊥}. Formally, we construct the MPDA
A′ = (𝑄′,Σ, Γ′, 𝛿′,𝜋2 , 𝐼

′, 𝐹′) with

▶ 𝑄′ = 𝑄 × Σ × Γ≤1 × {0, 1},
▶ 𝐼′ =

{
⟨𝑞′, 𝑎, 𝛾′, 1⟩ ∈ 𝑄′ | ∃𝑞 ∈ 𝐼 : (𝑞, 𝑎, 𝛾, 𝛾′, 𝑞′) ∈ 𝛿

}
,

▶ Γ′ = Γ⊥ × {0, 1},
▶ 𝐹′ = 𝐹 × Σ × {𝜀} × {1},
▶ and the transitions 𝛿′ =

⋃
𝑎′∈Σ, 𝑏∈{0,1}
(𝑞,𝑎,𝛾,𝛾′,𝑞′)∈𝛿

𝛾′′∈Γ≤1
⊥

(
{(
⟨𝑞, 𝑎′, 𝛾′′, 𝑏⟩, 𝜀, 𝜀, ⟨𝑞′, 𝑎, 𝛾′′, 𝑏⟩

) ��� 𝛾 = 𝛾′ = 𝜀
}
∪ (5.6){(

⟨𝑞, 𝑎′, 𝛾′′, 𝑏⟩, 𝜀, ⟨𝛾′, 𝑏⟩, ⟨𝑞′, 𝑎, 𝛾′′, 0⟩
) ��� 𝛾 = 𝜀, 𝛾′ ≠ 𝜀

}
∪ (5.7){(

⟨𝑞, 𝑎′, 𝛾′′, 0⟩, ⟨𝛾, 𝑏⟩, 𝜀, ⟨𝑞′, 𝑎, 𝛾′′, 𝑏⟩
) ��� 𝛾 ≠ 𝜀, 𝛾′ = 𝜀

}
∪ (5.8){(

⟨𝑞, 𝑎′, 𝛾, 1⟩, 𝜀, 𝜀, ⟨𝑞′, 𝑎, 𝜀, 1⟩
) ��� 𝛾 ≠ 𝜀, 𝛾′ = 𝜀

}
∪ (5.9){(

⟨𝑞, 𝑎′, 𝜀, 1⟩, ⟨𝛾, 1⟩, 𝜀, ⟨𝑞′, 𝑎, 𝜀, 1⟩
) ��� 𝛾 ≠ 𝜀, 𝛾′ = 𝜀

})
. (5.10)

While transitions that ignore the stack (5.6) or push to the stack (5.7)
can be adopted straightforwardly, we have three variants of transi-
tions that pop from the stack (5.8)–(5.10). If we have not reached
the bottom of the stack yet, then we can pop symbols without
problems (5.8). However, when only the initial stack symbol is
left, which is indicated by 1 in the last component of the state, we
first have to remove the stored symbol (5.9) before we can pop the
initial stack symbol (5.10).

Let 𝑤 = 𝑎1 · · · 𝑎𝑛 with 𝑎1 , . . . , 𝑎𝑛 ∈ Σ and 𝑛 ≥ 2 be an input string.
First, we assume that the first move of A pushes the symbol 𝛾1
to the stack, which then gets popped in the 𝑖-th move. Any such
sequence of configurations

⟨𝑞1 , 𝑎1 · · · 𝑎𝑛 , ⊥⟩
⊢A ⟨𝑞2 , 𝑎2 · · · 𝑎𝑛 , 𝛾1⊥⟩ ⊢A ⟨𝑞3 , 𝑎3 · · · 𝑎𝑛 , 𝛾2𝛾1⊥⟩ ⊢A · · ·
⊢A ⟨𝑞𝑖 , 𝑎𝑖 · · · 𝑎𝑛 , 𝛾1⊥⟩ ⊢A ⟨𝑞𝑖+1 , 𝑎𝑖+1 · · · 𝑎𝑛 , ⊥⟩ ⊢A · · ·
⊢A ⟨𝑞𝑛 , 𝑎𝑛 , ⊥⟩ ⊢A ⟨𝑞𝑛+1 , 𝜀, 𝜀⟩

5.5 Moore Push-Down Automata 77

in A with 𝑞1 ∈ 𝐼 and 𝑞𝑛+1 ∈ 𝐹 yields the corresponding sequence
of configurations

⟨⟨𝑞2 , 𝑎1 , 𝛾1 , 1⟩, ⟨⊥, 1⟩⟩
⊢A′ ⟨⟨𝑞3 , 𝑎2 , 𝛾1 , 0⟩, ⟨𝛾2 , 1⟩⟨⊥, 1⟩⟩ ⊢A′ · · ·
⊢A′ ⟨⟨𝑞𝑖 , 𝑎𝑖−1 , 𝛾1 , 1⟩, ⟨⊥, 1⟩⟩ ⊢A′ ⟨⟨𝑞𝑖+1 , 𝑎𝑖 , 𝜀, 1⟩, ⟨⊥, 1⟩⟩ ⊢A′ · · ·
⊢A′ ⟨⟨𝑞𝑛 , 𝑎𝑛−1 , 𝜀, 1⟩, ⟨⊥, 1⟩⟩ ⊢A′ ⟨⟨𝑞𝑛+1 , 𝑎𝑛 , 𝜀, 1⟩, 𝜀⟩

which is an accepting run of A′ and vice versa. Similarly, if the
first move of A ignores the stack, then A′ starts in configura-
tion ⟨⟨𝑞2 , 𝑎1 , 𝜀, 1⟩, ⟨⊥, 1⟩⟩ to simulate the moves of A. The case
where the first move is a popping transition does not occur since
then we would have |𝑤| = 1. Thus, each string of length at least 2
accepted by A is also accepted by A′ and vice versa, which proves
L(A′) = L = L(A).

Pop-Normalization

An MPDA A is pop-normalized if there exists a map pop: Γ → 𝑄

such that 𝑞′ = pop(𝛾) for every transition (𝑞, 𝛾, 𝜀, 𝑞′) ∈ 𝛿. In other
words, for each stack symbol 𝛾 ∈ Γ there is a unique state pop(𝛾)
that the MPDA enters whenever 𝛾 is popped from the stack.

Later on, we will simulate the runs of an MPDA in a CCG such
that subsequent configurations are represented by subsequent
primary categories. Pop transitions are modeled by removing
the last argument of a category. Thus, the target state has to be
stored in the previous argument. This argument is added when
the corresponding push transition is simulated, so at that point
we already have to be aware in which state the MPDA will end up
after popping the symbol again. This will be explained in more
detail in Section 5.6.

We can easily establish this property by storing a state in each stack
symbol. Each push transition is replaced by one variant for each
state (i.e., we guess a state when pushing), but when a symbol is
popped, this is only allowed if the state stored in it coincides with
the target state.

Lemma 5.5.3 For every MPDA we can construct an equivalent
pop-normalized MPDA.

Proof. Given an MPDA A = (𝑄,Σ, Γ, 𝛿, 𝜏, 𝐼 , 𝐹), we extend each
stack symbol by a state and let Γ′ = Γ × 𝑄 as well as pop = 𝜋2,
i.e., pop

(
⟨𝛾, 𝑞⟩

)
= 𝑞 for all ⟨𝛾, 𝑞⟩ ∈ Γ′. All transitions that push a

symbol to the stack guess the state that is entered when that symbol

78 5 Generative Power

is eventually popped. Hence we constructA′ = (𝑄,Σ, Γ′, 𝛿′, 𝜏, 𝐼 , 𝐹)
with

𝛿′ =
⋃

(𝑞,𝛾,𝛾′,𝑞′)∈𝛿

({
(𝑞, 𝜀, 𝜀, 𝑞′)

��� 𝛾 = 𝛾′ = 𝜀
}
∪{(

𝑞, ⟨𝛾, 𝑞′⟩, 𝜀, 𝑞′
) ��� 𝛾′ = 𝜀

}
∪{(

𝑞, 𝜀, ⟨𝛾′, 𝑞′′⟩, 𝑞′
) ��� 𝛾 = 𝜀, 𝑞′′ ∈ 𝑄

})
.

It is obvious that for every accepting run of A there is an accepting
run of A′, in which all the guesses were correct. Note that A′ starts
with an arbitrary symbol on the stack, so we can find a run where
the second component of this symbol coincides with the final state
that is reached by popping this symbol. Similarly, every accepting
run of A′ can be translated into an accepting run of A by projecting
each stack symbol to its first component. Hence A and A′ are
equivalent and A′ is clearly pop-normalized.

Lookahead

The next statement shows that we can provide a form of lookahead
on the output. In each new symbol we store the current as well as
the next output symbol. We will briefly sketch why this lookahead
is necessary. Before constructing the CCG, the MPDA will be used
to model the spine grammar. The next output symbol of the MPDA
corresponds to the label of the parent node along the spine of
a tree generated by the spine grammar. From this parent node
we can determine the label of its other child, which is located
next to the spine. This information will be used in the CCG to
control which secondary categories are allowed as neighboring
combination partners.

Lemma 5.5.4 Let L ⊆ Σ∗ with ⊳ ∉ Σ be a context-free language. Then
the language Next(L) is context-free as well, where

Next(L) =
⋃
𝑛∈ℕ

{
⟨𝜎2 , 𝜎1⟩ · · · ⟨𝜎𝑛 , 𝜎𝑛−1⟩⟨⊳, 𝜎𝑛⟩�� 𝜎1 , . . . , 𝜎𝑛 ∈ Σ, 𝜎1 · · · 𝜎𝑛 ∈ L

}
.

Proof. We define Σ′ = Σ ∪ {⊳} and Σ′′ = Σ′ × Σ. Let us consider
the homomorphism 𝜋2 : (Σ′′)∗ → Σ∗ given by 𝜋2

(
⟨𝜎′, 𝜎⟩

)
= 𝜎

for all ⟨𝜎′, 𝜎⟩ ∈ Σ′′. Since the context-free languages are closed
under inverse homomorphisms [9, Chapter 2, Theorem 2.1], the

5.5 Moore Push-Down Automata 79

language L′′ = 𝜋−1
2 (L) is also context-free. Moreover, the language

R =
⋃
𝑛∈ℕ

{
⟨𝜎2 , 𝜎1⟩⟨𝜎3 , 𝜎2⟩ · · · ⟨𝜎𝑛 , 𝜎𝑛−1⟩⟨⊳, 𝜎𝑛⟩

�� 𝜎1 , . . . , 𝜎𝑛 ∈ Σ
}

is a regular language because it is recognized by the NFA given
by A =

(
Σ′,Σ′′, 𝛿,Σ′, {⊳}

)
with state set and initial states Σ′, input

alphabet Σ′′, final states {⊳}, and transitions

𝛿 =
{
(𝜎, ⟨𝜎′, 𝜎⟩, 𝜎′)

�� 𝜎 ∈ Σ, 𝜎′ ∈ Σ′} .

Finally, Next(L) = L′′ ∩ R is context-free because the intersec-
tion of a context-free language with a regular language is again
context-free [9, Chapter 2, Theorem 2.1].

Corollary 5.5.5 For every context-free language L ⊆ Σ≥2 there exists
a pop-normalized MPDA A such that L(A) = Next(L).

Representing Spines

We will now add the aforementioned lookahead to the set of spines
and use the MPDA to recognize this language. Since the automaton
only accepts words of length at least 2, words of length 1 have
to be treated as a separate set L1. The words with lookahead can
be recursively assembled in the same manner as those without.
Through an appropriate projection to the current symbol before
removing the other annotations, we again obtain the original tree
language T (G).

Corollary 5.5.6 Let G be a normalized spine grammar. Addition-
ally, let L1 =

{
𝑤 ∈ Next

(
S(G)

)
| |𝑤| = 1

}
. Then there exists a

pop-normalized MPDA A with L(A) ∪ L1 = Next
(
S(G)

)
. More-

over, the tree languages F
(
L(A) ∪ L1

)
𝑠

and T (G) coincide modulo
relabeling.

Proof. Without loss of generality (see Theorem 5.3.4), we may
assume that G = (𝑁,Σ, 𝑆, 𝑃) is a normalized spine grammar.
Due to Definition 5.4.1, the spines S(G) are a context-free subset
of 𝐴0𝐴

∗
2 with 𝐴0 = Σ0 × 𝑁 and 𝐴2 = Σ2 × 𝑁2. Using Corol-

lary 5.5.5, we obtain a pop-normalized MPDA A recognizing the
language L(A) =

{
𝑤 ∈ Next

(
S(G)

)
| |𝑤| ≥ 2

}
. Moreover, we

observe that L(A) ∪L1 ⊆ (𝐴′
2 ×𝐴0)(𝐴′

2 ×𝐴2)∗ with 𝐴′
2 = 𝐴2 ∪ {⊳}.

Clearly, L(A) ∪ L1 relabels to S(G) via the projection to the com-
ponents of 𝐴0 and 𝐴2. Consider the ranked alphabet Σ′ given
by Σ′

0 = 𝐴′
2 × Σ0, Σ′

1 = ∅, and Σ′
2 = 𝐴′

2 × Σ2. Then the tree
language F

(
L(A) ∪ L1

)
⊆ 𝑇Σ′

2×𝑁2 ,∅(Σ′
0 × 𝑁) can be relabeled

80 5 Generative Power

𝑞0start 𝑞1

𝑞′1

𝑞2 𝑞3

𝑞′3

𝜐 ↓

𝜐 ↓

𝜐 ↑

𝜐 ↑

𝜔 ↑
𝜔 ↑

𝑝0start 𝑝1

𝑝′1

𝜒 ↑
𝜒 ↑

Figure 5.8: Sample MPDA (see Example 5.5.7).

toF
(
S(G)

)
⊆ 𝑇Σ2×𝑁2 ,∅(Σ0×𝑁)via the projection to the components

ofΣ0×𝑁 andΣ2×𝑁2. By Theorem 5.4.7, the tree languageF
(
S(G)

)
𝑠

can be relabeled to T (G), proving that F
(
L(A) ∪ L1

)
𝑠

and T (G)
coincide modulo relabeling.

Example 5.5.7 The MPDA constructed in Corollary 5.5.6 for
the spine grammar G of Example 5.3.3 is depicted in Figure 5.8.
Initial states are indicated using a start marker and final states
are marked by a double circle. Push and pop stack operations
are written with downwards and upwards arrows, respectively.
The MPDA consists of two components. The larger one describes
the main spine, and the smaller one describes the side spine.
The distinction between the three stack symbols is necessary
due to pop-normalization, and the distinction between 𝑞1 and 𝑞′1
(and similar states) is necessary because of the lookahead pro-
vided by Next

(
S(G)

)
. For example, 𝜏(𝑞1) =

(𝛾2
𝑠 𝑐

,
𝛾2

𝑠 𝑐

)
and

𝜏(𝑞′1) =
(𝛽2

𝑠 𝑏
,

𝛾2
𝑠 𝑐

)
. Similarly, 𝜏(𝑝1) = (𝑧, 𝑧) and 𝜏(𝑝′1) = (⊳, 𝑧)

where 𝑧 =
𝜂2

𝑒 𝑏
. To completely capture the behavior of G, we

additionally require the set L1 = {(⊳, 𝛼𝑎), (⊳, 𝛽𝑏), (⊳, 𝛽𝑒), (⊳, 𝛾𝑐)},
which contains the spines of length 1.

5.6 CCG Construction

In this section, let G = (𝑁,Σ, {𝑠}, 𝑃) be a normalized spine gram-
mar with spine direction 𝑑 : Σ2 → [2]. Using Corollary 5.5.6, the
pop-normalized MPDA A = (𝑄,Δ, Γ, 𝛿, 𝜏, 𝐼 , 𝐹) with the mapping
pop: Γ → 𝑄 is constructed for G. We note that Δ = Σ′ × Σ′′ with
Σ′ = {⊳} ∪ (Σ2 × 𝑁2) and Σ′′ = (Σ0 × 𝑁) ∪ (Σ2 × 𝑁2). Moreover,
let ⊥ ∉ 𝑄 be a special symbol. To provide better access to the
components of the MPDA A, we define some additional maps.

The spine generator gen: 𝑄 → 𝑁 is given by gen(𝑞) = gen(𝑠2)
for every state 𝑞 ∈ 𝑄, where 𝜏(𝑞) = (𝑠1 , 𝑠2) ∈ Δ. Since A cannot
accept strings of length 1, we have to treat them separately. Let

5.6 CCG Construction 81

L1 =
{
𝑤 ∈ Next

(
S(G)

)
| |𝑤| = 1

}
and gen: L1 → 𝑁 be given

by gen(𝑤) = 𝑛 for all 𝑤 = (⊳, 𝛼𝑛) ∈ L1. We extend 𝜏 : 𝑄 → Δ to
𝜏′ : (𝑄 ∪ L1) → Δ by 𝜏′(𝑞) = 𝜏(𝑞) for all 𝑞 ∈ 𝑄 and 𝜏′(𝑎) = 𝑎 for
short strings 𝑎 ∈ L1.

Recall that 𝐷 = {/, \}. Given state 𝑞 ∈ 𝑄 \ 𝐹, the slash type
slash : (𝑄 \ 𝐹) → 𝐷 specifies whether the symbol 𝜏(𝑞) produced
by state 𝑞 occurs as the first or second child of its parent symbol.
The combining nonterminal comb: (𝑄 \ 𝐹) ∪ {⊥} → 𝑁 denotes
which spine generator the symbol 𝜏(𝑞) is combined with. Let
𝜏(𝑞) =

(
𝜎

𝑛1 𝑛2
, 𝑠2

)
with 𝜎

𝑛1 𝑛2
∈ Σ2 ×𝑁2 and 𝑠2 ∈ Σ′′. The slash type

and the combining nonterminal can be determined from the next
symbol 𝜎

𝑛1 𝑛2
. Formally, slash(𝑞) = / if 𝑑(𝜎) = 1 and slash(𝑞) = \

otherwise. Further, comb(𝑞) = 𝑛3−𝑑(𝜎) and comb(⊥) = 𝑠.

We simulate the accepting runs of A in the spines consisting of
primary categories of the CCG. These primary spines are paths in
a CCG derivation tree that start with a lexical category at a leaf
of the derivation tree and consist of a (possibly empty) sequence
of primary categories followed by a secondary or initial category,
which we consider as the end of the spine. The shortest possible
primary spine is a single lexical category that serves as a secondary
or initial category. The main idea is that each category on the
primary spine stores a configuration of A. The last argument stores
the current state in the first component and the top of the stack
in the second component. The previous arguments store in their
second components the preceding stack symbols and in their first
components the state the automaton returns to when the stack
symbol stored in the subsequent argument is popped. For each
push transition, an additional argument is added, whereas for
each pop transition, an argument is removed. With this intuition,
the rule system directly implements the transitions of A. The
translation from transitions to combinatory rules is illustrated in
the following simplified examples, where we omitted an additional
third component of each atom, which is needed for relabeling. The
stack symbol 𝜓 ∈ {𝜔, 𝜐, 𝜒} is arbitrary and remains unchanged.
For the pushing transition, note that pop(𝜐) = 𝑞3.

𝑞0 −→ 𝑞1

𝑎𝑥/
(
𝑞0
𝜓

) (
𝑞0
𝜓

)
/
(
𝑞1
𝜓

)
𝑎𝑥/

(
𝑞1
𝜓

)
𝑞1

𝜐↓−→ 𝑞′1

𝑎𝑥/
(
𝑞1
𝜓

) (
𝑞1
𝜓

)
\
(
𝑞3
𝜓

)
/
(
𝑞′1
𝜐

)
𝑎𝑥\

(
𝑞3
𝜓

)
/
(
𝑞′1
𝜐

)
𝑝0

𝜒↑−→ 𝑝′1

𝑎𝑥/
(
𝑝0
𝜒

) (
𝑝0
𝜒

)
𝑎𝑥

82 5 Generative Power

As can be seen above, to implement the required transformations
of consecutive primary categories, the secondary categories need
to have a specific structure. This mandates that the categories at the
end of a spine cannot store their corresponding automaton state in
the first component of the last argument as usual, but instead utilize
the third component of their target. Thus, each argument uses the
third component to store the final state or symbol corresponding
to the combining category of the attaching side spine.8

8: This is similar to the approach
employed in Section 4.1 for 0-CCG.
Since the relabeling of the primary
and secondary category was based
on the same atom, an additional
component was required to relabel
the secondary category, which con-
stituted the end of a spinal run.

The set of
atoms is defined in such a way that the symbol associated with the
third component is a valid sibling of the symbol associated with
the first component. This is verified by means of the annotated
lookahead, as the generator of the sibling is the non-spinal child
of the successor symbol. The third component also allows us to
decide whether a category is primary: A category is a primary
category if and only if the spine generator of the state stored in the
first component of the last argument and the spine generator of
the third component of the target coincide. This is possible since G
is normalized, which yields that attaching spines have a spine
generator that is different from the spine generator of the spine
that they attach to.

The lexicon assigns categories to symbols that can label leaves, thus
these symbols are taken from the nullary terminal symbols. The
spines of length 1 are translated directly to secondary categories or
initial categories and added to the lexicon. For non-trivial spines,
the assigned categories consist of a category that appears at the
end of such a spine plus an additional argument for the initial state
and initial stack symbol of an accepting run. This stack symbol
has the property that, when it is popped, A enters the final state
stored in the target of the category.

Definition 5.6.1 We define the CCG GA,L1 = (Δ0 , 𝐴, 𝑅, 𝐼′, 𝐿) as
follows.

We define the set of atoms 𝐴 =
{
(𝑞, 𝛾, 𝑓) ∈ 𝐴′ | gen(𝑓) = comb(𝑞)

}
with 𝐴′ =

(
𝑄 ∪ {⊥}

)
× Γ≤1 ×

(
𝐹 ∪ L1

)
. We write 𝑎𝑖 to refer to the

𝑖-th component of an atom 𝑎 ∈ 𝐴. Additionally, let the initial atomic
categories given by 𝐼′ =

{
(⊥, 𝜀, 𝑓) ∈ 𝐴 | gen(𝑓) = 𝑠

}
.

In the rules 𝑅 =
⋃

|∈𝐷
(
𝑅
|
1∪𝑅

|
2∪𝑅

|
3
)

we overline the primary category
𝑎𝑥/𝑏, which always needs to fulfill gen(𝑎3) = gen(𝑏1).

𝑅
/
1 =

⋃
𝑎,𝑏,𝑐∈𝐴, |∈𝐷
(𝑏1 ,𝜀,𝜀,𝑐1)∈𝛿

𝑏2=𝑐2

{
𝑎𝑥/𝑏 𝑏|𝑐

𝑎𝑥|𝑐

}

5.6 CCG Construction 83

𝑅
/
2 =

⋃
𝑎,𝑏,𝑐,𝑒∈𝐴, |,|′∈𝐷
(𝑏1 ,𝜀,𝑒2 ,𝑒1)∈𝛿

𝑏2=𝑐2
𝑐1=pop(𝑒2)

{
𝑎𝑥/𝑏 𝑏|𝑐|′𝑒

𝑎𝑥|𝑐|′𝑒

}

𝑅
/
3 =

⋃
𝑎,𝑏∈𝐴

(𝑏1 ,𝑏2 ,𝜀,𝑞)∈𝛿

{
𝑎𝑥/𝑏 𝑏

𝑎𝑥

}

We listed all the forward rules, but for each forward rule there also
exists a symmetric backward rule yielding the rule sets 𝑅 /

1, 𝑅 /
2, and 𝑅

/
3.

We require some notions for the lexicon. A category 𝑐 ∈ C(𝐴) is
well-formed if it is first-order and we have | = slash(𝑏1), 𝑏1 ∈ 𝑄,
and 𝑏2 ∈ Γ for every 𝑖 ∈ [arity(𝑐)] with |𝑏 = arg(𝑐, 𝑖). Let them be
denoted by 𝐶wf =

{
𝑐 ∈ C(𝐴) | 𝑐 well-formed

}
. Clearly 𝐼′ ⊆ 𝐶wf.

In addition, we introduce sets ⊤L1 and ⊤A of end-of-spine categories
derived from the short strings of L1 and the strings accepted by A,
respectively, where sec(𝑟) to refers to the secondary category of rule 𝑟:

⊤L1 =
{
𝑎 ∈ 𝐼′

�� 𝑎3 ∈ L1
}
∪

⋃
𝑟∈𝑅

𝑎𝑥=sec(𝑟)

{
𝑎𝑥 ∈ 𝐶wf

�� 𝑎3 ∈ L1
}

⊤A =
{
𝑎 ∈ 𝐼′

�� 𝑎3 ∈ 𝐹
}

∪
⋃
𝑟∈𝑅

𝑎𝑥=sec(𝑟)

{
𝑎𝑥 ∈ 𝐶wf

�� 𝑎3 ∈ 𝐹
}

Note that ⊤L1 ∪⊤A ⊆ 𝐶wf. For all 𝛼 ∈ Δ0 = Σ′× (Σ0 ×𝑁) we define
the lexicon as follows:

𝐿(𝛼) =
{
𝑎𝑥

���� 𝑎𝑥 ∈ ⊤L1

𝜏′(𝑎3) = 𝛼

}
∪𝑎𝑥|𝑏 ∈ 𝐶wf

������
𝑎𝑥 ∈ ⊤A , gen(𝑎3) = gen(𝑏1)
𝑏1 ∈ 𝐼 , pop(𝑏2) = 𝑎3

𝜏′(𝑏1) = 𝛼


The relabeling𝜌 : 𝐶wf → Δ is defined for every 𝑎 ∈ 𝐴 by𝜌(𝑎) = 𝜏′(𝑎3)
and for every 𝑎𝑥|𝑏 ∈ 𝐶wf by

𝜌(𝑎𝑥|𝑏) =
{
𝜏′(𝑏1) if gen(𝑎3) = gen(𝑏1)
𝜏′(𝑎3) otherwise

We will first be concerned with some general properties to establish
that the relabeling actually operates as intended. Let us start with
two general observations that hold for all categories that appear in
derivation trees of GA,L1 .

84 5 Generative Power

Observation 5.6.2 For all categories that appear in derivation
trees of GA,L1 holds the following:

1. All categories are well-formed. This follows from the fact
that only well-formed categories occur in the lexicon and
all categories in the derivation trees consist of atoms and
arguments that were already present in the lexicon (see
Proposition 3.3.10).

2. All primary categories 𝑎𝑥|𝑏 obey gen(𝑎3) = gen(𝑏1). This
is directly required by the rule system.

The following property holds because the spine grammar G is
normalized, so a spine never has the same spine generator as its
attached spines.

Lemma 5.6.3 For all secondary categories 𝑎𝑥|𝑏 appearing in derivation
trees of GA,L1 we have gen(𝑎3) ≠ gen(𝑏1).

Proof. We have gen(𝑎3) = comb(𝑎1) by the definition of atoms 𝐴.
Additionally, we have gen(𝑎1) = gen(𝑏1) by the construction of
the rule system, since 𝑎1 , 𝑏1 ∈ 𝑄 occur in a single transition
of A. However, the spine generator gen(𝑎1) never coincides with
the spine generator comb(𝑎1) of an attaching spine due to the
normalization of G. This means that comb(𝑎1) ≠ gen(𝑎1). We can
conclude that gen(𝑎3) = comb(𝑎1) ≠ gen(𝑎1) = gen(𝑏1).

We are now ready to describe the general form of primary spines
of GA,L1 . Given a primary spine 𝑐0 · · · 𝑐𝑛 with 𝑛 ≥ 1 read from
lexicon entry towards the root, we know that it starts with a lexicon
entry 𝑐0 = 𝑎𝑥 | 𝑏 ∈ 𝐿(Δ0) and ends with the non-primary cate-
gory 𝑎𝑥, which as such cannot be further modified. Hence each
of the categories 𝑐 ∈ {𝑐0 , . . . , 𝑐𝑛−1} has the form 𝑎𝑥|1𝑏1 · · · |𝑚𝑏𝑚
with 𝑚 ∈ ℕ+. Let 𝑏𝑖 = (𝑞𝑖 , 𝛾𝑖 , 𝑓𝑖) for every 𝑖 ∈ [𝑚]. The category 𝑐𝑛
is relabeled to 𝜏′(𝑎3) and 𝑐 is relabeled to 𝜏′(𝑞𝑚). Additionally,
unless 𝑎1 = ⊥, which applies to the main spine, the first compo-
nents of all atoms in 𝑎𝑥 have the same spine generator gen(𝑎1)
and gen(𝑞1) = · · · = gen(𝑞𝑚), but gen(𝑎1) ≠ gen(𝑞1). Finally,
neighboring arguments |𝑖−1𝑏𝑖−1|𝑖𝑏𝑖 in the suffix are coupled such
that pop(𝛾𝑖) = 𝑞𝑖−1 for all 𝑖 ∈ [𝑚]\{1}. This coupling is introduced
in the rules of second degree and preserved by the other rules.

Using these observations, it can be proved that the primary spines
of GA,L1 are relabeled to strings of Next

(
S(G)

)
and vice versa.

Moreover, spines attach in essentially the same manner in the CCG
and using F . This yields the result that, given a spine grammar,
it is possible to construct a CCG that generates the same tree
language. We will prove the correctness of our construction in the

5.6 CCG Construction 85

(
𝑞3
𝜔
𝛼

)
(
𝑞2
𝜐
𝛼

)

(⊥
𝜀
𝑞′3

)
/
(
𝑞0
𝜔
𝛾

) (
𝑞0
𝜔
𝛾

)
/
(
𝑞1
𝜔
𝛾

)
(⊥
𝜀
𝑞′3

)
/
(
𝑞1
𝜔
𝛾

) (
𝑞1
𝜔
𝛾

)
\
(
𝑞3
𝜔
𝛼

)
/
(
𝑞′1
𝜐
𝑝′1

)
(⊥
𝜀
𝑞′3

)
\
(
𝑞3
𝜔
𝛼

)
/
(
𝑞′1
𝜐
𝑝′1

)
(
𝑝0
𝜒
𝛽

) (
𝑞′1
𝜐
𝑝′1

)
\
(
𝑞2
𝜐
𝛼

)
\
(
𝑝0
𝜒
𝛽

)
(
𝑞′1
𝜐
𝑝′1

)
\
(
𝑞2
𝜐
𝛼

)
(⊥
𝜀
𝑞′3

)
\
(
𝑞3
𝜔
𝛼

)
\
(
𝑞2
𝜐
𝛼

)
(⊥
𝜀
𝑞′3

)
\
(
𝑞3
𝜔
𝛼

)
(⊥
𝜀
𝑞′3

)
Figure 5.9: Derivation tree of GA,L1 (see Example 5.6.4).

following two subsections. But first, we will illustrate it by means
of an example.

Example 5.6.4 Figure 5.9 shows the derivation tree of CCG GA,L1

that corresponds to the tree of Figure 5.7a, which is generated
by the spine grammar G of Example 5.3.3. We use the following
abbreviations: 𝛼 = (⊳, 𝛼𝑎), 𝛽 = (⊳, 𝛽𝑒), and 𝛾 = (⊳, 𝛾𝑐). The label-
ings of the (non-trivial) spines are 𝛿 𝛾2 𝛾2 𝛽2 𝛼2 𝛼2 for the main
spine and 𝛽 𝜂2 for the side spine (see Figure 5.7a). They corre-
spond to the following runs of A (see Example 5.5.7, Figure 5.8):(

⟨𝑞0 , 𝜔⟩, ⟨𝑞1 , 𝜔⟩, ⟨𝑞′1 , 𝜐𝜔⟩, ⟨𝑞2 , 𝜐𝜔⟩, ⟨𝑞3 , 𝜔⟩, ⟨𝑞′3 , 𝜀⟩
)(

⟨𝑝0 , 𝜒⟩, ⟨𝑝′1 , 𝜀⟩
)

The components storing the configurations of runs are high-
lighted in red for the main spine and blue for the side spine. In
secondary categories that constitute trivial spines of length 1, the
components responsible for relabeling are highlighted in green.

Let us observe how the transitions of A are simulated by GA,L1 .
The first transition (𝑞0 , 𝜀, 𝜀, 𝑞1)on the main spine does not modify
the stack. It is implemented by replacing the last argument
/(𝑞0 , 𝜔, 𝛾) by /(𝑞1 , 𝜔, 𝛾). The next transition (𝑞1 , 𝜀, 𝜐, 𝑞′1) pushes
the symbol 𝜐 to the stack. The argument /(𝑞1 , 𝜔, 𝛾) is thus
replaced by two arguments \(𝑞3 , 𝜔, 𝛼)/(𝑞′1 , 𝜐, 𝑝′1). As the stack
grows, an additional argument with the new state and stack
symbol is added. The previous argument stores pop(𝜐) = 𝑞3
to ensure that we enter the correct state after popping 𝜐. It
also contains the previous unchanged stack symbol 𝜔. The
pop transition (𝑝0 , 𝜒, 𝜀, 𝑝′1) on the side spine run is realized by
removing \(𝑝0 , 𝜒, 𝛽).

86 5 Generative Power

The third components are required to relabel the non-primary cat-
egories. At the start of the main spine, 𝑐1 = (⊥, 𝜀, 𝑞′3)/(𝑞0 , 𝜔, 𝛾)
is a primary category because 𝑞0 and 𝑞′3 are associated with
the same spine generator 𝑠. Thus, 𝑐1 gets relabeled to 𝜏′(𝑞0).
However, for 𝑐2 = (𝑞0 , 𝜔, 𝛾)/(𝑞1 , 𝜔, 𝛾), the spine generators of 𝛾
and of the output of 𝑞1 are different (𝑐 and 𝑠). Hence it is a
non-primary category and gets relabeled to 𝛾.

Concerning the lexicon, 𝑐1 is a lexical category due to the fact
that (⊥, 𝜀, 𝑞′3) ∈ ⊤A can appear at the end of a spine as an initial
category with 𝑞′3 ∈ 𝐹 in its third component, while the appended
/(𝑞0 , 𝜔, 𝛾) represents an initial configuration of A. Similarly,
𝑐2 is a well-formed secondary category of a rule and the third
component of its target is in L1. Therefore, it is an element of ⊤L1 ,
which is a subset of the lexicon.

Let us illustrate how the attachment of the side spine to the
main spine is realized. In category (𝑞′1 , 𝜐, 𝑝′1)\(𝑞2 , 𝜐, 𝛼)\(𝑝0 , 𝜒, 𝛽),
which is contained in the lexicon, the first two atoms are respon-
sible for performing a transition on the main spine. This part
cannot be modified since the rule system disallows it. The target
stores the final state 𝑝′1 of the side spine run in its third compo-
nent. The appended argument models the initial configuration
of the side spine run starting in state 𝑝0 with 𝜒 on the stack.

5.6.1 Relating CCG Spines and Automaton Runs

We assume the symbols that were introduced at the beginning of
the section. In particular, let A = (𝑄,Δ, Γ, 𝛿, 𝜏, 𝐼 , 𝐹) be the pop-
normalized MPDA, let L1 =

{
𝑤 ∈ Next(S(G)) | |𝑤| = 1

}
be the

short strings not captured by A, and let GA,L1 = (Δ0 , 𝐴, 𝑅, 𝐼′, 𝐿) be
the constructed CCG. We start with discussing the spines before
we move on to the discussion of how those spines attach to each
other in the next subsection.

Lemma 5.6.5 Every primary spine of a derivation tree of D(GA,L1)
read from leaf to initial or secondary category relabels via 𝜌 to a
string 𝑤 ∈ Next

(
S(G)

)
.

Proof. We start with spines of length 1. Their single category is
obviously taken from the lexicon and thus either an initial atomic
category 𝑎 or a secondary category 𝑎𝑥. Both of those categories
are relabeled to 𝑎3 ∈ L1 ⊆ Next

(
S(G)

)
.

Now consider a primary spine 𝑐0 · · · 𝑐𝑛 with 𝑛 ≥ 1. We have to
show that there is an accepting run of A corresponding to this
spine. We have already described the general form of these spines.

5.6 CCG Construction 87

There exists a category 𝑏𝑥, and for each 𝑖 ∈ {0, . . . , 𝑛}, there exist
𝑚 ∈ ℕ, slashes |1 , . . . , |𝑚 ∈ 𝐷, and atoms 𝑎1 , . . . , 𝑎𝑚 ∈ 𝐴 such that
category 𝑐𝑖 has the form 𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚 . In particular, we have
𝑐0 = 𝑏𝑥|𝑎 for some | ∈ 𝐷 and 𝑎 ∈ 𝐴 as well as 𝑐𝑛 = 𝑏𝑥. For better
readability, we address the 𝑗-th component of atom 𝑎𝑖 by 𝑎𝑖 , 𝑗 as an
abbreviation for (𝑎𝑖)𝑗 , where 𝑖 ∈ [𝑚] and 𝑗 ∈ [3]. We translate each
category 𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚 to a configuration of A via the mapping
conf : C0(𝐴) → ConfA in the following manner:

conf(𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚) =
{
⟨𝑏3 , 𝜀⟩ if 𝑚 = 0
⟨𝑎𝑚,1 , 𝑎𝑚,2 · · · 𝑎1,2⟩ otherwise

In other words, the state of the configuration corresponding to 𝑐𝑛
is the third component of the target 𝑏, whereas all other cate-
gories 𝑐0 , . . . , 𝑐𝑛−1 store the state in the first component of the
last argument. The stack content is represented by the second
components of the suffix |1𝑎1 · · · |𝑚𝑎𝑚 . Each category relabels to
the input symbol produced by its respective stored state. Thus, if(
conf(𝑐0), . . . , conf(𝑐𝑛)

)
is an accepting run of A, then it generates

the same string that the spine is relabeled to.

It remains to show that
(
conf(𝑐0), . . . , conf(𝑐𝑛)

)
is actually an ac-

cepting run. Since 𝑐0 is assigned by the lexicon and has a suffix
behind 𝑏𝑥 consisting of a single argument with the first com-
ponent in 𝐼, whereas 𝑐𝑛 has an empty suffix and 𝑏3 ∈ 𝐹, it is
easy to see that 𝑐0 and 𝑐𝑛 correspond to an initial and a final
configuration, respectively. Hence we only need to prove that
configurations corresponding to subsequent categories 𝑐𝑖 and 𝑐𝑖+1
with 𝑖 ∈ {0, . . . , 𝑛 − 1} are connected by valid moves. To this end,
we distinguish three cases based on the rule 𝑟 that is used to derive
output category 𝑐𝑖+1 from primary category 𝑐𝑖 :

1. Let 𝑟 ∈ 𝑅
|
1 with | ∈ 𝐷. Moreover, let 𝑐𝑖 = 𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚

with |𝑚 = | and 𝑐𝑖+1 = 𝑏𝑥|1𝑎1 · · · |𝑚−1𝑎𝑚−1|′𝑚𝑎′𝑚 . These cate-
gories correspond to configurations ⟨𝑎𝑚,1 , 𝑎𝑚,2 · · · 𝑎1,2⟩ and
⟨𝑎′

𝑚,1 , 𝑎
′
𝑚,2𝑎𝑚−1,2 · · · 𝑎1,2⟩, respectively. The definition of 𝑅|

1
implies 𝑎𝑚,2 = 𝑎′𝑚,2 as well as the existence of the transi-
tion (𝑎𝑚,1 , 𝜀, 𝜀, 𝑎′𝑚,1) ∈ 𝛿 of A that enables a valid move.

2. Let 𝑟 ∈ 𝑅
|
2 with | ∈ 𝐷. Moreover, let 𝑐𝑖 = 𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚

with |𝑚 = | and 𝑐𝑖+1 = 𝑏𝑥|1𝑎1 · · · |𝑚−1𝑎𝑚−1|′𝑚𝑎′𝑚|′𝑚+1𝑎
′
𝑚+1.

The corresponding configurations are ⟨𝑎𝑚,1 , 𝑎𝑚,2 · · · 𝑎1,2⟩
and ⟨𝑎′

𝑚+1,1 , 𝑎
′
𝑚+1,2𝑎

′
𝑚,2𝑎𝑚−1,2 · · · 𝑎1,2⟩, respectively. The defi-

nition of 𝑅|
2 implies 𝑎𝑚,2 = 𝑎′𝑚,2 as well as the existence of the

transition (𝑎𝑚,1 , 𝜀, 𝑎′𝑚+1,2 , 𝑎
′
𝑚+1,1) ∈ 𝛿, which again enables a

valid move.
3. Let 𝑟 ∈ 𝑅

|
3 with | ∈ 𝐷. Moreover, let 𝑐𝑖 = 𝑏𝑥|1𝑎1 · · · |𝑚𝑎𝑚

with |𝑚 = | and 𝑐𝑖+1 = 𝑏𝑥|1𝑎1 · · · |𝑚−1𝑎𝑚−1. We distinguish
two subcases. First, let 𝑚 > 1. Then the corresponding config-

88 5 Generative Power

urations are ⟨𝑎𝑚,1 , 𝑎𝑚,2 · · · 𝑎1,2⟩ and ⟨𝑎𝑚−1,1 , 𝑎𝑚−1,2 · · · 𝑎1,2⟩,
respectively. Due to the coupling of neighboring arguments,
we have pop(𝑎𝑚,2) = 𝑎𝑚−1,1, which ensures that we reach
the correct target state. Since A is pop-normalized, the target
state of the pop-transition is completely determined by the
popped symbol 𝑎𝑚,2. The definition of the rule set 𝑅|

3 im-
plies the existence of the transition (𝑎𝑚,1 , 𝑎𝑚,2 , 𝜀, 𝑎𝑚−1,1) ∈ 𝛿,
which again makes the move valid.
Now let 𝑚 = 1, which yields 𝑐𝑖 = 𝑏𝑥 | 𝑎1 and 𝑐𝑖+1 = 𝑏𝑥. The
corresponding configurations are ⟨𝑎1,1 , 𝑎1,2⟩ and ⟨𝑏3 , 𝜀⟩,
where pop(𝑎1,2) = 𝑏3 because the initial stack symbol 𝑎1,2
was assigned by the lexicon and cannot be modified without
removing the argument. The definition of 𝑅|

3 implies the
existence of the transition (𝑎1,1 , 𝑎1,2 , 𝜀, 𝑏3) ∈ 𝛿, which also
concludes this subcase.

We have seen that each spine 𝑐0 · · · 𝑐𝑛 with 𝑛 ≥ 1 corresponds
to an accepting run conf(𝑐0) ⊢A · · · ⊢A conf(𝑐𝑛) whose out-
put 𝑤 ∈ L(A) ⊆ Next

(
S(G)

)
coincides with the relabeling of

the spine via 𝜌.

We now turn our attention to the inverse direction. More precisely,
we will show that, given a string 𝑤 = 𝑤0 · · ·𝑤𝑛 ∈ Next

(
S(G)

)
with

𝑤𝑖 ∈ Δ for 𝑖 ∈ {0, . . . , 𝑛}, we can find a primary spine 𝑐0 · · · 𝑐𝑛
of GA,L1 (i.e., a sequence of primary categories starting at a category
that belongs to 𝐿(Δ0) and ending in a non-primary category) that
gets relabeled to it via 𝜌. Further, for this spine we have some
freedom in the selection of 𝑐𝑛 , which is the category at the end.
More precisely, for every well-formed secondary or initial category
that relabels to 𝑤𝑛 , we can essentially choose this category, but it
might be necessary to change the third component of the target
to another value (that still outputs 𝑤𝑛) to ensure consistency with
the rest of the spine. Additionally, the third component of the
last argument in the suffix (so in all categories except for 𝑐𝑛) can
be chosen freely from the set of strings of length 1 or final states
under the condition that it has the correct spine generator. This
will be of great importance when we combine these spines to a
complete derivation tree. We will start with the short spines, which
correspond to lexicon entries.

Lemma 5.6.6 Let 𝑤 ∈ L1 and 𝑐 ∈
{
𝑎𝑥 ∈ 𝐿(Δ0) | 𝑎3 = 𝑤

}
. Then

there exists a primary spine of GA,L1 that is labeled by 𝑐 and relabeled
to 𝑤 via 𝜌.

Proof. The set 𝐶 =
{
𝑎𝑥 ∈ 𝐿(Δ0) | 𝑎3 = 𝑤

}
is clearly a subset

of 𝐿(Δ0) and each 𝑎𝑥 ∈ 𝐶 is either a secondary category or an

5.6 CCG Construction 89

initial category by the construction of 𝐿 since 𝑎3 ∈ L1. In either
case 𝑎𝑥 is relabeled to 𝑎3 = 𝑤 and cannot be modified by the rules
of GA,L1 . Consequently, these categories themselves constitute
complete primary spines of length 1.

For longer spines, we assume that we are given a run of A. We can
choose a category 𝑐 that is either a secondary or initial category
and will appear at the end of the corresponding primary spine.
This category has to store the final state of the run in the third
component of the target, but the freedom we have otherwise will be
needed later to attach to other spines in different ways or to use it as
the main spine. Additionally, we can choose 𝑒0 , . . . , 𝑒𝑛−1 ∈ 𝐹 ∪ L1
from the possible siblings that can appear next to the symbols on
the spine, respectively. This will be needed later for the relabeling
of the respective secondary categories, which again are the end of
some attaching spine. Using these prerequisites, a primary spine
is constructed starting from the lexicon entry at the leaf.

Lemma 5.6.7 Assume we are given

▶ an accepting run
(
⟨𝑞0 , 𝛽0⟩, . . . , ⟨𝑞𝑛 , 𝛽𝑛⟩

)
of A,

▶ well-formed category 𝑐 ∈
{
𝑎𝑥 | 𝑎𝑥|𝑏 ∈ 𝐿(Δ0), 𝑎3 = 𝑞𝑛

}
, and

▶ 𝑒0 , . . . , 𝑒𝑛−1 ∈ 𝐹 ∪ L1 such that gen(𝑒𝑖) = comb(𝑞𝑖) for all
𝑖 ∈ {0, . . . , 𝑛 − 1}.

Then there exists a primary spine 𝑐0 · · · 𝑐𝑛−1𝑐 with well-formed cate-
gories 𝑐0 , . . . , 𝑐𝑛−1 such that

▶ it relabels to 𝜌(𝑐0) · · · 𝜌(𝑐𝑛−1)𝜌(𝑐) = 𝜏(𝑞0) · · · 𝜏(𝑞𝑛) and
▶ category 𝑐𝑖 has prefix 𝑐, ends with an argument |𝑎 with 𝑎3 = 𝑒𝑖 ,

and |𝛽𝑖| = arity(𝑐𝑖) − arity(𝑐) for all 𝑖 ∈ {0, . . . , 𝑛 − 1}.

Proof. We will describe how the primary spine 𝑐0 · · · 𝑐𝑛−1𝑐 is con-
structed by induction on 𝑖 ∈ {0, . . . , 𝑛} that additionally obeys the
following invariants:

(i) The categories are well-formed.
(ii) Subsequent arguments |𝑗−1𝑎 𝑗−1|𝑗𝑎 𝑗 in the suffix (i.e., the

argument sequence after 𝑐 in each category 𝑐|1𝑎1 · · · |𝑚𝑎𝑚)
are coupled, so pop((𝑎 𝑗)2) = (𝑎 𝑗−1)1 for all 𝑗 ∈ {2, . . . , 𝑚}.

We already noted that the suffix of a category stores the stack in
the second components, such that the last argument contains the
topmost stack symbol in its second component. Also note that all
states 𝑞0 , . . . , 𝑞𝑛 have the same spine generator.

In the induction base, we let 𝑐0 = 𝑐|(𝑞0 , 𝛽0 , 𝑒0) with | = slash(𝑞0).
We note that pop(𝛽0) = target(𝑐)3 = 𝑞𝑛 . Obviously, 𝑐0 ∈ 𝐿(Δ0) and

90 5 Generative Power

𝜌(𝑐0) = 𝜏(𝑞0). It is also clear that 𝑐0 obeys the invariants and has
the correct arity.

In the induction step, we assume that 𝑐𝑖−1 already fulfills the
conditions, and we let (𝑞𝑖−1 , 𝛾, 𝛾′, 𝑞𝑖) ∈ 𝛿 be a transition that
permits the move ⟨𝑞𝑖−1 , 𝛽𝑖−1⟩ ⊢A ⟨𝑞𝑖 , 𝛽𝑖⟩. We again distinguish
three cases for the construction of a suitable category 𝑐𝑖 :

1. Ignore stack: Suppose that 𝛾 = 𝛾′ = 𝜀. We start from a
category 𝑐𝑖−1 = 𝑐|1𝑎1 · · · |𝑚𝑎𝑚 and apply a rule of 𝑅

|𝑚
1 to

obtain 𝑐𝑖 = 𝑐|1𝑎1 · · · |𝑚−1𝑎𝑚−1|𝑏, where | = slash(𝑞𝑖) and
𝑏 =

(
𝑞𝑖 , (𝑎𝑚)2 , 𝑒𝑖

)
. Since 𝑏1 = 𝑞𝑖 , as a primary category,

𝑐𝑖 gets relabeled to 𝜏(𝑞𝑖). It is clearly well-formed. The stack
symbol is not changed, so subsequent arguments are still
coupled. Additionally, neither the stack size nor the arity of
the category have changed.

2. Push symbol: Suppose that 𝛾′ ≠ 𝜀 and 𝑐𝑖−1 = 𝑐|1𝑎1 · · · |𝑚𝑎𝑚 .
Now let 𝑗 ∈ {𝑖 + 1, . . . , 𝑛} be minimal such that 𝛽 𝑗 = 𝛽𝑖−1
(i.e., 𝑗 is the index of the configuration in which the stack
symbol 𝛾′ is removed again). Clearly, we apply a rule of 𝑅|𝑚

2
to obtain 𝑐𝑖 = 𝑐|1𝑎1 · · · |𝑚−1𝑎𝑚−1|𝑏|′𝑏′ such that | = slash(𝑞 𝑗),
|′ = slash(𝑞𝑖), 𝑏 =

(
𝑞 𝑗 , (𝑎𝑚)2 , 𝑒 𝑗

)
, and 𝑏′ = (𝑞𝑖 , 𝛾′, 𝑒𝑖). Note

that 𝑞 𝑗 = pop(𝛾′). Hence 𝑐𝑖 gets relabeled to 𝜏(𝑞𝑖). The
mentioned conditions ensure that 𝑐𝑖 is well-formed and
obeys the second invariant. The increase in stack size is
properly accounted for by an increased arity of 𝑐𝑖 .

3. Pop symbol: Suppose that 𝛾 ≠ 𝜀. We further distinguish the
cases 𝑖 < 𝑛 and 𝑖 = 𝑛. We start with 𝑖 < 𝑛. Suppose that
𝑐𝑖−1 = 𝑐|1𝑎1 . . . |𝑚𝑎𝑚 . Note that 𝑚 ≥ 2. Since 𝑐𝑖−1 obeys the
invariants, subsequent arguments in the suffix are coupled,
so we have (𝑎𝑚−1)1 = pop

(
(𝑎𝑚)2

)
= pop(𝛾) = 𝑞𝑖 . Moreover,

(𝑎𝑚−1)3 = 𝑒𝑖 as prepared in the corresponding push transi-
tion. We apply a rule of 𝑅|𝑚

3 to obtain 𝑐𝑖 = 𝑐|1𝑎1 . . . |𝑚−1𝑎𝑚−1,
which is trivially well-formed and still obeys the second
invariant. It relabels to 𝜏(𝑞𝑖) as required due to (𝑎𝑚−1)1 = 𝑞𝑖 .
The stack size and arity both decrease by 1.
For 𝑖 = 𝑛 we have 𝑐𝑛−1 = 𝑐|1𝑎1 since the stack size is neces-
sarily 1. We also apply a rule of 𝑅|1

3 and obtain the category 𝑐.
This category is trivially well-formed and also trivially fulfills
the second invariant. Additionally, it relabels to 𝜏(𝑞𝑛) since
it is a non-primary category and target(𝑐)3 = 𝑞𝑛 .

We observe that the secondary categories that are needed to per-
form the category transformations corresponding to the automaton
run are well-formed as well. Thus, they can be chosen as the cate-
gory at the end of an appropriate primary spine (unless the third

5.6 CCG Construction 91

component of the target constitutes an unreachable state of A).
This will be relevant in the next step, in which we combine the
spines to obtain a complete derivation tree.

5.6.2 Combining Spines

We continue to use the introduced symbols. Moreover, we write
D′(GA,L1) =

{
𝑡 ∈ D(GA,L1) | 𝑡(𝜀) ∈ ⊤L1 ∪⊤A

}
to refer to the deriva-

tion trees whose root nodes are labeled by end-of-spine categories.
We will show that 𝜌

(
D′(GA,L1)

)
= F

(
Next(S(G))

)
. In other words,

we will show that when these derivation trees are relabeled using 𝜌,
this yields exactly the trees obtained by reassembling the annotated
spines of the normalized spine grammar G. We prove the inclusion
in both directions.

Lemma 5.6.8 𝜌
(
D′(GA,L1)

)
⊆ F

(
Next(S(G))

)
Proof. We prove the statement by induction on the size of the
derivation tree 𝑡 ∈ D′(GA,L1). Let 𝑐0 · · · 𝑐𝑛 be the primary spine
of 𝑡 that starts at a lexicon entry 𝑐0 ∈ 𝐿(Δ0) and ends at the root
(i.e., 𝑐𝑛 = 𝑡(𝜀)). By Lemma 5.6.5, this spine gets relabeled to a
string 𝑤 = 𝑤0 · · ·𝑤𝑛 ∈ Next

(
S(G)

)
. If 𝑛 = 0, this finishes the in-

duction base. Otherwise, except for the root category 𝑐𝑛 , each of the
spinal categories 𝑐0 , . . . , 𝑐𝑛−1 gets combined with a (well-formed)
secondary category that itself is the root of a subtree 𝑡′ ∈ D′(GA,L1).
Since 𝑡′ is a proper subtree of 𝑡, we can utilize the induction hypoth-
esis to conclude that 𝜌(𝑡′) ∈ F

(
Next(S(G))

)
. It remains to show

that each such tree fulfills the requirements necessary to attach
it to the spine. Suppose that the primary category is 𝑐𝑖 = 𝑎𝑥|𝑏,
so it can only be combined with a secondary category of the
form 𝑏𝛾, where 𝛾 ∈ A(𝐴) is some argument context. This sec-
ondary category gets relabeled to 𝜌(𝑏𝛾) = 𝜏(𝑏3). Suppose further
that 𝜌(𝑐𝑖) =

(
⟨𝜎′, 𝑛′

1 , 𝑛
′
2⟩, ⟨𝜎, 𝑛1 , 𝑛2⟩

)
. Clearly, gen(𝑏3) = comb(𝑏1),

where gen(𝑏3) is the spine generator at the root of 𝜌(𝑡′), and
comb(𝑏1) = 𝑛′

3−𝑑(𝜎′) is the generator of the non-spinal child of
the succeeding parent symbol 𝜌(𝑐𝑖+1). Since they coincide, the
attachment of 𝜌(𝑡′) is possible and the directionality of the at-
tachment is 3 − 𝑑(𝜎′), which is guaranteed by the requirement
that | = slash(𝑏) for argument |𝑏. We conclude that all attachments
of subtrees are consistent with the definition of F

(
Next(S(G))

)
.

Thus, 𝜌(𝑡) ∈ F
(
Next(S(G))

)
.

Lemma 5.6.9 F
(
Next(S(G))

)
⊆ 𝜌

(
D′(GA,L1)

)

92 5 Generative Power

Proof. Since we have to distinguish between short and longer spines,
we indeed prove the following statement for all 𝑡 ∈ F

(
Next(S(G))

)
.

If 𝑡 consists of a single node, then for each 𝑐 ∈ {𝑎𝑥 ∈ ⊤L1 | 𝑎3 = 𝑡}
there is a tree 𝑡′ ∈ D′(GA,L1) such that 𝑡′(𝜀) = 𝑐 and 𝜌(𝑡′) = 𝑡. If 𝑡
has more than one node, then for each 𝑐 ∈ {𝑎𝑥 ∈ ⊤A | 𝑎3 = 𝑞𝑛},
where 𝑞𝑛 is the final state of an accepting run of A corresponding
to the main spine of 𝑡, there is a tree 𝑡′ ∈ D′(GA,L1) such that
𝑡′(𝜀) = 𝑐 and 𝜌(𝑡′) = 𝑡. We perform an induction on the size of 𝑡.

In the induction base, 𝑡 consists of a single node 𝑡 ∈ L1. By
Lemma 5.6.6, all 𝑐 ∈

{
𝑎𝑥 ∈ 𝐿(Δ0) | 𝑎3 = 𝑡

}
=

{
𝑎𝑥 ∈ ⊤L1 | 𝑎3 = 𝑡

}
are complete primary spines that get relabeled to 𝑡. By the definition
of the lexicon, this set is nonempty for all 𝑡 ∈ L1. Thus, we
have 𝑡 ∈ 𝜌

(
D′(GA,L1)

)
.

In the induction step, let 𝑡 ∈ F
(
Next(S(G))

)
be a tree with |𝑡| > 1.

We identify the main spine labeled by 𝑤 = 𝑤0 · · ·𝑤𝑛 ∈ Next
(
S(G)

)
that was used to create 𝑡. This string 𝑤 is generated by an ac-
cepting run

(
⟨𝑞0 , 𝛽0⟩, . . . , ⟨𝑞𝑛 , 𝜀⟩

)
of A. Likewise, there exists a

primary spine 𝑐0 · · · 𝑐𝑛 of GA,L1 that gets relabeled to 𝑤 and we
can choose the category 𝑐𝑛 at the end of the spine freely from the
set given by

{
𝑎𝑥 | 𝑎𝑥|𝑏 ∈ 𝐿(Δ0), 𝑎3 = 𝑞𝑛

}
=

{
𝑎𝑥 ∈ ⊤A | 𝑎3 = 𝑞𝑛

}
according to Lemma 5.6.7. Similarly, we can freely choose the
third component of the last argument of each category 𝑐0 , . . . , 𝑐𝑛−1
under the condition that this yields a valid atom. Consider an arbi-
trary 0 ≤ 𝑖 ≤ 𝑛 − 1, and let 𝑤𝑖 =

(
⟨𝜎′, 𝑛′

1 , 𝑛
′
2⟩, ⟨𝜎, 𝑛1 , 𝑛2⟩

)
; the case

of 𝑤𝑖 =
(
⟨𝜎′, 𝑛′

1 , 𝑛
′
2⟩, ⟨𝜎, 𝑛⟩

)
is analogous. At the parent node with

label 𝑤𝑖+1, in the direction 3 − 𝑑(𝜎′), a subtree 𝑡′ ∈ F
(
Next(S(G))

)
with spine generator 𝑛′

3−𝑑(𝜎′) stored in its root label is attached.
Let 𝑞 be the final state of an accepting run of A for the main
spine of 𝑡′ when |𝑡′| > 1 or let 𝑞 = 𝑡′ when |𝑡′| = 1. Moreover,
suppose that 𝑐𝑖 = 𝑎𝑥|𝑏 with 𝑏1 = 𝑞𝑖 , so the required secondary
category has the shape 𝑏𝛾 with 𝛾 ∈ A(𝐴). By the induction hypoth-
esis, there exists 𝑡′′ ∈ D′(GA,L1) such that 𝑡′′(𝜀) = 𝑏𝛾 ∈ ⊤L1 ∪ ⊤A,
𝜌(𝑡′′) = 𝑡′, and 𝑏3 = 𝑞. This choice of 𝑏3 is permitted for 𝑐𝑖
since comb(𝑏1) = comb(𝑞𝑖) = 𝑛′

3−𝑑(𝜎′) = gen(𝑞) = gen(𝑏3), which
confirms that gen(𝑏3) = comb(𝑏1). The directionality 3 − 𝑑(𝜎′) of
the attachment of 𝑡′′ is guaranteed by the relationship | = slash(𝑏),
which holds since 𝑐𝑖 is well-formed. In conclusion, for each
attached subtree 𝑡′ ∈ F

(
Next(S(G))

)
of 𝑡 we can find a suit-

able 𝑡′′ ∈ D′(GA,L1) whose root category can be combined with the
neighboring primary category of the spine 𝑐0 · · · 𝑐𝑛 . Putting the
primary spine and the derivation trees for subtrees together again
yields a tree in D′(GA,L1). Its root 𝑐𝑛 can be chosen freely from the
desired set

{
𝑎𝑥 | 𝑎𝑥|𝑏 ∈ 𝐿(Δ0), 𝑎3 = 𝑞𝑛

}
.

5.6 CCG Construction 93

Now we have to restrict both sets of trees in the following manner.
For the reassembled spines, only those trees whose main spine
is generated by the start nonterminal 𝑠 may be considered, since
only these are part of T (G) (see Theorem 5.4.7). Regarding the
derivation trees of GA,L1 , we are interested only in those rooted
in an initial category, as these contribute to the generated tree
language. We will show that these restricted sets coincide as well.
For the first direction, in order to gain the necessary freedom
regarding the root category of the derivation tree, we will actually
apply the stronger statement that we established in the proof of
Lemma 5.6.9.

Lemma 5.6.10 F
(
Next(S(G))

)
𝑠
= T𝜌(GA,L1)

Proof. Recall thatGA,L1 together with relabeling𝜌generates the tree
language T𝜌(GA,L1) =

{
𝜌(𝑡) ∈ 𝑇Δ,∅(Δ) | 𝑡 ∈ D(GA,L1), 𝑡(𝜀) ∈ 𝐼′

}
. It

follows that T𝜌(GA,L1) ⊆ 𝜌
(
D′(GA,L1)

)
. Also recall that the initial

atomic categories of GA,L1 are 𝐼′ =
{
(⊥, 𝜀, 𝑓) ∈ 𝐴 | gen(𝑓) = 𝑠

}
.

First, let 𝑡 ∈ F
(
Next(S(G))

)
𝑠
. By Lemma 5.6.9, there exists a

tree 𝑡′ ∈ D(GA,L1) with 𝜌(𝑡′) = 𝑡, whose root category can be
any category from either {𝑎𝑥 ∈ ⊤A | 𝑎3 = 𝑓 }, where 𝑓 is the
final state of an accepting run for the main spine of 𝑡, or from
{𝑎𝑥 ∈ ⊤L1 | 𝑎3 = 𝑡}, if 𝑡 consists of a single node. Hence we can se-
lect the category 𝑡′(𝜀) = (⊥, 𝜀, 𝑓) in the former and 𝑡′(𝜀) = (⊥, 𝜀, 𝑡)
in the latter case. Since both of these categories are initial, we obtain
that 𝜌(𝑡′) ∈ T𝜌(GA,L1).

Now let 𝑡 ∈ T𝜌(GA,L1). Hence there is a tree 𝑡′ ∈ D(GA,L1) such
that 𝜌(𝑡′) = 𝑡 and 𝑡′(𝜀) ∈ 𝐼′ =

{
(⊥, 𝛾, 𝑓) ∈ 𝐴 | gen(𝑓) = 𝑠

}
. By

Lemma 5.6.8, we also have 𝑡 ∈ F
(
Next(S(G))

)
. Because after rela-

beling, the root is labeled by 𝜌
(
𝑡′(𝜀)

)
= 𝑡(𝜀) = 𝑓 with gen(𝑓) = 𝑠,

we obtain 𝑡 ∈ F
(
Next(S(G))

)
𝑠
.

Together with Corollary 5.5.6, this concludes the proof of the
following main theorem.

Theorem 5.6.11 Given a spine grammar G, we can construct a CCG
that can generate T (G).

94 5 Generative Power

5.7 Strong Equivalence

In this section we will show that CCG and sCFTG as well as
CCG and TAG are strongly equivalent.9

9: Since the tree languages gener-
ated by CCG are already defined via
a relabeling of categories, we do not
require the qualification “modulo
relabeling” here.

We will also cover the
implications regarding the role of 𝜀-entries, rule degree, and the
use of first-order categories.

To show strong equivalence of sCFTG and CCG, we combine
Theorems 5.1.13 and 5.6.11, which we have proven in this chapter.
This leads us to the following main theorem.

Theorem 5.7.1 CCG and sCFTG are strongly equivalent.

Proof. Given a CCGG, by Theorem 5.1.13, its rule tree languageR(G)
can be generated by an sCFTG G′. The tree language T𝜌(G) accepted
by G is the relabeled set of derivation trees D(G) rooted in an ini-
tial category. The relabeling 𝜌 can be transferred to the rule tree
language R(G) since it only depends on the target and the last ar-
gument of each category, which can both be figured out by looking
at the output category of the rule label of the respective rule tree
node. Conversely, given an sCFTG G, we can first convert it into
an equivalent spine grammar (up to deterministic relabeling) and
then construct a CCG that is equivalent to G by Theorem 5.6.11.

Kepser and Rogers [45] proved that TAG and sCFTG are strongly
equivalent, which shows that TAG is also strongly equivalent to
CCG. We briefly sketch the transformation from TAG to sCFTG that
they presented. TAG is a notational variant of footed simple CFTG.
This is a simple CFTG where all variables in right-hand sides of
productions appear in order directly below a designated foot node.
To obtain an sCFTG, the footed simple CFTG is first converted into a
spine grammar, where the spine is the path from the root to the foot
node, and then brought into normal form using the construction
of Fujiyoshi and Kasai [21]. The spine grammar of Example 5.3.3 is
strongly equivalent to the TAG shown in Figure 2.2.

Corollary 5.7.2 CCG and TAG are strongly equivalent.

Clearly, from strong equivalence we can conclude weak equivalence
as well. Weak equivalence of CCG and TAG was famously proven
by Vĳay-Shanker and Weir [93], but Theorem 3 of Kuhlmann, Koller,
and Satta [50] highlights a problem with the original construction.10

10: Kuhlmann, Koller, and Satta [50]
show that prefix-closed CCG with-
out target restrictions is less ex-
pressive than TAG. But the CCG
constructed by Vĳay-Shanker and
Weir [93] to simulate an arbitrary
TAG has exactly these properties.

However, Weir [95] provides an alternative construction that does
not suffer from that issue. Our contribution provides a stronger
form (and proof) of this old equivalence result. It avoids the
𝜀-entries that the original construction heavily relies on. An 𝜀-entry

5.7 Strong Equivalence 95

is a category assigned to the empty string (see page 30); these
interspersed categories form the main building block in the original
constructions. The necessity of these 𝜀-entries is an interesting
and important question that naturally arises and has been asked
by Kuhlmann, Koller, and Satta [50]. We settle this question and
demonstrate that they can be avoided.

Corollary 5.7.3 CCG and TAG are weakly equivalent. Moreover, CCG
with 𝜀-entries and CCG without 𝜀-entries generate the same (𝜀-free)
languages.

Proof. The weak equivalence of CCG and TAG is clear from the
previous corollary. Similarly, each 𝜀-free language generated by a
CCG can trivially also be generated by a CCG with 𝜀-entries. For
the converse direction, let G be a CCG with 𝜀-entries. We convert
it into an sCFTG accepting the rule tree language of G by applying
Definition 5.1.2. This sCFTG is already in the spine grammar normal
form of Fujiyoshi and Kasai [21, Definition 4.2]. Therefore, we can
apply the 𝜀-removal procedure of Fujiyoshi [20, Theorem 4.1]
to obtain a weakly equivalent spine grammar. In our sCFTG,
the productions that require our attention are those of the form
⟨𝑐⟩ → 𝑐 with 𝑐 ∈ 𝐿(′𝜀′). To establish the necessary preconditions
to properly perform the 𝜀-removal, we add productions of the
form ⟨𝑐⟩ → ′𝜀′ for each 𝑐 ∈ 𝐿(′𝜀′). For each 𝑐 ∈ 𝐿(Σ), unless
𝑐 ∈ 𝐿(𝛼) for some 𝛼 ∈ Σ, we remove the rule ⟨𝑐⟩ → 𝑐 from
the set of productions. We call the grammar modified in this
way G′ =

(
𝑁1 ∪ 𝑁0 , 𝑅 ∪ 𝐿(Σ), 𝑆, 𝑃

)
.

In the following, we present an 𝜀-removal procedure that essentially
follows Fujiyoshi [20]. Since that construction introduces a new
unary terminal symbol, which we wish to avoid, we present an
adjusted version. First, two sets 𝐸0 and 𝐸1 are constructed, which
contain the nullary and unary nonterminals that can derive a tree
with yield 𝜀 or a context with yield (𝜀, 𝜀), respectively. They are
constructed iteratively starting from 𝐸0 = {𝑛 ∈ 𝑁0 | 𝑛 → ′𝜀′ ∈ 𝑃}
and 𝐸1 = ∅. The following steps are repeated until a fixpoint is
reached:

▶ Add 𝑛 to 𝐸0 if there is 𝑛 → 𝑏(𝑎) ∈ 𝑃 with 𝑏 ∈ 𝐸1 and 𝑎 ∈ 𝐸0.
▶ Add 𝑛 to 𝐸1 if there is 𝑛 → 𝜎(□, 𝑎) ∈ 𝑃 or 𝑛 → 𝜎(𝑎, □) ∈ 𝑃

with 𝑎 ∈ 𝐸0.
▶ Add 𝑛 to 𝐸1 if there is 𝑛 → 𝑏1(𝑏2(□)) ∈ 𝑃 with 𝑏1 , 𝑏2 ∈ 𝐸1.

After finishing the setup of 𝐸0 and 𝐸1, the weakly equivalent
spine grammar is defined as G′′ =

(
𝑁 ′

0 ∪ 𝑁1 , 𝑅 ∪ 𝐿(Σ), 𝑆, 𝑃′)

96 5 Generative Power

with 𝑁 ′
0 = 𝑁0 ∪ {𝑛 | 𝑛 ∈ 𝑁1} and the set of productions

𝑃′=
(
𝑃 \ {𝑛 → ′𝜀′ | 𝑛 ∈ 𝑁0}

)
∪{

𝑛 → 𝑏 | 𝑛 → 𝑏(𝑎) ∈ 𝑃 with 𝑎 ∈ 𝐸0
}
∪{

𝑛 → 𝑏1(𝑏2) | 𝑛 → 𝑏1(𝑏2(□)) ∈ 𝑃
}
∪{

𝑛 → 𝑏1 | 𝑛 → 𝑏1(𝑏2(□)) ∈ 𝑃 with 𝑏2 ∈ 𝐸1
}
∪{

𝑛 → □ | 𝑛 → 𝜎(□, 𝑎) ∈ 𝑃 or 𝑛 → 𝜎(𝑎, □) ∈ 𝑃 with 𝑎 ∈ 𝐸0
}
∪{

𝑛 → 𝑎 | 𝑛 → 𝜎(□, 𝑎) ∈ 𝑃 or 𝑛 → 𝜎(𝑎, □) ∈ 𝑃
}

.

For a detailed correctness proof, we refer to Fujiyoshi [20].

Then, G′′ can be converted into a strongly equivalent CCG by
Theorem 5.6.11. This CCG accepts the same 𝜀-free string language
as the original CCG G that used 𝜀-entries.

The tree expressive power of CCG with restricted rule degrees has
already been investigated in Chapter 4. We showed that 0-CCG
accepts a proper subset of the regular tree languages, whereas
1-CCG accepts exactly the regular tree languages. It remained open
whether there is a 𝑘 such that 𝑘-CCG and (𝑘+1)-CCG has the same
expressive power. Our construction in Definition 5.6.1 establishes
that 2-CCG is as expressive as 𝑘-CCG for arbitrary 𝑘 ≥ 2. The
construction also shows that first-order categories are sufficient.

Corollary 5.7.4 2-CCG with first-order categories has the same ex-
pressive power as 𝑘-CCG with 𝑘 > 2.

Proof. We only argue the nontrivial inclusion. Let G be a CCG
whose categories have arbitrary order and whose rules have degree
at most 𝑘. Using Definition 5.1.2, we construct the sCFTG G′

generating the rule tree language R(G). After performing the
intermediate steps as discussed in the preceding sections, using
Definition 5.6.1, we construct the CCG G′′ that generates the same
tree language as G′. By construction, G′′ uses only first-order
categories and rules with degree at most 2. As already argued, the
rule trees can be relabeled to the tree language generated by G.
Since the composition of two (deterministic) relabelings again is
a (deterministic) relabeling, the tree language generated by G is
generatable by G′′ as well.

Computational Complexity for
Bounded Rule Degree 6

6.1 Parsing Algorithm . 98
6.2 Correctness 108
6.3 Runtime Analysis . . 115
6.4 From Parse Tree to

Derivation Tree . . . 121
6.5 Parser Extensions and

Improvements 125

In this chapter, we study a certain aspect of the computational
complexity of CCG. In particular, we are interested in the role of
the maximum rule degree. This research is joint work with Marco
Kuhlmann and Giorgio Satta (see Section 1.5). The main result of
this chapter is that when the rule degree of a CCG is bounded by a
constant, i.e., if we fix the maximum rule degree to some 𝑘 ∈ ℕ, the
universal recognition problem can be solved in polynomial time.
This means that parsing can be performed in time polynomial not
only in the length of the input string, but also in the size of the
grammar. We show this by designing a parsing algorithm that has
a runtime exponential solely in the maximum rule degree 𝑘.

Throughout this chapter, we assume that substitution rules and
𝜀-entries are allowed in general. To simplify the presentation, we
also assume that the CCG we are given is pure. However, our
algorithm can easily be extended to CCG that uses only a subset
of combinatory rules up to some degree and specifically allows
rule restrictions. This will be discussed in Section 6.5.2. These
properties therefore do not limit the validity of the main result.
Thus, in this chapter, if not stated otherwise, let G = (Σ, 𝐴, 𝑅, 𝐼, 𝐿)
be a CCG with these properties. As in Section 5.1, we will gener-
ally restrict ourselves to lexical arguments args(𝐿) and argument
contexts A𝐿(𝐴) consisting thereof, which is permitted by Proposi-
tion 3.3.10.

A full complexity analysis of practical CCG would cover not only
application, composition, and substitution, but also type-raising (see
Section 3.2.5). However, here we follow Steedman’s assumption
that this rule cannot be used recursively and is implemented in
the lexicon [85].1

1: Note that there are different ap-
proaches for the implementation of
type-raising under discussion (see
page 142).

Similarly, we assume a purely lexical treatment
of coordination via (appropriately restricted) lexicon entries such as
𝑋\𝑋/𝑋 ∈ 𝐿(′and′) [87, page 91].

The remainder of this chapter is structured as follows. In Section 6.1,
after the introduction of some additional notation and definitions,
the new parsing algorithm is presented. Section 6.2 contains the
correctness proof of the algorithm, divided into the proofs of
soundness and completeness. Section 6.3 provides a comprehen-
sive runtime analysis. There, we also show that if 𝜀-entries are
allowed, the universal recognition problem for CCG of bounded
rule degree is PTIME-complete under logspace-reduction. Sec-
tion 6.4 describes how to construct CCG derivation trees from the
parse trees produced by our algorithm. Finally, Section 6.5 explores
several potential extensions and improvements of the algorithm,

98 6 Computational Complexity for Bounded Rule Degree

including the elimination of spurious ambiguity, support for rule
restrictions, support for multi-modal CCG, and an algorithm for
the universal recognition problem running in polynomial time if all
secondary categories in the rule set of the grammar are instantiated,
i.e., if they do not contain any variables.

6.1 Parsing Algorithm

In this section we develop a tabular algorithm for parsing based on
CCG. Our algorithm extends the approach of Kuhlmann and Satta
[54] by including substitution rules. In spite of its extended power,
we will see that the new algorithm facilitates a sharper analysis of
its runtime complexity with respect to the grammar size. Before
moving on with the technical presentation, we informally discuss
the key ideas at the core of our result.

Let 𝑤 be some input string of length |𝑤|. Recall that a CCG consists
of a finite number of lexical categories, and hence a finite number
of arguments. However, in a CCG derivation of 𝑤, the arity of
produced categories can grow with |𝑤|. This means that a naive
tabular method for CCG parsing, which records in its parsing
table each node of each possible derivation for 𝑤, may result in
exponential time complexity in |𝑤|, because of the combinatorial
explosion of CCG categories. This has already been pointed out in
the literature, for instance by Kuhlmann and Satta [54, §3], who
avoid this combinatorial explosion by resorting to factorization
techniques for CCG derivations. Informally, each CCG derivation
is broken into pieces such that each piece uses at most ℎ of the
topmost arguments in its categories, where ℎ is a grammar constant
that does not depend on |𝑤|. The arguments that are not used
by a derivation piece are not stored in the parsing table, so that
the abovementioned combinatorial explosion of CCG categories
only involves argument contexts of length at most ℎ. This results
in polynomial time (and space) parsing in |𝑤|. In this article we
generalize these techniques in order to factorize CCG derivations
that also include substitution rules, which were not considered by
Kuhlmann and Satta [54].

As a second technical point, consider an instance of a composition
rule having the form 𝑐/𝑏 𝑏𝛼

𝑐𝛼 or 𝑏𝛼 𝑐\𝑏
𝑐𝛼 , where 𝑏, 𝑐 are categories

and 𝛼 is an argument context. In accordance with the factorization
of CCG derivations that we have mentioned above, the number of
arguments in 𝛼 is bounded by our constant ℎ. However, the arity
of category 𝑏 is bounded by the maximum arity 𝑚 of an argument
from the lexicon, which is independent of ℎ. In pathological cases,
where 𝑚 is much larger than ℎ, we again face the problem of
combinatorial explosion of CCG categories. This problem is not

6.1 Parsing Algorithm 99

dealt with well in the parsing algorithm of Kuhlmann and Satta
[54], which exhaustively produces all possible categories 𝑏𝛼 with
arity bounded by 𝑚 + ℎ. As a solution for this we observe here that
the category 𝑏 must match a finite number of possible arguments
from the lexicon of the CCG. Using this restriction, we avoid the
additional exponential factor of 𝑚 in the running time of our
parsing algorithm.

6.1.1 Definitions and Notation

We start with some auxiliary definitions and notation that we use
in the development of our algorithm.

String We are given a CCG G and a string 𝑤 = 𝑤1 · · ·𝑤𝑛 to be
parsed. We write 𝑤[𝑖 , 𝑗] = 𝑤𝑖+1 · · ·𝑤 𝑗 to denote the substring of 𝑤
from (fencepost) position 𝑖 to position 𝑗, for 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤|, and
assume 𝑤[𝑖 , 𝑖] = 𝜀. Given some string 𝑤, we write 𝑤𝑖 for 𝑤[𝑖−1, 𝑖],
the one-element substring containing the 𝑖-th symbol.

Extended Derivation Tree We extend CCG derivation trees by
adding additional nodes labeled by input symbols as children of
leaf categories. The input symbol labeling such a node is associated
with the lexical category of its respective parent node via the
lexicon. We add this information because our parsing algorithm
can determine it and due to its importance for the notion of
spurious ambiguity that is discussed in Section 6.5.1. Throughout
this chapter, when talking about derivation trees, we refer to these
extended derivation trees.

Definition 6.1.1 An extended derivation tree of CCG G is a tree
𝑡 ∈ 𝑇C(𝐴),𝐿(Σ≤1)(Σ≤1) such that there exists a tree 𝑡′ ∈ D(G) where
pos(𝑡) = pos(𝑡′) ∪ {𝑢1 | 𝑢 ∈ leaves(𝑡′)} and for 𝑢 ∈ pos(𝑡′) we
have 𝑡(𝑢) = 𝑡′(𝑢) and for 𝑢 ∈ leaves(𝑡′) we have 𝑡′(𝑢) ∈ 𝐿(𝑡(𝑢1)).

Spine As in the previous chapters, the notion of spine is essential
here as well. The spine of a derivation tree is the path that starts at
the root node and at each node continues to the child labeled by
the primary category until it reaches some unary node. This unary
node is called lexical anchor. The spine therefore corresponds to
the term “main spine” of the previous chapter, and excludes the
additional leaf nodes, which are labeled by an input symbol or by ′𝜀′.
Thus, each spinal node is labeled by a CCG category. Accordingly,
the length of a spine is defined as its number of spinal nodes. To
address a specific spine segment whose nodes are located properly

100 6 Computational Complexity for Bounded Rule Degree

Figure 6.1: Examples of spines com-
plying with or violating the con-
text definition. The bridging argu-
ments of primary categories are
highlighted to emphasize the down-
step arities. As usual, the foot node
is drawn at the top and the root node
at the bottom.

𝑆/𝐵

𝑆/𝐶\𝐺

𝑆/𝐶\𝐸/𝐹

𝑆/𝐶\𝐸
(a) valid context

𝑆/𝐵/𝐶

𝑆/𝐵\𝐺

𝑆\𝐺\𝐸/𝐹

𝑆\𝐺\𝐸
(b) violates
equation (6.1)

𝑆/𝐵

𝑆/𝐶\𝐺

𝑆/𝐶

𝑆\𝐸/𝐹
(c) violates
equation (6.2)

between two spinal nodes 𝑢 and 𝑣 with |𝑢| < |𝑣| (i.e., 𝑢 is closer to
the root), we write between(𝑢, 𝑣) = Pref(𝑣) \ (Pref(𝑢) ∪ {𝑣}).

Downstep Arity We consider a combinatory rule application as
consisting of two phases, where in the first phase the bridging
arguments of the primary category are removed, and in the second
phase the excess is added. Consider some derivation tree 𝑡 with
node 𝑢 labeled by primary category 𝑡(𝑢) = 𝑐|𝑏𝛼, the sibling labeled
by 𝑏𝛼𝛽, and the parent 𝑣 by 𝑡(𝑣) = 𝑐𝛼𝛽. The downstep arity of 𝑢
concerns the category that is obtained from 𝑐|𝑏𝛼 by removing the
bridging arguments, so downarity(𝑡 , 𝑢) = arity(𝑐). The category 𝑐

is considered as the result of the first phase of the rule application.
If 𝑢 is labeled by a non-primary category, its downstep arity is
undefined. Also note that it cannot be determined based on an
individual category, but only within a given tree. The result of the
second phase of the rule application is the output category, and its
arity is the usual arity(𝑡(𝑣)) = arity(𝑐𝛼𝛽). We informally say that a
node has a certain arity when referring to its labeling category.

Example 6.1.2 Let 𝑡 be a derivation tree with some node 𝑢 labeled
by 𝑡(𝑢) = 𝑆/𝐶\𝐸 and its children labeled by 𝑡(𝑢1) = 𝑆/𝐵/𝐶
and 𝑡(𝑢2) = 𝐵/𝐶\𝐸. The category labeling 𝑢 is clearly obtained
by using an instance of the substitution rule 𝑆𝑥/𝐵/𝐶 𝐵/𝐶\𝐸

𝑆𝑥/𝐶\𝐸
with 𝑥 = □. Then we have arity(𝑡(𝑢)) = arity(𝑡(𝑢1)) = 2 and
downarity(𝑡 , 𝑢1) = 0.

Derivation Context

In accordance with the classical definition of context (see Sec-
tion 2.3), a derivation context is a derivation tree with a hole.
However, there are three distinctive features. First, the hole is
located on the spine of the underlying derivation tree. Second, the
position of the special character □ is associated with a category.
Third, there are two conditions regarding the arities and downstep
arities along the spine of the context. Throughout this chapter, the
term context refers to derivation contexts.

6.1 Parsing Algorithm 101

Definition 6.1.3 Let (𝐶, 𝑐) be a tuple with 𝐶 ∈ 𝐶C(𝐴),𝐿(Σ≤1)(Σ≤1)
and 𝑐 ∈ C(𝐴). Let the node 𝑓 = pos□(𝐶) be called foot node. For
convenience, we access the category 𝑐 by writing 𝐶(𝑓) and also treat 𝑐
as the label of the foot node otherwise.

We call (𝐶, 𝑐) a derivation context of G if

▶ 𝐶(𝑢1) 𝐶(𝑢2)
𝐶(𝑢) Π for every 𝑢 ∈ pos(𝐶) with 𝑢1, 𝑢2 ∈ pos(𝐶),

▶ all nodes in between(𝜀, 𝑓) are labeled by primary categories,
▶ for all nodes 𝑢 ∈ between(𝜀, 𝑓) the following conditions hold:

downarity(𝐶, 𝑓) ≤ downarity(𝐶, 𝑢) (6.1)
arity(𝐶(𝜀)) ≤ arity(𝐶(𝑢)) (6.2)

The spine of the derivation context contains all nodes in Pref(𝑓). We
usually write (𝐶, 𝑐) simply as 𝐶.

Example 6.1.4 Figure 6.1 shows some examples of spines in order
to illustrate the context definition. For the sake of simplicity, the
respective secondary categories are omitted, although in general
they would be necessary to determine downstep arities. We
highlighted the bridging arguments to emphasize the downstep
arities. According to our convention, the foot node is drawn at
the top and the root node at the bottom. Figure 6.1a depicts a
valid context. In Figure 6.1b, the node labeled by 𝑆/𝐵\𝐺 has
downstep arity 0 due to substitution, but the downstep arity at
the foot is 1. Therefore, the spine violates condition (6.1) of the
context definition. Finally, in Figure 6.1c the node labeled by 𝑆/𝐶
has lower arity than root category 𝑆\𝐸/𝐹. Therefore, the spine
violates condition (6.2) of the context definition.

In the following, we have 𝛼, 𝛾 ∈ A𝐿(𝐴). Given a context 𝐶, let us
write the category at 𝑓 as 𝑐𝛼, where arity(𝑐) = downarity(𝐶, 𝑓).
This means that 1 ≤ |𝛼| ≤ 2. Condition (6.1) implies that the
category at each spinal node can be written as 𝑐𝛾. Note that only
the arguments in 𝛾 may affect the derivation along the spine of
the context. In other words, the arguments in 𝑐 are not needed
and we can represent the context without any record of 𝑐 itself.
We exploit this property later to develop a dynamic programming
algorithm where each context is stored in a compact form and is
shared among several CCG derivations. We can in fact replace
the prefix 𝑐 along the spine by some other category 𝑐′ to obtain
another valid context with the same yield. Therefore, we may think
of the prefix 𝑐 as a placeholder or variable that any category can
be substituted for.

102 6 Computational Complexity for Bounded Rule Degree

Lemma 6.1.5 Let 𝐶 be a derivation context with foot node 𝑓 such that
𝐶(𝑓) = 𝑐𝛼, where arity(𝑐) = downarity(𝐶, 𝑓), and let 𝑐′ ∈ C(𝐴).
Let us define 𝐶′ with pos(𝐶′) = pos(𝐶) as 𝐶′(𝑢) = 𝐶(𝑢) for
𝑢 ∈ pos(𝐶′) \ Pref(𝑓), and 𝐶′(𝑢) = 𝑐′𝛾 for 𝑢 ∈ Pref(𝑓) with
𝐶(𝑢) = 𝑐𝛾. Then 𝐶′ is a derivation context of G as well.

Proof. It is easy to check that the conditions of Definition 6.1.3 still
hold. First, each node in𝐶′ together with its children still constitutes
a valid combinatory rule of G. If 𝑢, 𝑢1, 𝑢2 ∈ pos(𝐶′) \Pref(𝑓), then
𝐶′(𝑢1) 𝐶′(𝑢2)

𝐶′(𝑢) Π holds since 𝐶′(𝑤) = 𝐶(𝑤) for 𝑤 ∈ pos(𝐶′) \Pref(𝑓).
Otherwise, we have two spinal nodes 𝑢, 𝑢𝑑 ∈ Pref(𝑓) with 𝑑 ∈ [2]
and 𝑢(3 − 𝑑) ∈ pos(𝐶′) \ Pref(𝑓). Assume these nodes in 𝐶 are
labeled by 𝐶(𝑢𝑑) = 𝑐𝛿|𝑏𝛼, 𝐶(𝑢) = 𝑐𝛿𝛼𝛽, and 𝐶(3− 𝑢) = 𝑏𝛼𝛽 with
𝐶(𝑢1) 𝐶(𝑢2)

𝐶(𝑢) Π, where arity(𝑐) = downarity(𝐶, 𝑓). Then the respec-
tive nodes in 𝐶′ are labeled by 𝐶′(𝑢𝑑) = 𝑐′𝛿|𝑏𝛼, 𝐶′(𝑢) = 𝑐′𝛿𝛼𝛽,
and 𝐶′(𝑢(3− 𝑑)) = 𝑏𝛼𝛽. Since we assumed that G is pure, they can
be combined by a combinatory rule in the same manner and we
have 𝐶′(𝑢1) 𝐶′(𝑢2)

𝐶′(𝑢) Π.2

2: If G uses rule restrictions and 𝑐′

has another target than 𝑐, a target
restriction might prevent this com-
bination. Therefore, in that case, we
need to associate each context with
the target along the spine and may
only insert categories 𝑐′ with that
target (see Section 6.5.2).

Second, from the above inspection it becomes
clear that each node in between(𝜀, 𝑓) is still a primary category.
Third, let ℓ = arity(𝑐′) − arity(𝑐). Then each node 𝑢 ∈ Pref(𝑓) has
arity(𝐶′(𝑢)) = arity(𝐶(𝑢))+ℓ and each node 𝑢 ∈ between(𝜀, 𝑓) has
downarity(𝐶′, 𝑢) = downarity(𝐶, 𝑢) + ℓ . Conditions 6.1 and 6.2
are clearly fulfilled as each side of the inequalities is increased by ℓ

in comparison with 𝐶.

Condition (6.2) is also very important for storing contexts in a
compact form, and is at the basis of the proof of the following
lemma, where 𝑓 is defined as above.

Lemma 6.1.6 Let 𝐶 be a context with root label 𝐶(𝜀) = 𝑐𝛽 such
that arity(𝑐) = downarity(𝐶, 𝑓). Assume that the combinatory rules
applied along the spine of 𝐶 have degree at most 𝑘. Then |𝛽| ≤ 𝑘.

Proof. Let 𝐶(𝑓) = 𝑐𝛼 and 𝐶(𝑝) = 𝑐𝛾, where 𝑝 is the parent
node of 𝑓 , so 𝑓 = 𝑝𝑑 with 𝑑 ∈ [2]. Since 𝐶(𝑝) is obtained by
applying a rule of degree at most 𝑘 on primary category 𝑐𝛼, we
have |𝛾| ≤ 𝑘. If 𝑝 = 𝜀, we immediately have 𝛽 = 𝛾 and thus
|𝛽| ≤ 𝑘. Otherwise, 𝑝 ∈ between(𝜀, 𝑓), and by Condition (6.2) in
the context definition, we have arity(𝐶(𝜀)) ≤ arity(𝐶(𝑝)). Observe
that arity(𝐶(𝜀)) = arity(𝑐) + |𝛽| and arity(𝐶(𝑝)) = arity(𝑐) + |𝛾|.
We can then write |𝛽| ≤ |𝛾| ≤ 𝑘.

Let𝛼, 𝛽 be defined as in the above proof. Extending our terminology
from rules, we refer to 𝛼 as the bridging arguments of the context
and we refer to 𝛽 as the excess of the context. We observe that, if a

6.1 Parsing Algorithm 103

composition rule is used at the foot node, we have |𝛼| = 1, and if a
substitution rule is used at the foot node, we have |𝛼| = 2.

Root Categories

To limit computational complexity, we introduce the set H of root
categories of derivation trees that can be directly represented by
our parsing algorithm. Derivation trees with root categories not
in H will instead be represented in a factorized form. We define
H = H1 ∪H2, where H1 ,H2 are two not necessarily disjoint sets
of categories specified as follows.

▶ H1 contains all categories 𝑐𝛼 with 𝑐 ⊑ 𝑐𝛽 for some lex-
ical category 𝑐𝛽 ∈ 𝐿(Σ≤1) such that 𝛼 ∈ A𝐿(𝐴, 2), and
arity(𝑐𝛼) ≤ arity(𝑐𝛽).

▶ H2 contains all categories 𝑐𝛼 with 𝑐 ⊑ 𝑐𝛽 for some instan-
tiation 𝑐𝛽 of a secondary category of a rule in 𝑅 such that
𝛼 ∈ A𝐿(𝐴, 2), and arity(𝑐𝛼) ≤ arity(𝑐𝛽).

In other words, each category in H is based on either a lexical
category or an instantiated secondary category, as it consists of
a (not necessarily proper) prefix of such a category, and at most
two additional lexical arguments, without exceeding the arity
of the underlying category. The 𝛼 component of 𝑐𝛼 represents
bridging arguments. Categories in H1 are used by the parser when
derivation trees are introduced from lexical categories, and when
topmost arguments of these categories are “consumed” in a CCG
derivation. Categories in H2 are instead used in the process of
producing a category that will serve as a secondary category in a
CCG derivation. Later on, in the completeness proof of our parsing
algorithm, it will become clear that this set does indeed suffice to
represent all possible derivations.

6.1.2 Algorithm Specification

As usual in the natural language parsing literature, we formally
specify our algorithm as a deduction system in the sense of Shieber,
Schabes, and Pereira [80].

Items

We use a logic with two types of items. Derivation trees whose
root is labeled by a category in H can be represented by tree
items directly. The additional context items follow our definition
of context and can represent parts of derivation trees where arities
of categories grow too large.

104 6 Computational Complexity for Bounded Rule Degree

𝑐/𝑏𝛼 𝑏𝛼𝛽

𝑤[𝑗 , ℎ]

𝑐𝛼𝛽

𝑡

(a) context 𝐶

𝑤[𝑖′, 𝑗′]

𝑡′

𝑤[𝑖 , 𝑖′] 𝑤[𝑗′, 𝑗]
𝑐𝛼

𝐶

𝑐𝛽

(b) derivation tree 𝑡

𝑤[𝑖′′, 𝑖′] 𝑤[𝑗′, 𝑗′′]
𝑐𝛼

𝐶1

𝑤[𝑖 , 𝑖′′] 𝑤[𝑗′′, 𝑗]
𝑐𝛽𝛼′

𝐶2

𝑐𝛽𝛽′

(c) context 𝐶

Figure 6.2: Decomposition of derivations, where 𝑏 and 𝑐 are categories, and 𝛼, 𝛽, 𝛼′, 𝛽′ are (possibly empty) argument
contexts satisfying the restrictions specified in the inference rules.

Tree Items These have the form ⟨𝑐, 𝑖, 𝑗⟩, consisting of a cate-
gory 𝑐 ∈ H and two indices 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤|. The intended
interpretation of such an item is: It is possible to build a deriva-
tion tree with yield 𝑤[𝑖 , 𝑗] and root category 𝑐. The goal of the
algorithm is the construction of an item of the form ⟨𝑎0 , 0, |𝑤|⟩
with 𝑎0 ∈ 𝐼, which asserts the existence of a derivation tree that
spans the entire input string and whose root node is labeled by an
initial atomic category.

Context Items These have the form ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, consisting
of two argument contexts 𝛼, 𝛽 ∈ A𝐿(𝐴, 𝑘) with 1 ≤ |𝛼| ≤ 2 and
four indices 0 ≤ 𝑖 ≤ 𝑖′ ≤ 𝑗′ ≤ 𝑗 ≤ |𝑤|. The intended interpretation
of these items is: For any choice of a category 𝑐, if it is possible to
build a derivation tree 𝑡′ with yield 𝑤[𝑖′, 𝑗′] and whose root node
is labeled by 𝑐𝛼, then it is also possible to build a derivation tree 𝑡

with yield 𝑤[𝑖 , 𝑗] and whose root node is labeled by 𝑐𝛽. In line
with the usage of these terms for contexts, we refer to 𝛼 as bridging
arguments and to 𝛽 as excess.

Axioms and Inference Rules

The inference rules and axioms of the algorithm can be classified
along two dimensions, depending on whether the consequent
item is a tree item or a context item, and depending on whether
the consequent item is obtained as the extension of an existing
item of the same type or newly introduced. Most importantly, in
the following deduction system we implicitly assume that the
inference rules are valid only if all of the involved items comply
with the conditions in the definition of items provided above.

6.1 Parsing Algorithm 105

Introduce Derivation Tree These are the axioms of the deduction
system. For every input position 1 ≤ 𝑖 ≤ |𝑤| and every lexicon
entry 𝑐 ∈ 𝐿(𝑤𝑖), there is an axiom ⟨𝑐, 𝑖 − 1, 𝑖⟩. For every lexicon
entry 𝑐 ∈ 𝐿(′𝜀′) and every fencepost position 0 ≤ 𝑖 ≤ |𝑤|, there is
an axiom ⟨𝑐, 𝑖, 𝑖⟩.

𝑐 ∈ 𝐿(𝑤𝑖)
⟨𝑐, 𝑖 − 1, 𝑖⟩

𝑐 ∈ 𝐿(′𝜀′)
⟨𝑐, 𝑖, 𝑖⟩ (rule 0)

Introduce Context For all valid items of the following form there
are rules

⟨𝑏𝛼𝛽, 𝑗 , ℎ⟩
⟨/𝑏𝛼, 𝛼𝛽, 𝑖 , 𝑖 , 𝑗 , ℎ⟩ and

⟨𝑏𝛼𝛽, 𝑗 , ℎ⟩
⟨\𝑏𝛼, 𝛼𝛽, 𝑗 , ℎ, ℓ , ℓ⟩ (rule 1)

This rule type converts a tree item into a context item that models
the effect of 𝑏𝛼𝛽 when applied as a secondary category. The context
has a spine of length 2 and is illustrated in Figure 6.2a.

Extend Derivation Tree For all valid items of the following form
there is a rule

⟨𝑐𝛼, 𝑖′, 𝑗′⟩⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩
⟨𝑐𝛽, 𝑖 , 𝑗⟩ (rule 2)

This rule type models the combination of a derivation tree and a
context, such that the derivation tree rooted in 𝑐𝛼 is inserted at the
foot node of the context, resulting in a derivation tree rooted in 𝑐𝛽.
This is depicted in Figure 6.2b.

Extend Context For all combinations of valid context items of
the following form with |𝛽′| ≤ |𝛼′|, there is a rule

⟨𝛼, 𝛽𝛼′, 𝑖′′, 𝑖′, 𝑗′, 𝑗′′⟩⟨𝛼′, 𝛽′, 𝑖 , 𝑖′′, 𝑗′′, 𝑗⟩
⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩ (rule 3)

This rule type models the combination of two contexts 𝐶1 and 𝐶2,
represented by the left and right antecedent items, respectively.
More precisely, 𝐶1 is inserted at the foot node of 𝐶2, resulting
in a new context 𝐶 represented by the consequent item. This is
exemplified in Figure 6.2c.

The use of restriction |𝛽′| ≤ |𝛼′| in rule 3 deserves some discussion
here. This restriction guarantees that 𝐶 fulfills condition (6.2) in
the context definition. Without this restriction, there might be
nodes on the spine that have lower arity than the root. As a second
observation, consider rule 3 as a means of extending context 𝐶1 by
“transferring” to this context the arguments from 𝛽′. Under this

106 6 Computational Complexity for Bounded Rule Degree

view, restriction |𝛽′| ≤ |𝛼′| forbids such transferring whenever this
results in an increase in the arity at the root of 𝐶, as compared
with the arity at the root of 𝐶1. One might then wonder whether
forbidding the transferring of extra arguments from context to
context might result in the loss of some valid derivations. As we
will see in the completeness proof in Section 6.2, this strategy is
safe, since we can always transfer extra arguments directly to some
tree item later, by means of rules of type 2, rather than passing
them through several intermediate contexts.

Example 6.1.7 We consider a CCG G = (Σ, 𝐴,R𝑠(𝐴, 2), {𝑆}, 𝐿),
which allows all unrestricted composition and substitution rules
of degree at most 2, and the input string 𝑤1 · · ·𝑤7. The symbols
in Σ and 𝐴 can be inferred from the lexicon:

𝐿(𝑤1) = {𝐵/𝐸} 𝐿(𝑤2) = {𝐶/𝐸/𝐹} 𝐿(𝑤3) = {𝑆\𝐵/𝐻}
𝐿(𝑤4) = {𝐻\𝐶/𝐸} 𝐿(𝑤5) = {𝐹} 𝐿(𝑤6) = {𝐸/𝐺}
𝐿(𝑤7) = {𝐺}

Figure 6.3 depicts a derivation of the CCG, showing that the
input is generated by the grammar. We can observe that on the
spine between the root and the lexical category 𝑆\𝐵/𝐻, there
are two categories that are not in H because they violate the arity
restriction. Thus, they cannot be represented using tree items.

Figure 6.4 shows how the deduction system operates on the input.
For each input symbol and matching lexicon entry, an axiom with
the corresponding span is added by rule 0. These are the leaves
of the deduction. Note that their order does not coincide with
the order of the associated lexicon entries in the input string. To
simulate the use of a combinatory rule, a secondary category first
has to be converted into a context item using deduction rule 1. For
instance, ⟨𝐻\𝐶/𝐸, 3, 4⟩ is converted into ⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩,
which models the effect of the secondary category on a primary
category. Note that there is some freedom here concerning the
indices, because there might be several choices regarding how
this item wraps around other items. However, the deduction
system does not allow the combination of ⟨𝑆\𝐵/𝐻, 2, 3⟩ and
⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩ because the resulting category is not in H.
Instead, the excess of the context item is reduced by combining it
with another context item using deduction rule 3 first, resulting in
⟨/𝐻, /𝐸, 1, 2, 3, 5⟩. This item models the effect that the categories
of the three involved axioms have when applied successively to a
category ending in /𝐻. These are exactly the first three secondary
categories that are applied along the considered spine. The item
covers the spans [1, 2] and [3, 5] of the input with a gap at [2, 3],

6.1 Parsing Algorithm 107

𝑤1
.............

𝐵/𝐸

𝑤2
......

𝐶/𝐸/𝐹

𝑤3
..

𝑆\𝐵/𝐻

𝑤4
..

𝐻\𝐶/𝐸
𝑆\𝐵\𝐶/𝐸

>2
B

𝑆\𝐵/𝐸/𝐹
<2

S

𝑤5
.........

𝐹

𝑆\𝐵/𝐸
>

𝑆/𝐸
<S

𝑤6
.............

𝐸/𝐺

𝑤7
.............

𝐺

𝐸
>

𝑆
>

Figure 6.3: CCG derivation with
spine nodes in blue text. Categories
on the spine that are not in H are
highlighted with blue background.
The conventional abbreviations are
annotated for each rule.

⟨𝑆\𝐵/𝐻, 2, 3⟩

⟨𝐻\𝐶/𝐸, 3, 4⟩
⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩

⟨𝐶/𝐸/𝐹, 1, 2⟩
⟨\𝐶/𝐸, /𝐸/𝐹, 1, 2, 4, 4⟩

⟨𝐹, 4, 5⟩
⟨/𝐹, □, 1, 1, 4, 5⟩

⟨\𝐶/𝐸, /𝐸, 1, 2, 4, 5⟩
⟨/𝐻, /𝐸, 1, 2, 3, 5⟩

⟨𝑆\𝐵/𝐸, 1, 5⟩

⟨𝐵/𝐸, 0, 1⟩
⟨\𝐵/𝐸, /𝐸, 0, 1, 5, 5⟩

⟨𝐸/𝐺, 5, 6⟩
⟨𝐺, 6, 7⟩

⟨/𝐺, □, 5, 5, 6, 7⟩
⟨𝐸, 5, 7⟩

⟨/𝐸, □, 0, 0, 5, 7⟩
⟨\𝐵/𝐸, □, 0, 1, 5, 7⟩

⟨𝑆, 0, 7⟩

Figure 6.4: Example deduction of the parsing algorithm.

such that ⟨𝑆\𝐵/𝐻, 2, 3⟩ can be inserted using deduction rule 2,
resulting in ⟨𝑆\𝐵/𝐸, 1, 5⟩. The interpretation of this item is as
follows: There exists a CCG derivation tree with root category
𝑆\𝐵/𝐸 ∈ H that involves the input symbols of the span [1, 5].
This can be verified in Figure 6.3. Note that it is also possible
to change the combination order of context items and to first
combine ⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩ with ⟨\𝐶/𝐸, /𝐸/𝐹, 1, 2, 4, 4⟩ and
then to combine the resulting item with ⟨/𝐹, □, 1, 1, 4, 5⟩.

The spinal categories in H can be represented by tree items, but
the categories in between two of these relatively short categories
might have higher arity. In that case, the operations taking place
along that part of the spine are handled on the level of context
items and their effect can only be added to the tree items if the
excess is short enough. Not only each lexical category, but also each
secondary category (and each initial category) of a derivation is
represented by some tree item. We can uniquely decompose each
CCG derivation tree into a set of primary spines in the sense of the
previous chapter (see page 81). At least the lexical anchor and the
root of each primary spine are represented by tree items. In the
above example, category 𝐸 as a secondary category is the root of a
primary spine consisting of two nodes and accordingly represented
by tree item ⟨𝐸, 5, 7⟩. Note that for trivial spines consisting of a
single node, the lexical anchor and the root coincide.

108 6 Computational Complexity for Bounded Rule Degree

6.2 Correctness

In this section we prove the correctness of the deduction system by
first showing its soundness and then its completeness. For this, we
introduce the notion of signature, which associates some specific
pieces of derivations with items of our deduction system.

Definition 6.2.1 A derivation tree 𝑡 has signature ⟨𝑐, 𝑖, 𝑗⟩ if

1. the yield of 𝑡 is 𝑤[𝑖 , 𝑗] and
2. the root is labeled by 𝑡(𝜀) = 𝑐 with 𝑐 ∈ H.

Definition 6.2.2 A derivation context 𝐶 with foot node 𝑓 has signa-
ture ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩ if

1. the yield of 𝐶 is (𝑤[𝑖 , 𝑖′], 𝑤[𝑗′, 𝑗]) and
2. for some category 𝑐 ∈ C(𝐴) with arity(𝑐) = downarity(𝐶, 𝑓)

we have 𝐶(𝑓) = 𝑐𝛼 and 𝐶(𝜀) = 𝑐𝛽.

6.2.1 Soundness

In the following, we will show that all items inferred by the
deduction system are valid. More precisely, we will show that for
each inferred item, there exists a corresponding derivation tree or
context of G.

Theorem 6.2.3 For each item 𝑍 inferred by the deduction system when
given input grammar G and input string 𝑤, there exists a derivation
tree or derivation context of G based on 𝑤 with signature 𝑍.

Proof. We will prove the soundness of our deduction system by
induction on the number of inference steps applied. The base case
is clear from the correctness of the axioms: For each input symbol
or the empty string, and for the corresponding lexicon entry, there
is a derivation tree consisting of one unary node labeled by that
lexical category with its child labeled by the corresponding input
symbol or by ′𝜀′.

For the inductive case, we inspect the inference rules. Assuming
that there exist valid derivation trees or contexts corresponding to
the antecedent(s) of a rule, we establish that this also is the case
for the consequent.

Deduction rule 1: Assume that item ⟨/𝑏𝛼, 𝛼𝛽, 𝑖 , 𝑖 , 𝑗 , ℎ⟩ is inferred
from ⟨𝑏𝛼𝛽, 𝑗 , ℎ⟩. By the induction hypothesis, there is a derivation
tree 𝑡 with signature ⟨𝑏𝛼𝛽, 𝑗 , ℎ⟩, so 𝑡(𝜀) = 𝑏𝛼𝛽. We will use

6.2 Correctness 109

this category as a secondary category to construct context 𝐶

with signature ⟨/𝑏𝛼, 𝛼𝛽, 𝑖 , 𝑖 , 𝑗 , ℎ⟩. Thus, let 𝐶 = 𝑐𝛼𝛽(𝑐/𝑏𝛼, 𝑡)
with foot node 1, where 𝑐 ∈ C(𝐴) can be chosen arbitrarily (see
Figure 6.2a). In the case where ⟨\𝑏𝛼, 𝛼𝛽, 𝑗 , ℎ, ℓ , ℓ⟩ is inferred, we
have 𝐶 = 𝑐𝛼𝛽(𝑡 , 𝑐\𝑏𝛼) with foot node 2. It is clearly a context of G.

Deduction rule 2: Assume that item ⟨𝑐𝛽, 𝑖 , 𝑗⟩ is inferred from the
antecedents ⟨𝑐𝛼, 𝑖′, 𝑗′⟩ and ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩. By the induction hy-
pothesis, there are a derivation tree 𝑡′ and a context 𝐶 with foot
node 𝑓 that have these antecedents as their respective signature.
By Lemma 6.1.5, we may choose the prefix along the spine of 𝐶
and therefore assume that 𝐶(𝑓) = 𝑐𝛼 = 𝑡(𝜀). We obtain the desired
derivation tree 𝑡 = 𝐶[𝑡′] with signature ⟨𝑐𝛽, 𝑖 , 𝑗⟩ by inserting 𝑡′ at
the foot node of 𝐶 (see Figure 6.2b).

Deduction rule 3: Now assume that ⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩ is inferred from
⟨𝛼, 𝛽𝛼′, 𝑖′′, 𝑖′, 𝑗′, 𝑗′′⟩ and ⟨𝛼′, 𝛽′, 𝑖 , 𝑖′′, 𝑗′′, 𝑗⟩. Again, by the induction
hypothesis, there exist two derivation contexts 𝐶1 with foot node 𝑓1
and 𝐶2 with foot node 𝑓2 that have these antecedents as signa-
tures. We also assume that 𝐶2(𝑓2) = 𝑐𝛽𝛼′ = 𝐶1(𝜀) by Lemma 6.1.5.
We obtain 𝐶 = 𝐶2[𝐶1] with signature ⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩ by in-
serting 𝐶1 at the foot node of 𝐶2 (see Figure 6.2c). Let us re-
gard the spinal node 𝑠 = 𝑓2 and the foot node 𝑓 = 𝑓2 𝑓1 of 𝐶.
Then we have 𝐶(𝑓) = 𝑐𝛼, 𝐶(𝑠) = 𝑐𝛽𝛼′, and 𝐶(𝜀) = 𝑐𝛽𝛽′. To
show that 𝐶 really is a valid context, we have to verify that the
context conditions (6.1) downarity(𝐶, 𝑓) ≤ downarity(𝐶, 𝑢) and
(6.2) arity(𝐶(𝜀)) ≤ arity(𝐶(𝑢)) both hold, where 𝑢 ∈ between(𝜀, 𝑓).
That the other requirements are met, i.e., the presence of combina-
tory rules involving the categories of a parent node and its children,
and the presence of primary categories along the spine, is directly
clear from the contexts 𝐶1 and 𝐶2.

▶ Condition (6.1) is immediately fulfilled for every node in
between(𝑠, 𝑓) since 𝐶1 is a context. For node 𝑠, note that
downarity(𝐶, 𝑓) = arity(𝑐) ≤ arity(𝑐𝛽) = downarity(𝐶, 𝑠).
Due to the fact that for every node 𝑣 ∈ between(𝜀, 𝑠) we
have downarity(𝐶, 𝑠) ≤ downarity(𝐶, 𝑣), it also follows that
downarity(𝐶, 𝑓) ≤ downarity(𝐶, 𝑣), so the condition is ful-
filled for each node in between(𝜀, 𝑓)

▶ For condition (6.2), note that rule 3 is restricted such that
|𝛽′| ≤ |𝛼′|. As a result, we have arity(𝐶(𝜀)) ≤ arity(𝐶(𝑠)).
Since 𝐶2 is a context, each node in between(𝜀, 𝑠) has at
least the arity of the root as well. Further, since 𝐶1 is a
context, each node in between(𝑠, 𝑓) has at least the arity of 𝑠,
which has lower bound arity(𝐶(𝜀)). In summary, we have
shown that for each node 𝑢 ∈ between(𝜀, 𝑓) the condition
arity(𝐶(𝑟)) ≤ arity(𝐶(𝑢)) is satisfied.

In particular, we can conclude that if the deduction system yields

110 6 Computational Complexity for Bounded Rule Degree

Figure 6.5: Diagram of arities and
downstep arities along the spine of a
derivation tree with interesting split
nodes highlighted. 𝑓 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8 𝜀

an item ⟨𝑎0 , 0, |𝑤|⟩ with 𝑎0 ∈ 𝐼, there is a derivation tree rooted in
an initial atomic category 𝑎0 that comprises the entire input.

6.2.2 Completeness

In the following we prove the completeness of our deduction
system. Namely, we show that if there exists a CCG derivation
rooted in an initial atomic category 𝑎0 ∈ 𝐼 and generating the
entire input string 𝑤, then item ⟨𝑎0 , 0, |𝑤|⟩ can be inferred by
our deduction system. In order to do this, we prove a stronger
statement: We show that, for every derivation tree or derivation
context having signature 𝑍, the deduction system can infer item 𝑍.
The proof strategy is an induction on the number of nodes in the
derivation tree or derivation context, but in the case of derivation
contexts we explicitly exclude the foot node from this count.

Our deduction system has been specified in Section 6.1.2 by re-
garding the binary rules as operations that extend derivation trees
or contexts using contexts whose signatures have already been
inferred. In this perspective, derivation trees are composed of
smaller derivation parts. For the completeness proof, we take the
opposite perspective: When starting with a sufficiently complex
derivation tree or context associated with some valid signature, we
show that it can be split or decomposed into two smaller derivation
parts associated with valid signatures.

In order to do this, given such a derivation tree or context, we iden-
tify a split node, which always lies on the spine and constitutes the
position where we can decompose the derivation. More precisely,
in the case of contexts, the split node is chosen among all spinal
nodes having smallest downstep arity as the one closest to the
foot node. In the case of derivation trees, there are two different
scenarios. If there are spinal nodes with arity lower than the root,
the one closest to the root is chosen. Otherwise, if all spinal nodes
have arity larger than or equal to the arity of the root, the split
node is chosen among the nodes having smallest downstep arity
as the one closest to the lexical anchor. In the latter case, the split
node can be the lexical anchor itself.

6.2 Correctness 111

Example 6.2.4 Figure 6.5 illustrates the splitting strategy for
derivation trees and contexts. The diagram shows the arities
and downstep arities along the spine of a derivation tree 𝑡 with
lexical anchor 𝑓 . Assume a sequence of spinal nodes denoted by
𝑢0 , 𝑢1 , . . . , 𝑢𝑛 , where 𝑢0 = 𝑓 and 𝑢𝑛 = 𝜀. Then each application
of a combinatory rule at a node 𝑢𝑖 with 𝑖 ∈ {0, . . . , 𝑛 − 1} can be
viewed as having the following steps: the arity before the rule
application (arity(𝑡(𝑢𝑖))), the arity after the removal of bridging
arguments (downarity(𝑡 , 𝑢𝑖)), and the arity after adding the
excess (arity(𝑡(𝑢𝑖+1))). In this way, the progression of arities
along the spine is plotted as the sequence

arity(𝑡(𝑢0)), downarity(𝑡 , 𝑢0), . . . ,

arity(𝑡(𝑢𝑛−1)), downarity(𝑡 , 𝑢𝑛−1), arity(𝑡(𝑢𝑛)) .

The vertical lines of the grid mark arity(𝑡(𝑢𝑖)) for 𝑖 ∈ {0, . . . , 𝑛},
whereas the respective downstep arities are placed in between
two lines of the grid. In this example, we have 𝑛 = 9.

Given a derivation tree with the spine following the depicted
pattern, the first split node is 𝑢6. There are spinal nodes 𝑢5, 𝑢6
with arity lower than arity(𝑡(𝜀)), thus among these nodes, 𝑢6 is
chosen as the one closer to the root 𝜀. Accordingly, the derivation
tree is split into a smaller derivation tree 𝑡′ that is rooted in 𝑢6
and a context with foot node 𝑢6. All spinal nodes in 𝑡′ have
arity at least arity(𝑡(𝑢6)). Therefore we consider the nodes with
lowest downstep arity, namely 𝑢4, 𝑢5, and choose as the split
node the one closer to 𝑓 , namely 𝑢4. As a result, 𝑡′ is split into a
derivation tree 𝑡′′ with a spine from 𝑓 to 𝑢4 and a context with
a spine from 𝑢4 to 𝑢6. The split node of 𝑡′′ is 𝑓 , dividing it into
a trivial derivation tree consisting only of the lexical anchor 𝑓 ,
and a derivation context 𝐶 with a spine from 𝑓 to 𝑢4.

Like all other derivation contexts obtained so far, 𝐶 is split at
one of the nodes with lowest downstep arity, excluding the foot
node. From the candidates 𝑢1, 𝑢3, the node 𝑢1 is chosen as the
one closer to 𝑓 . All non-trivial contexts are handled in the same
manner, until there is one context for each CCG rule application.

Now we are ready to show the completeness of the deduction
system using the procedure discussed and illustrated above.

Theorem 6.2.5 Let 𝑤 be an input string. For every derivation tree or
derivation context of G that is based on 𝑤 and has signature 𝑍, the
deduction system can infer item 𝑍.

112 6 Computational Complexity for Bounded Rule Degree

Proof. As outlined above, we prove the statement by induction on
the number of nodes in the derivation tree or derivation context,
where for contexts the foot node is excluded from this count.

Base Case: We start with derivation trees with a single spinal node
as the smallest possible derivation tree. Consider a derivation tree 𝑡
with spine length 1 and span [𝑖 , 𝑗], in which the root label 𝑡(𝜀) = 𝑐 is
a lexical category. The child of the root is labeled by an input symbol
or by the empty string ′𝜀′. We distinguish two cases depending on
this label: Either there exists a lexicon entry 𝑐 ∈ 𝐿(𝑤 𝑗) and 𝑗 = 𝑖+1,
or there exists a lexicon entry 𝑐 ∈ 𝐿(′𝜀′) and 𝑗 = 𝑖. In either case,
the item ⟨𝑐, 𝑖, 𝑗⟩ is one of the axioms of our deduction system.

Inductive Case 1: We regard contexts with two spinal nodes. Consider
a context 𝐶 with spine length 2 and using spans [𝑖 , 𝑖′] and [𝑗′, 𝑗]
with 0 ≤ 𝑖 ≤ 𝑖′ ≤ 𝑗′ ≤ 𝑗 ≤ |𝑤|. This context takes one of the
following two forms, where 𝑐 ∈ C(𝐴), |𝑏 ∈ args(𝐿), 𝛼 ∈ A𝐿(𝐴, 1),
and 𝛼𝛽 ∈ A𝐿(𝐴, 𝑘):

𝑐/𝑏𝛼 𝑏𝛼𝛽

𝑐𝛼𝛽

𝑏𝛼𝛽 𝑐\𝑏𝛼
𝑐𝛼𝛽

We write 𝑓 for the foot node of 𝐶. The category 𝐶(𝑓) takes the
form 𝑐|𝑏𝛼 and 𝐶(𝜀) takes the form 𝑐𝛼𝛽. We have 𝑖 = 𝑖′ in the
left case and 𝑗′ = 𝑗 in the right case. We regard the subtree with
root category 𝑏𝛼𝛽 that ends at the secondary child of the root
node. We have 𝑏𝛼𝛽 ∈ H and therefore can infer item ⟨𝑏𝛼𝛽, 𝑗′, 𝑗⟩
(left case) or ⟨𝑏𝛼𝛽, 𝑖 , 𝑖′⟩ (right case) by the induction hypothesis.
Then, using rule 1 of the deduction system, we can infer item
⟨|𝑏𝛼, 𝛼𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, the desired signature of the context.

Inductive Case 2: We regard derivation trees of arbitrary size. This
case corresponds to rule 2 of the deduction system. Assume a
derivation tree 𝑡 with lexical anchor 𝑓 , having signature ⟨𝑐𝛽, 𝑖 , 𝑗⟩
and containing at least two spinal nodes. We will show how to
identify the split node 𝑠 at which 𝑡 can be decomposed into a
smaller derivation tree 𝑡′ with signature ⟨𝑐𝛼, 𝑖′, 𝑗′⟩ and a context 𝐶
with signature ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, such that 𝑡 = 𝐶[𝑡′] with 𝑡′ = 𝑡|𝑠 ,
thus 𝑠 is the foot node of 𝐶. Recall that 𝑐𝛽 ∈ H by the definition of
signature. Note that we can also choose 𝑓 as the split node 𝑠. In this
case the resulting tree 𝑡′ is trivial and corresponds to an axiom of
the deduction system. For the splitting of trees, we distinguish two
subcases, depending on whether there is at least one spinal node
with arity smaller than the root. As we will see below, these two
subcases correspond to the two conditions |𝛼| < |𝛽| and |𝛼| ≥ |𝛽|.
For each of these subcases we will show that the root label of 𝑡′ is
a category from H and that 𝐶 fulfills the context conditions. For

6.2 Correctness 113

the context, we will only check conditions (6.1) and (6.2), since the
other requirements are immediately clear.

▶ Subcase 1: For this subcase, assume there is at least one spinal
node 𝑛 with arity(𝑡(𝑛)) < arity(𝑡(𝜀)). We choose as split
node 𝑠 the spinal node closest to the root with this property.
This node can also be 𝑓 . Formally, the split node is the node
𝑢 from the set

{
𝑢 ∈ Pref(𝑓) \ {𝜀} | arity(𝑡(𝑢)) < arity(𝑡(𝜀))

}
where |𝑢| is minimal. We can write 𝑡(𝑠) = 𝑐𝛼 and 𝑡(𝜀) = 𝑐𝛽,
where 𝛼 are the bridging arguments of the combinatory rule
applied at 𝑠 and |𝛼| < |𝛽| by the assumption of this subcase.
Because we chose the spinal node closest to the root with the
given property, the arguments in 𝑐 are not modified at any
spinal node between 𝑠 and 𝜀.
Since |𝛼| ∈ [2] and |𝛼| < |𝛽|, we have |𝛽| ≥ 2. From 𝑐𝛽 ∈ H it
follows that 𝑐 is a prefix of a lexical category (𝑐𝛽 ∈ H1) or 𝑐 is
a prefix of an instantiation of a secondary category (𝑐𝛽 ∈ H2).
From |𝛼| ≤ 2 and |𝑐𝛼| < |𝑐𝛽| it follows that 𝑐𝛼 ∈ H, where
𝑐𝛼 ∈ H1 if 𝑐𝛽 ∈ H1 and 𝑐𝛼 ∈ H2 if 𝑐𝛽 ∈ H2. Consequently,
⟨𝑐𝛼, 𝑖′, 𝑗′⟩ is a valid tree item.
Furthermore, we need to verify that 𝐶 is a valid context by
checking that (6.1) downarity(𝐶, 𝑠) ≤ downarity(𝐶, 𝑢) and
(6.2) arity(𝐶(𝜀)) ≤ arity(𝐶(𝑢)) for each 𝑢 ∈ between(𝜀, 𝑠).
First, we observe that two nodes 𝑣, 𝑣′ that are labeled by
primary categories with arity(𝐶(𝑣)) < arity(𝐶(𝑣′)) always
have downarity(𝐶, 𝑣) ≤ downarity(𝐶, 𝑣′). By the choice of 𝑠,
for each𝑢 ∈ between(𝜀, 𝑠)we have arity(𝐶(𝑠)) < arity(𝐶(𝑢)),
and thus follows that downarity(𝐶, 𝑠) ≤ downarity(𝐶, 𝑢).
Second, we have arity(𝐶(𝜀)) ≤ arity(𝐶(𝑢)), again because 𝑠

is the spinal node closest to the root with the property
arity(𝐶(𝑠)) < arity(𝐶(𝜀)). We can conclude that 𝐶 is a valid
context.

▶ Subcase 2: For this subcase, assume that every spinal node 𝑛

has arity(𝑡(𝑛)) ≥ arity(𝑡(𝜀)). Among the spinal nodes with
minimal downstep arity, we then choose the split node 𝑠 as
the spinal node closest to 𝑓 . This node can also be 𝑓 itself.
Formally, let 𝑚 = min𝑢∈Pref(𝑓)\{𝜀}

{
downarity(𝑡 , 𝑢)

}
be the

minimal downstep arity. Then the split node is chosen from
the set

{
𝑢 ∈ Pref(𝑓) \ {𝜀} | downarity(𝑡 , 𝑢) = 𝑚

}
as the

node 𝑢 where |𝑢| is maximal. In other words, when starting
at the lexical anchor and moving towards the root node, we
choose the last position where an argument of the lexical
category is removed. Again, we can write 𝑡(𝑠) = 𝑐𝛼 and
𝑡(𝜀) = 𝑐𝛽, where 𝛼 are the bridging arguments of the rule
applied at 𝑠, and 𝑐 is the prefix that is not modified at any
spinal node between 𝑠 and 𝜀. By the assumption of this
subcase, we have |𝛼| ≥ |𝛽|.

114 6 Computational Complexity for Bounded Rule Degree

By the choice of 𝑠, we know that 𝑐 is a prefix of the lexical cate-
gory labeling 𝑓 . This is because each node 𝑢 ∈ between(𝑠, 𝑓)
has downarity(𝑡 , 𝑠) < downarity(𝑡 , 𝑢) and additionally we
have downarity(𝑡 , 𝑠) < downarity(𝑡 , 𝑓) (unless 𝑠 = 𝑓). More-
over, since nodes with lower arities than 𝑠 have at most the
downstep arity of 𝑠, if there existed such spinal nodes closer
to 𝑓 , they would have been preferred as the split node. Thus,
we have arity(𝑡(𝑠)) ≤ arity(𝑡(𝑓)) and arity(𝑐𝛼) with |𝛼| ∈ [2]
does not exceed the arity of the lexical category labeling 𝑓 . It
follows that 𝑐𝛼 ∈ H1 ⊆ H.
Next, we show that 𝐶 is a context. Let 𝑢 ∈ between(𝜀, 𝑠). The
first condition demands downarity(𝑡 , 𝑠) ≤ downarity(𝑡 , 𝑢),
which is fulfilled because split node 𝑠 was picked from the
nodes with minimal downstep arity. The second condition
requires that arity(𝑡(𝜀)) ≤ arity(𝑡(𝑢)) and is already fulfilled
by the assumption of this subcase. Therefore, 𝐶 is a valid
context.

Finally, by the induction hypothesis, the deduction system can
infer the items ⟨𝑐𝛼, 𝑖′, 𝑗′⟩ and ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩. We conclude that,
through an application of rule 2, it can also infer ⟨𝑐𝛽, 𝑖 , 𝑗⟩.

Inductive Case 3: We regard derivation contexts of arbitrary size.
This case corresponds to deduction rule 3. Given a context 𝐶 with
more than two spinal nodes, having foot node 𝑓 and signature
⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, we will show that there is a spinal node 𝑠 such
that we can decompose 𝐶 into two valid contexts 𝐶1 with signature
⟨𝛼, 𝛽𝛼′, 𝑖′′, 𝑖′, 𝑗′, 𝑗′′⟩ and 𝐶2 with signature ⟨𝛼′, 𝛽′, 𝑖 , 𝑖′′, 𝑗′′, 𝑗⟩, such
that 𝐶 = 𝐶2[𝐶1] and 𝐶1 = 𝐶|𝑠 . The node 𝑠 therefore is the foot node
of 𝐶2. We can write 𝐶(𝑓) = 𝑐𝛼, 𝐶(𝑠) = 𝑐𝛽𝛼′, and 𝐶(𝜀) = 𝑐𝛽𝛽′,
where 𝛽 might be empty. We choose as the split node 𝑠 from
the nodes in between(𝜀, 𝑓) with minimal downstep arity the one
closest to 𝑓 . This corresponds to the approach of subcase 2 for tree
splitting, with the difference that foot node 𝑓 cannot be chosen as
the split node. Again, we will only check conditions (6.1) and (6.2)
to verify that 𝐶1, 𝐶2 are contexts.

To show that 𝐶1 is a context, let 𝑢 ∈ between(𝑠, 𝑓). The first
condition (6.1) downarity(𝐶, 𝑓) ≤ downarity(𝐶, 𝑢) already holds
in 𝐶 and thus also for the corresponding nodes in 𝐶1. For the
second condition (6.2) arity(𝐶(𝑠)) ≤ arity(𝐶(𝑢)), let us first note
that downarity(𝐶, 𝑠) < downarity(𝐶, 𝑢), because 𝑠 is the spinal
node closest to 𝑓 with minimal downstep arity. If there existed a
node 𝑣 with arity(𝐶(𝑣)) < arity(𝐶(𝑠)) in between(𝑠, 𝑓), it would
have downarity(𝐶, 𝑣) ≤ downarity(𝐶, 𝑠), a contradiction to the
previous observation.

As for 𝐶2, let 𝑢 ∈ between(𝜀, 𝑠). First, because 𝑠 was chosen
among the spinal nodes with lowest downstep arity, condition

6.3 Runtime Analysis 115

(6.1) downarity(𝐶, 𝑠) ≤ downarity(𝐶, 𝑢) is fulfilled. Second, con-
dition (6.2) arity(𝐶(𝜀)) ≤ arity(𝐶(𝑢)) already holds in 𝐶.

By the induction hypothesis, the items ⟨𝛼, 𝛽𝛼′, 𝑖′′, 𝑖′, 𝑗′, 𝑗′′⟩ and
⟨𝛼′, 𝛽′, 𝑖 , 𝑖′′, 𝑗′′, 𝑗⟩ can be inferred. It remains to show that deduc-
tion rule 3 can actually be applied. For this, we only have to verify
that |𝛼′| ≥ |𝛽′|holds. This is easy to see as arity(𝐶(𝑠)) ≥ arity(𝐶(𝜀))
with 𝐶(𝑠) = 𝑐𝛽𝛼′ and 𝐶(𝜀) = 𝑐𝛽𝛽′. Consequently, we can also infer
the desired item ⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩.

6.3 Runtime Analysis

In this section we provide a computational analysis of our parsing
algorithm. We consider the time and space complexity attributed to
the execution of each of the deduction rule types. We also discuss
the control flow for the deduction system, along with possible
representations for rules and items.

We write |G| for the size of the input grammar G, defined as the
number of characters that we need to write down the lexicon and
all the rules in some reasonable representation. We also write 𝑘

to denote the maximum degree of composition and substitution
rules in G.

6.3.1 Argument Contexts and Root Categories

We start our analysis by deriving bounds for the size of setsA𝐿(𝐴, 𝑘)
andH, to be used later. Recall that args(𝐿) is the set of all arguments
in the lexical categories of G. Since every argument appears in
our string representation of G, we have |args(𝐿)| ∈ O(|G|). Using
the definition of A𝐿(𝐴, 𝑘), we obtain |A𝐿(𝐴, 𝑘)| ≤ ∑𝑘

𝑖=0 |G|𝑖 . The
right-hand side is the sum of the first 𝑘 + 1 terms of a geometric
series. Using the closed-form formula for this sum, we can write

𝑘∑
𝑖=0

|G|𝑖 =
|G|𝑘+1 − 1
|G| − 1

<
|G|𝑘+1

|G| − 1
=

|G|
|G| − 1

· |G|𝑘 ≤ 2 · |G|𝑘 ,

which holds for |G| ≥ 2. We thus conclude |A𝐿(𝐴, 𝑘)| ∈ O(|G|𝑘).

As for set H, we separately analyze the two subsets H1 and H2,
according to the definition in Section 6.1.1. Consider a category
𝑐𝛼 ∈ H1, where 𝑐 is a prefix of a lexical category and 𝛼 ∈ A𝐿(𝐴, 2).
Since every lexical category appears in our string representation
of G, each prefix of a lexical category can be associated with some
position within that string, representing the end position of the
prefix. (The start position is uniquely determined, given the end
position.) Therefore, the number of prefixes of lexical categories

116 6 Computational Complexity for Bounded Rule Degree

does not exceed |G|. Since |A𝐿(𝐴, 2)| ∈ O(|G|2), we conclude that
|H1| ∈ O(|G|3).

Consider now set H2, whose definition is based on the notion
of instantiations of secondary categories in rules of G. Recall
that according to our convention, and ignoring the ordering of
the antecedents, the general form of an instantiated rule of G is
𝑏|𝑑𝛼′ 𝑑𝛼′𝛽′

𝑏𝛼′𝛽′ , where 𝑑𝛼′𝛽′ is the instantiated secondary category,
|𝑑 ∈ args(𝐿), 𝛼′ ∈ A𝐿(𝐴, 1), and 𝛼′𝛽′ ∈ A𝐿(𝐴, 𝑘).

Let 𝑐𝛼 ∈ H2, where 𝑐 ⊑ 𝑑𝛼′𝛽′ for some instantiated secondary
category 𝑑𝛼′𝛽′, and 𝛼 ∈ A𝐿(𝐴, 2). We distinguish two cases on the
basis of the arity of 𝑐.

▶ arity(𝑐) ≤ arity(𝑑): In this case, we have 𝑐 ⊑ 𝑑. Every cate-
gory 𝑏 with |𝑏 ∈ args(𝐿) must appear in our string repre-
sentation of G, and thus each prefix of such category can be
associated with some position of the string. Hence, the num-
ber of prefixes of these categories does not exceed |G|. Since
𝛼 ∈ A𝐿(𝐴, 2), we conclude that the number of categories
𝑐𝛼 ∈ H2 such that arity(𝑐) ≤ arity(𝑑) is in O(|G|3).

▶ arity(𝑐) > arity(𝑑): In this case, prefix 𝑐 of 𝑑𝛼′𝛽′ spans over
some of the arguments in 𝛼′𝛽′. We can then write 𝑐 in the
form 𝑑𝛾 for some non-empty argument context 𝛾. Let us as-
sociate 𝑑𝛼′𝛽′ with an argument context |(𝑑)𝛼′𝛽′; similarly, we
associate 𝑐 with an argument context |(𝑑)𝛾. Since |𝑑 ∈ args(𝐿)
and 𝛼′𝛽′ ∈ A𝐿(𝐴, 𝑘), we have |(𝑑)𝛼′𝛽′ ∈ A𝐿(𝐴, 𝑘 + 1). By the
definition ofH2, the condition arity(𝑐𝛼) ≤ arity(𝑑𝛼′𝛽′) holds.
We thus derive |𝛾𝛼| ≤ |𝛼′𝛽′|, yielding |(𝑑)𝛾𝛼 ∈ A𝐿(𝐴, 𝑘 + 1).
We therefore conclude that the number of categories 𝑐𝛼 ∈ H2
such that arity(𝑐) > arity(𝑑) is in O(|G|𝑘+1).3

3: We may observe that we are
overcounting the number of sec-
ondary category instantiations. For
instance, consider rule instantiations
𝐷|(𝐴|𝐵) 𝐴|𝐵|𝐶

𝐷|𝐶 and 𝐷|𝐴 𝐴|𝐵|𝐶
𝐷|𝐵|𝐶 ,

sharing the same secondary cate-
gory 𝐴|𝐵|𝐶. In the first rule, we as-
sociate 𝐴|𝐵|𝐶 with |(𝐴|𝐵)|𝐶, while
in the second rule, we associate it
with |(𝐴)|𝐵|𝐶, counting the same
secondary category twice. Of course,
this is not a problem for the construc-
tion of an upper bound.

Putting everything together, we conclude that for 𝑘 ≥ 2 we have
|H| ∈ O(|G|𝑘+1).

6.3.2 Items

We derive here upper bounds for the total number of items
that are produced in a run of our algorithm on string 𝑤. Since
each tree item ⟨𝑐, 𝑖, 𝑗⟩ satisfies 𝑐 ∈ H, the total number of tree
items must be in O(|G|𝑘+1 · |𝑤|2) for 𝑘 ≥ 2 and in O(|G|3 · |𝑤|2)
for 𝑘 < 2. Consider now a context item ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩. Since
1 ≤ |𝛼| ≤ 2 and 𝛽 ∈ A𝐿(𝐴, 𝑘), the total number of context items is
in O(|G|𝑘+2 · |𝑤|4).

For future use, we also develop bounds on the number of arguments
appearing in tree and context items. We have already observed
above that, for a context item ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, we have |𝛼𝛽| ≤ 𝑘+2.
Regarding tree items, we need to introduce some auxiliary notation.

6.3 Runtime Analysis 117

Let ℓ be the maximum arity of a lexical category in G and let 𝑚 be
the maximum arity of a category 𝑑 for all possible |𝑑 ∈ args(𝐿).
Consider a tree item ⟨𝑐, 𝑖, 𝑗⟩. According to the definition of H,
if 𝑐 ∈ H1, then arity(𝑐) ≤ arity(𝑒) for some lexical category 𝑒.
If 𝑐 ∈ H2, then arity(𝑐) ≤ arity(𝑑𝛼𝛽) for some |𝑑 ∈ args(𝐿) and
𝛼𝛽 ∈ A𝐿(𝐴, 𝑘). We thus conclude that, for every tree item ⟨𝑐, 𝑖, 𝑗⟩,
arity(𝑐) ≤ max{ℓ , 𝑚 + 𝑘} = 𝜌.

We assume that each element in args(𝐿) is represented in O(1)
space. Since 𝑘 ≤ 𝜌, we can conclude that the space requirement
for each item constructed by the parsing algorithm is in O(𝜌).

6.3.3 Deduction Rules

Using the analyses above, we can now consider a run of the
algorithm on an input string 𝑤 and provide upper bounds on the
number of valid instantiations of each rule type.

Rule 0 is the simplest rule, producing tree items of the form
⟨𝑐, 𝑖 − 1, 𝑖⟩ or of the form ⟨𝑐, 𝑖, 𝑖⟩, where 𝑐 is a lexical category.
The total number of lexical categories is in O(|G|), and we have
0 ≤ 𝑖 ≤ |𝑤|. We then conclude that, in a run of the algorithm on 𝑤,
the number of instantiations of rule 0 is in O(|G| · |𝑤|).

Considering rule 1, let us focus on the case of tree items of the form
⟨𝑏𝛼𝛽, 𝑗 , ℎ⟩ producing context items of the form ⟨/𝑏𝛼, 𝛼𝛽, 𝑖 , 𝑖 , 𝑗 , ℎ⟩;
a similar analysis can be carried out for the symmetrical case.
Inspecting the consequent item, we observe that the number of
possible choices is in O(|G|𝑘+1 · |𝑤|3), because of the duplicate
occurrences of 𝛼 and index 𝑖. Furthermore, the tree item in the
premise is completely determined by the choice of the consequent
item. We therefore conclude that in a run of the algorithm on 𝑤,
the number of instantiations of rule 1 is in O(|G|𝑘+1 · |𝑤|3).

Rule 2 has premise items ⟨𝑐𝛼, 𝑖′, 𝑗′⟩ and ⟨𝛼, 𝛽, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩, and con-
sequent item ⟨𝑐𝛽, 𝑖 , 𝑗⟩. Assume that 𝑘 ≥ 2.4

4: If 𝑘 < 2, the number of conse-
quent items is in O(|G|3 · |𝑤|4). For
𝑘 = 1, this results in O(|G|5 · |𝑤|4)
many instantiations of rule 2. For
𝑘 = 0, we can assume |𝛼| = 1, result-
ing in O(|G|4 · |𝑤|4) many instanti-
ations of rule 2. In both of these
cases the bound is dominated by the
number of instantiations of rule 3,
as discussed below.

We have already
established that then the number of possible consequent items
is in O(|G|𝑘+1 · |𝑤|2). Since |𝛽| ≤ 𝑘, category 𝑐𝛽 can be split into
𝑐 and 𝛽 in at most 𝑘 + 1 ways. Finally, recall that 1 ≤ |𝛼| ≤ 2,
thus the number of choices for 𝛼 is in O(|G|2). From all of the
previous observations, and taking into account the extra indices
𝑖′, 𝑗′, we conclude that the number of instantiations of rule 2 is in
O(𝑘 · |G|𝑘+3 · |𝑤|4).

Finally, consider rule 3 with premise items ⟨𝛼, 𝛽𝛼′, 𝑖′′, 𝑖′, 𝑗′, 𝑗′′⟩,
⟨𝛼′, 𝛽′, 𝑖 , 𝑖′′, 𝑗′′, 𝑗⟩ and with consequent item ⟨𝛼, 𝛽𝛽′, 𝑖 , 𝑖′, 𝑗′, 𝑗⟩. We
have already established in Section 6.3.2 that the number of possible
consequent items is in O(|G|𝑘+2 · |𝑤|4). From the side conditions
of rule 3, we know that the argument context 𝛽𝛽′ in a consequent

118 6 Computational Complexity for Bounded Rule Degree

item must be split in such a way that |𝛽′| ≤ 2, which amounts
to O(1) possible choices. Furthermore, we have 1 ≤ |𝛼′| ≤ 2 and
thus the number of choices for 𝛼′ is in O(|G|2). Accounting for
the possible range of the indices 𝑖′′, 𝑗′′, we then conclude that the
number of instantiations of rule 3 is in O(|G|𝑘+4 · |𝑤|6).

Putting everything together, and observing that 𝑘 ≤ |G|, we con-
clude that in a run of the parser on input 𝑤 the total number of
valid instantiations of deduction rules is dominated by rules of
type 3 and is in O(|G|𝑘+4 · |𝑤|6).

6.3.4 Implementation and Runtime

We have established bounds on the total number of items and valid
instantiations of deduction rules for input 𝑤. We now provide an
upper bound on the runtime of our algorithm. While our analysis
is one of the main results of this chapter, it is based on a rather naive
implementation of the algorithm, one that is only of theoretical
significance. Alternative implementations of the algorithm can be
developed that are slightly more involved, but will work more
efficiently in practice.

Given as input a grammar G and a string 𝑤, we start by con-
structing a table R with all instantiations of deduction rules of
types 1, 2, and 3, including those instantiations that are never
used by the computation on 𝑤. Since there are O(|G|𝑘+4 · |𝑤|6)
instantiations, and since the size of each item is O(𝜌), the space
requirement for R is in O(𝜌 · |G|𝑘+4 · |𝑤|6).

Furthermore, for each item 𝑍 we construct a list L(𝑍) of all rules
in R where item 𝑍 occurs as an antecedent. Note that each rule
in R can appear in at most two lists L(𝑍). Therefore the total
space requirement for all lists L(𝑍) is in O(𝜌 · |G|𝑘+4 · |𝑤|6). It is
not difficult to see that the data structures R and L(𝑍) can be
constructed in time O(𝜌 · |G|𝑘+4 · |𝑤|6) as a preprocessing of the
grammar.

Our algorithm maintains a chart C where all items constructed by
the parser while processing 𝑤 are added. The total number of such
items is in O(|G|𝑘+2 · |𝑤|4), and thus the space requirement for C
is in O(𝜌 · |G|𝑘+2 · |𝑤|4). We also use an agenda A where we store
items that have been derived by the parser but have not yet been
processed and added to C.

We start parsing by initializing A with all items that can be pro-
duced by rules of type 0 applied to 𝑤. This phase can be executed
in time O(𝜌 · |G| · |𝑤|). We then iterate the following steps, until A
becomes empty:

1. pop some item 𝑍 ∈ A and add 𝑍 to C

6.3 Runtime Analysis 119

2. mark as ‘active’ each occurrence of 𝑍 appearing in R as an
antecedent

3. if some rule 𝑟 ∈ R gets all of its antecedents marked as active,
(a) let 𝑍𝑟 be the consequent item of 𝑟
(b) if 𝑍𝑟 ∉ A ∪ C, add 𝑍𝑟 to A
(c) remove 𝑟 from R.

We start by observing that each item 𝑍 is processed only once
by the algorithm. This is certainly true in the initialization phase,
since rules of type 0 always produce different items. Furthermore,
we observe that in each iteration of the main loop the test condition
in step (b) guarantees that items are never doubled within our
agenda A.

To analyze the time complexity of the main loop of the algorithm,
we proceed by considering the execution time of each individual
step. We then amortize this amount of time among the rules in R
involved in the step itself in such a way that each rule gets charged
an overall amount of time in O(𝜌).

▶ We process item 𝑍 at step 1 in time O(𝜌), that is, in time
proportional to the size of 𝑍 itself, which we assume to be
the time required for insertion into C. We charge this amount
of time to the rule that has added item 𝑍 to A.

▶ When processing item 𝑍 at step 2, we retrieve list L(𝑍) in
time O(𝜌). We then mark as active each occurrence of 𝑍 as
an antecedent in R. Furthermore, we collect rules having
all of their antecedents marked as active at this time. The
execution of step 2 can be amortized by charging time O(𝜌)
to each processed rule. We assume this is the time required
for accessing the respective rule in R.

▶ As for the inner loop at step 3, we assume that we can test
membership of an item 𝑍 in A and in C in time O(𝜌). In
the execution of this step, we charge time O(𝜌) to each rule
collected at step 2.

In the above analysis of the main loop of our algorithm, each
rule in R is charged with an amount of time in O(𝜌). Since
|R| ∈ O(|G|𝑘+4 · |𝑤|6), we conclude that the running time of the
main loop is in O(𝜌 · |G|𝑘+4 · |𝑤|6). This is also the dominating
quantity in the execution of the whole algorithm. Note that 𝜌 is
very small in comparison to the other factors. This analysis leads
us to the following main result. Although we only regarded pure
CCG so far, the algorithm can easily be extended to CCG with rule
restrictions as will be discussed in Section 6.5.2.

Theorem 6.3.1 The universal recognition problem for 𝑘-CCG with
fixed 𝑘 with substitution rules and 𝜀-entries can be solved in PTIME.

120 6 Computational Complexity for Bounded Rule Degree

6.3.5 Hardness for CCG with 𝜀-entries

We have seen that the universal recognition problem for CCG
of bounded rule degree can be solved in PTIME. This holds re-
gardless of whether or not 𝜀-entries are included. If they are
allowed, it is quite easy to show that the universal recognition
problem is PTIME-complete under logspace-reduction. One way
to show PTIME-hardness is to use the fact that the universal recog-
nition problem for context-free grammar with 𝜀-productions is
PTIME-hard [36, Corollary 11] and to reduce this problem in log-
arithmic space to the universal recognition problem for CCG of
bounded rule degree. This can be done through our 1-CCG con-
struction of Definition 4.2.4. To be used as a tree automaton, the CFG
first has to be converted into the Chomsky normal-form,5

5: A CFG G = (𝑁,Σ, {𝑠}, 𝑃) is in
Chomsky normal-form if each produc-
tion has one of the forms 𝑛 → 𝑛1𝑛2
with 𝑛, 𝑛1 , 𝑛2 ∈ 𝑁 , or 𝑛 → 𝛼 with
𝑛 ∈ 𝑁 and 𝛼 ∈ Σ, or 𝑠 → 𝜀, and 𝑠

does not appear on any right-hand
side of a production [27, page 104].

which can
be done in logarithmic space unless removal of 𝜀-productions is per-
formed [23, Theorem 2]. The latter presumably cannot performed
in logarithmic space, since checking if the word 𝜀 is generated by
a given CFG is PTIME-complete [23, Theorem 1]. Therefore, when
converting into Chomsky normal-form, we treat 𝜀 as a normal
symbol and accordingly add 𝜀-entries to the constructed 1-CCG.

In the following, we also give a more direct proof that instead uses
a reduction from the generability problem, similar to the proof
that CFG parsing is PTIME-hard [36, Corollary 11]. For this, pure
0-CCG is in fact sufficient.

Lemma 6.3.2 The universal recognition problem for pure 0-CCG with
𝜀-entries is PTIME-hard.

Proof. We use a reduction from the generability problem: Given a
finite set 𝑊 , a subset 𝑉 ⊆ 𝑊 , an element 𝑒 ∈ 𝑊 , and a binary
operation ◦ : 𝑊 ×𝑊 → 𝑊 given as a table, it asks whether the
element 𝑒 is contained in the closure of 𝑉 under the operation ◦.
It is known to be PTIME-complete under logspace-reduction [36,
Corollary 9]. We construct a CCG G = (∅,𝑊,R(𝑊, 0), {𝑒}, 𝐿) with
an empty input alphabet, atomic categories𝑊 , the element 𝑒 as the
only initial atomic category, and all application rules. The lexicon
is defined as 𝐿(′𝜀′) = 𝑉 ∪ {𝑐/𝑏/𝑎 | 𝑎 ◦ 𝑏 = 𝑐}. It is easy to see
that 𝜀 ∈ L(G) if and only if 𝑒 is in the closure of 𝑉 under ◦. The
CCG G can clearly be constructed in logarithmic space with regards
to the size of the instance of the generability problem.

Corollary 6.3.3 The universal recognition problem for 𝑘-CCG with
fixed 𝑘 with 𝜀-entries is PTIME-complete.

6.4 From Parse Tree to Derivation Tree 121

Whether the universal recognition problem becomes solvable in
logarithmic space if 𝜀-entries are excluded from CCG of bounded
degree, is an open problem. It is presumably not possible to
perform 𝜀-removal from CCG of bounded degree in logarithmic
space. This follows from the fact that the above proof also shows
that deciding whether 𝜀 is generated by some given CCG of
bounded degree is PTIME-complete. This also matches with the
complexity of checking whether 𝜀 is generated by some given
CFG [23, Theorem 1].

6.4 From Parse Tree to Derivation Tree

The algorithm presented in Section 6.1 is a recognition algorithm,
that is, the algorithm decides whether a given input string 𝑤

can be generated by some underlying CCG. However, in view of
downstream natural language processing applications, we want
to provide the syntactic analyses of 𝑤, here in the form of CCG
derivation trees.

6.4.1 Parse Trees and Parse Forests

We call parse tree any tree structure whose nodes are labeled by
items produced by our deduction system when processing 𝑤,
and whose edges connect each antecedent item to its consequent
item. As in the case of several tabular parsing algorithms based on
context-free grammars [39, Chapter 3], one can easily adapt the
algorithm of Section 6.1 to construct a compact representation for
the forest of all parse trees for 𝑤, as described in what follows.

Whenever an item 𝑍 is produced by our algorithm by means of
some deduction rule, we create a tuple of so-called backpointers,
referencing to the antecedent items used by the rule. Since 𝑍 can
be produced by several deduction rules, each item 𝑍 is associated

⟨𝑆/𝐵, 0, 1⟩ ⟨𝐵/𝐵, 1, 1⟩ ⟨𝐵, 1, 2⟩

⟨/𝐵, /𝐵, 0, 0, 1, 1⟩ ⟨/𝐵, □, 0, 0, 1, 2⟩

⟨𝑆, 0, 2⟩ Figure 6.6: Parse forest containing
cycles.

122 6 Computational Complexity for Bounded Rule Degree

with a list B(𝑍) of backpointer tuples. After a successful run of the
algorithm on 𝑤, we can then extract any parse tree from the parsing
table through the following procedure: start at an item ⟨𝑎0 , 0, |𝑤|⟩
with 𝑎0 ∈ 𝐼, arbitrarily pick up a tuple 𝑡 in B(⟨𝑎0 , 0, |𝑤|⟩), and
recursively apply the procedure to all of the backpointers in 𝑡.6

6: A backpointer tuple can also be
viewed as a hyperedge. In this way
the forest of all parse trees for 𝑤

becomes a hypergraph; see Klein
and Manning [46]. As a side remark, we observe that for some item 𝑍 it might happen

that, in the process of following the backpointers stored in B(𝑍),
we end up reaching 𝑍 itself. In other words, the constructed parse
forest contains some cycles.7

7: Strictly speaking, it is not a forest
in that case, but we use the term
parse forest nonetheless due to its
common usage.

This happens because our CCG can
assign categories to ′𝜀′, resulting in infinite ambiguity for some
strings. In these cases, the above procedure for extracting parse
trees may never stop, for some specific choices of backpointers.

Example 6.4.1 Assume we parse input 𝑎𝑏 on the basis of a
CCG with a lexicon with 𝐿(𝑎) = {𝑆/𝐵}, 𝐿(′𝜀′) = {𝐵/𝐵}, and
𝐿(𝑏) = {𝐵}, where 𝑆 is initial. Figure 6.6 depicts the resulting
parse forest. Due to the 𝜀-entry, we can use arbitrarily many
copies of lexical category 𝐵/𝐵 that lead to cycles in the parse for-
est. The list of backpointer tuples is shown above the associated
item. For axioms, this list starts with a nullpointer, drawn as a
white circle. The other tuples in the list point to the antecedent
item(s) of the considered item. There are three cycles in this
parse forest. First, tree item ⟨𝑆/𝐵, 0, 1⟩ can be combined with
⟨/𝐵, /𝐵, 0, 0, 1, 1⟩, yielding the same tree item ⟨𝑆/𝐵, 0, 1⟩ again.
Second, context item ⟨/𝐵, /𝐵, 0, 0, 1, 1⟩ can be combined with
itself, yielding the same context item again. Third, context item
⟨/𝐵, /𝐵, 0, 0, 1, 1⟩ can also be combined with ⟨/𝐵, □, 0, 0, 1, 2⟩,
resulting in consequent item ⟨/𝐵, □, 0, 0, 1, 2⟩.

In practice, the extraction procedure is driven by a probabilistic
model or by the use of other kinds of scores, in such a way that we
can retrieve the most likely parse trees. While an item is a unique
identifier for nodes of a parse forest, due to cycles, it can label
several nodes of a parse tree. In what follows, we focus on the
individual parse trees extracted from the parse forest, and describe
how to transform these parse trees into CCG derivation trees.

6.4.2 Construction of the Derivation Tree

We present the construction of the CCG derivation tree using
recursive functions that can be applied to a suitable parse tree
after its extraction. The parse tree is processed in a top-down
fashion, which enables us to immediately construct the derivation
tree using the correct categories. More specifically, if a parse
tree is rooted in a context item, without further information it
is not clear what the prefix of the categories on the spine of the

6.4 From Parse Tree to Derivation Tree 123

corresponding derivation context is. From this parse tree we can
only reconstruct the combinatory rules applied along the spine,
but not the exact categories labeling it. Because of this, we pass the
intended root category of the derivation context as a parameter to
the function that handles such parse trees. This category depends
on the ancestor items and possibly on the sibling item of the
regarded parse tree, which is why it can easily be determined by
the top-down algorithm. The general approach of the construction
corresponds to the soundness proof presented in Section 6.2.1.

In this section, we write the special symbol □ at the position of the
foot node instead of the category that is associated with it. Before
giving the construction, we introduce some auxiliary functions to
extract information from items, where 𝑤 is the input string that
was passed to the algorithm:

▶ cat
(
⟨𝑐𝛼, 𝑖 , 𝑗⟩

)
= 𝑐𝛼,

▶ input
(
⟨𝑐𝛼, 𝑖 , 𝑗⟩

)
= 𝑤[𝑖 , 𝑗]

▶ dir
(
⟨|𝑏𝛼, 𝛽, 𝑖′, 𝑖 , 𝑗 , 𝑗′⟩

)
= |

▶ footcat
(
⟨𝛼, 𝛽, 𝑖′, 𝑖 , 𝑗 , 𝑗′⟩, 𝑐𝛽

)
= 𝑐𝛼

The directionality information regarding the first bridging argu-
ment of each context item is required to attach the primary and
secondary subtrees in the correct order. The category 𝑐𝛼 labeling
the foot node of a context, given the root category 𝑐𝛽, needs to
be handed down to a recursive call, where it serves as the root
category of another derivation context.

We define the recursive function dtree, which takes a parse tree
rooted in a tree item to return a derivation tree. We also define
the recursive function dcon, which takes a parse tree rooted in a
context item and the intended root category to return a derivation
context. Note that in the former case, the root node of the parse
tree can be a leaf or a binary node, and in the latter case, the root
node of the parse tree can be a unary or binary node.

Definition 6.4.2 In the following, 𝑍 is a tree item, 𝑌 is a context item,
𝑐 is a category, and 𝑝1, 𝑝2, 𝑝′ are parse trees.

dtree(𝑍) = cat(𝑍)
(
input(𝑍)

)
dtree

(
𝑍(𝑝1 , 𝑝2)

)
= dcon

(
𝑝2 , cat(𝑍)

)
[dtree(𝑝1)]

dcon
(
𝑌(𝑝′), 𝑐

)
=

{
𝑐
(
□, dtree(𝑝′)

)
if dir(𝑌) = /

𝑐
(
dtree(𝑝′), □

)
if dir(𝑌) = \

dcon
(
𝑌(𝑝1 , 𝑝2), 𝑐

)
= dcon(𝑝2 , 𝑐)[dcon(𝑝1 , 𝑐

′)]
where 𝑐′ = footcat

(
𝑝2(𝜀), 𝑐

)

124 6 Computational Complexity for Bounded Rule Degree

⟨𝑆, 0, 6⟩

⟨/𝐵/𝐸, □, 0, 0, 3, 6⟩

⟨/𝐸, □, 0, 0, 5, 6⟩

⟨𝐸, 5, 6⟩

⟨/𝐵/𝐸, /𝐸, 0, 0, 3, 5⟩

⟨𝐵/𝐸, 3, 5⟩

⟨\𝐹, □, 3, 4, 5, 5⟩

⟨𝐹, 3, 4⟩⟨𝐵/𝐸\𝐹, 4, 5⟩

⟨𝑆/𝐵/𝐸, 0, 3⟩

⟨/𝐶, /𝐸, 0, 1, 2, 3⟩

⟨\𝐺, /𝐸, 0, 1, 3, 3⟩

⟨𝐺/𝐸, 0, 1⟩

⟨/𝐶, \𝐺, 1, 1, 2, 3⟩

⟨𝐶\𝐺, 2, 3⟩⟨𝑆/𝐵/𝐶, 1, 2⟩

𝑝|1 𝑝|2

𝑝|22𝑝|12

𝑝|11

𝑝|21

Figure 6.7: Parse tree 𝑝 with the first child of each binary node labeled by the first antecedent of the respective deduction
rule. As in Figure 6.4, the order of leaves does not reflect the order of input categories, which can be reconstructed from
the indices stored in the leaf items. The blue labels indicate subtrees referred to in Example 6.4.3 and their shade coincides
with their corresponding derivation part in Figure 6.8.

Figure 6.8: CCG derivation tree pro-
duced from parse tree 𝑝 of Figure 6.7.
The parts highlighted in light blue re-
sult from the first level of recursion,
whereas the darker shaded parts re-
sult from the second level of recur-
sion. Input symbols are omitted.

𝑆

𝐸𝑆/𝐸

𝐵/𝐸

𝐵/𝐸\𝐹𝐹

𝑆/𝐵/𝐸

𝑆/𝐵\𝐺

𝐶\𝐺𝑆/𝐵/𝐶

𝐺/𝐸

When inserting a derivation context at the foot node of another
context, the correct correspondence of the foot category and the
inserted root category is ensured since the foot category of a
context is calculated and then passed as the root category to the
context that gets inserted later at that exact position. This root
category correctly ends in the excess of that context by design of
the deduction rules. Likewise, when a tree is inserted, the root
node of the context that is wrapped around is set appropriately to
ensure consistency.

Concerning the order of insertion, in the previous section we have
seen that while splitting a derivation tree or context, the derivation
part closer to the foot node is the one that corresponds to the first
antecedent and the one closer to the root node corresponds to
the second antecedent. As a natural consequence, the derivation
part that corresponds to the first antecedent has to be inserted
into the derivation part that corresponds to the second antecedent.
Note also that multiple parse trees can correspond to the same
derivation tree. This will be discussed in detail in Section 6.5.1.

6.5 Parser Extensions and Improvements 125

Example 6.4.3 Figure 6.7 depicts a parse tree 𝑝 that was extracted
from the parse forest for some input string 𝑤1 . . . 𝑤6. Figure 6.8
shows the CCG derivation tree obtained using the recursive
procedure of Definition 6.4.2. The derivation trees and contexts
resulting from the first two levels of recursion are highlighted in
blue. The corresponding calculation steps are as follows.

We start at the root and find two subtrees 𝑝|1, 𝑝|2 rooted in
⟨𝑆/𝐵/𝐸, 0, 3⟩ and ⟨/𝐵/𝐸, □, 0, 0, 3, 6⟩, and invoke recursive calls.
The call on 𝑝|1 returns a derivation tree that is inserted at the
foot node of the derivation context returned by the call on 𝑝|2.
The latter receives root category 𝑆 as an additional parameter.

dtree(𝑝) = dtree
(
⟨𝑆, 0, 6⟩(𝑝|1 , 𝑝|2)

)
= dcon(𝑝|2 , 𝑆)[dtree(𝑝|1)]

To compute the derivation tree corresponding to 𝑝|1, cate-
gory 𝑆/𝐵/𝐸 is handed down to the call on 𝑝|12. Subtree 𝑝|11
consists of a single node ⟨𝑆/𝐵/𝐶, 1, 2⟩ and is therefore handled
by the base case of the recursive function, returning 𝑆/𝐵/𝐶(𝑤2).

dtree(𝑝|1) = dtree
(
⟨𝑆/𝐵/𝐸, 0, 3⟩(𝑝|11 , 𝑝|12)

)
= dcon(𝑝|12 , 𝑆/𝐵/𝐸)[dtree(𝑝|11)]
= dcon(𝑝|12 , 𝑆/𝐵/𝐸)[𝑆/𝐵/𝐶(𝑤2)]

For the derivation context corresponding to 𝑝|2, contexts 𝐶21, 𝐶22,
obtained through calls on 𝑝|21, 𝑝|22, are combined such that 𝐶22
wraps around 𝐶21, which is why root category 𝑆 is passed on to
the call on 𝑝|22. The call on 𝑝|21 receives as a second parameter the
foot category of 𝐶22, footcat(⟨/𝐸, □, 0, 0, 5, 6⟩, 𝑆) = 𝑆/𝐸, which
is used as the root category of 𝐶21.

dcon(𝑝|2 , 𝑆) = dcon
(
⟨/𝐵/𝐸, □, 0, 0, 3, 6⟩(𝑝|21 , 𝑝|22), 𝑆

)
= dcon(𝑝|22 , 𝑆)[dcon(𝑝|21 , 𝑆/𝐸)]

These derivation parts are then finally combined to the deriva-
tion tree of Figure 6.8 by performing the tree substitutions
indicated in the equations above. The results of the respective
subcomputations also become apparent from Figure 6.8.

6.5 Parser Extensions and Improvements

In this section, we discuss possible extensions and some practical
improvements to the parsing algorithm we have developed. We
start by discussing spurious ambiguity and its removal. Then we
describe the implementation of rule restrictions and of multi-modal
variants of CCG. Finally, we present an adjusted algorithm with a

126 6 Computational Complexity for Bounded Rule Degree

runtime polynomial in the grammar size if all secondary categories
in the rule set are instantiated.

6.5.1 Eliminating Spurious Ambiguity

The term spurious ambiguity describes the property of a parsing
algorithm to produce several parse trees for a single derivation tree.
This kind of redundancy is undesirable and ought to be avoided,
since it might result in flawed computations of derivation proba-
bilities when working with generative models based on CCG [30].
Note that there exist other notions of spurious ambiguity that aim
to obtain only a single derivation tree per semantic reading by
arranging forward (resp. backward) chains (i.e., sequences of for-
ward rule applications) in a canonical way [16]. In the present work
we will only address the former notion of spurious ambiguity.

We first observe that the algorithm as presented in Section 6.1 has
spurious ambiguity. This can easily be seen from Figure 6.9, which
shows two different parse trees that correspond to the same deriva-
tion tree. On the other hand, the parse tree shown in Figure 6.10b
corresponds to the derivation tree shown in Figure 6.10a, which
is different from the one in Figure 6.9a. So the parse tree is not
redundant with those of Figure 6.9 and not a case of spurious ambi-
guity, although it has the same leaf items. However, this derivation
tree itself has several other parse trees that need to be avoided.
Another example of spurious ambiguity is shown in Figure 6.11,
depicting two parse trees corresponding to the same derivation
context, where 𝑐 is a placeholder for an arbitrary category.

Sources of Spurious Ambiguity

In what follows, we first inspect our deduction rules to address
the questions of whether and in what ways they might introduce
spurious ambiguity. We then propose a reformulation of our
deduction rules that eliminates spurious ambiguity. Throughout
the discussion, we always assume some general but fixed derivation
tree which we call the reference derivation tree. We also assume
that its root is labeled by an initial atomic category.

Deduction Rule 0 This deduction rule introduces the lexical
categories associated with the input symbols. Given a reference
derivation tree, there is only one choice for each input symbol:
the tree item composed of the associated lexical category in the
derivation and the position in the input string. Therefore, deduction
rule 0 is not responsible for any spurious ambiguity.

6.5 Parser Extensions and Improvements 127

𝑤1
..

𝐵/𝐸

𝑤2
..

𝑆\𝐵/𝐸
𝑆/𝐸

𝑤3
..

𝐸/𝐺

𝑤4
..

𝐺

𝐸

𝑆

(a) derivation tree

⟨𝑆\𝐵/𝐸, 1, 2⟩

⟨𝐵/𝐸, 0, 1⟩
⟨\𝐵/𝐸, /𝐸, 0, 1, 2, 2⟩

⟨𝐸/𝐺, 2, 3⟩
⟨𝐺, 3, 4⟩

⟨/𝐺, □, 2, 2, 3, 4⟩
⟨𝐸, 2, 4⟩

⟨/𝐸, □, 0, 0, 2, 4⟩
⟨\𝐵/𝐸, □, 0, 1, 2, 4⟩

⟨𝑆, 0, 4⟩
(b) canonical parse tree

⟨𝑆\𝐵/𝐸, 1, 2⟩
⟨𝐵/𝐸, 0, 1⟩

⟨\𝐵/𝐸, /𝐸, 0, 1, 2, 2⟩
⟨𝑆/𝐸, 0, 2⟩

⟨𝐸/𝐺, 2, 3⟩
⟨𝐺, 3, 4⟩

⟨/𝐺, □, 2, 2, 3, 4⟩
⟨𝐸, 2, 4⟩

⟨/𝐸, □, 0, 0, 2, 4⟩
⟨𝑆, 0, 4⟩

(c) undesired parse tree

Figure 6.9: Spurious ambiguity caused by deduction rule 2.

𝑤1
..

𝐵/𝐸

𝑤2
..

𝑆\𝐵/𝐸
𝑆/𝐸

𝑤3
......

𝐸/𝐺
𝑆/𝐺

𝑤4
..........

𝐺

𝑆

(a) derivation tree

⟨𝑆\𝐵/𝐸, 1, 2⟩

⟨𝐵/𝐸, 0, 1⟩
⟨\𝐵/𝐸, /𝐸, 0, 1, 2, 2⟩

⟨𝐸/𝐺, 2, 3⟩
⟨/𝐸, /𝐺, 0, 0, 2, 3⟩

⟨𝐺, 3, 4⟩
⟨/𝐺, □, 0, 0, 3, 4⟩

⟨/𝐸, □, 0, 0, 2, 4⟩
⟨\𝐵/𝐸, □, 0, 1, 2, 4⟩

⟨𝑆, 0, 4⟩
(b) canonical parse tree

Figure 6.10: Other derivation tree with the same lexical categories as in Figure 6.9.

𝑤2
......

𝐶/𝐸/𝐹
𝑐/𝐻

𝑤4
..

𝐻\𝐶/𝐸
𝑐\𝐶/𝐸

𝑐/𝐸/𝐹

𝑤5
..........

𝐹

𝑐/𝐸
(a) derivation context

⟨𝐻\𝐶/𝐸, 3, 4⟩
⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩

⟨𝐶/𝐸/𝐹, 1, 2⟩
⟨\𝐶/𝐸, /𝐸/𝐹, 1, 2, 4, 4⟩

⟨𝐹, 4, 5⟩
⟨/𝐹, □, 1, 1, 4, 5⟩

⟨\𝐶/𝐸, /𝐸, 1, 2, 4, 5⟩
⟨/𝐻, /𝐸, 1, 2, 3, 5⟩

(b) canonical parse tree

⟨𝐻\𝐶/𝐸, 3, 4⟩
⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩

⟨𝐶/𝐸/𝐹, 1, 2⟩
⟨\𝐶/𝐸, /𝐸/𝐹, 1, 2, 4, 4⟩

⟨/𝐻, /𝐸/𝐹, 1, 2, 3, 4⟩

⟨𝐹, 4, 5⟩
⟨/𝐹, □, 1, 1, 4, 5⟩

⟨/𝐻, /𝐸, 1, 2, 3, 5⟩
(c) undesired parse tree

Figure 6.11: Spurious ambiguity caused by deduction rule 3. In the derivation context, 𝑐 can be an arbitrary category.

128 6 Computational Complexity for Bounded Rule Degree

Deduction Rule 1 The analysis of deduction rule 1 is a bit more
involved. First, we observe that deduction rule 1 is applied to
exactly those tree items whose category is used as a secondary
category in our reference derivation tree. These tree items need to
contain exactly the indices marking the span of the yield belonging
to the subtree that is rooted in this secondary category. Second, the
leading slash of the bridging arguments and their number depends
on the type of combinatory rule that is applied to that secondary
category and thus determined by the reference derivation tree as
well. Third, the guessed indices of the consequent context item are
the left (resp. right) fencepost position of the reference derivation
subtree that is rooted in the sibling of the secondary category, since
they mark the span that needs to be reserved for the foot node
of the context. As a consequence, the derivation tree completely
determines the set of items that deduction rule 1 is applied to and
their consequent items. Any change of this set would result in
a different derivation tree. This is the case for the parse trees of
Figures 6.9b and 6.10b.

Deduction Rules 2 and 3 Consider the spine of some subtree
of our reference derivation tree, such that the root is labeled by
a secondary or initial category. The lexical anchor of the spine is
introduced as a tree item by deduction rule 0, and when the root
is reached, this is either the goal item or else a tree item storing a
secondary category, requiring an application of deduction rule 1.
On the way from the lexical anchor to the root, deduction rules 2
and 3 are used to simulate the categories along the spine. Deduction
rule 2 models the splitting of a derivation tree into a smaller tree and
a context at some spinal node, whereas deduction rule 3 models
the splitting of a context into two smaller contexts, also at some
spinal node. This causes spurious ambiguity as there are several
points where a derivation tree or context can be split into two valid
pieces of derivation that can be represented using tree or context
items, respectively. Different parses of the spine thus constitute
different ways to group the combinatory rule applications along
the spine into valid contexts without changing their order.

Approach

One solution for eliminating spurious ambiguity is to enforce that
the parsing algorithm strictly follows the splitting strategy used in
the completeness proof. Because the strategy of the completeness
proof is pursued, the resulting algorithm is still complete.

When two items are combined via rule 2 or 3, we will say that the
second antecedent gets added to the first antecedent. An equivalent
description of the strategy of the completeness proof is that contexts

6.5 Parser Extensions and Improvements 129

are extended to contexts as large as possible before the respective
context items serve as second antecedents by getting added to
other items. By this, we mean that each context item used as a
second antecedent, starting from its respective foot node, has to
cover a segment as large as possible of the given spine and cannot
be further extended in the direction of the root by adding other
context items to it. Note that it might be necessary to combine
other context items first to obtain an item that can be added to it.
This approach leads to right-branching structures in the parse tree
whenever possible.

To see that this is equivalent to the strategy of the completeness
proof, note that the context whose item serves as a second an-
tecedent is closer to the root and wrapped around the context or
tree of the first antecedent. In the splitting strategy of the complete-
ness proof, the strategy always aims to split off contexts as large
as possible from a tree or context, beginning at the root node. In
one of the cases, this is made explicit by choosing the spinal node
closest to the foot node from a selection of potential split nodes
(the positions with the lowest downstep arity). In the other case, it
is not immediately clear by the wording of the strategy, but each
larger piece of derivation contains a node with arity lower than
the root node on the spine and is thus not a valid context.

Implementation Assume that the item 𝑍 was obtained by adding
context item 𝑌1 to some other item. Then we want to ensure that
another context item 𝑌2 can only be added to 𝑍 if it is not possible
to add 𝑌2 to 𝑌1 first. For this, each tree and context item stores
information on the last item that was added to it. It suffices to store
an additional variable that can take one of three values, stating if
the last added item had an excess of length 0, 1, or 2 and higher.
This value is initialized with 0 after the introduction of a tree or
context item via deduction rule 0 or 1 and set accordingly in the
consequent item of deduction rule 2 or 3 depending on the second
antecedent. When we want to add a second antecedent (always a
context item) to some item, we first check if its excess is longer than
its bridging arguments. This of course is only possible if the first
antecedent is a tree item and would increase the arity of its stored
root category. If this is the case, we may add it to the tree item
regardless of the previously added item, since such a context can
never be added to another context. Else, if the excess length of the
second antecedent is the same or lower than its number of bridging
arguments, we check if the number of bridging arguments is higher
than the excess length of the item that was previously added to
the first antecedent. Only then combination is allowed.

130 6 Computational Complexity for Bounded Rule Degree

lexical anchor

𝑆\𝐵/𝐻 /𝐻, \𝐶/𝐸 \𝐶/𝐸, \𝐸/𝐹 /𝐹, □ \𝐵/𝐸, /𝐸 /𝐸, □
root node

Figure 6.12: Grouping of combinatory rule applications along the spine of the derivation tree of Figure 6.3 into maximally
extended contexts.

Figure 6.13: Group starting with two
combinatory rule applications that
increase the arity.

lexical anchor

𝑆/𝐵 /𝐵, /𝐶/𝐸 /𝐸, /𝐹/𝐺 /𝐺, □ /𝐹, □
root node

Example 6.5.1 In Figure 6.9c, tree item ⟨𝑆\𝐵/𝐸, 1, 2⟩ is combined
with context item 𝑌1 = ⟨\𝐵/𝐸, /𝐸, 0, 1, 2, 2⟩ with excess length 1.
Subsequently, context item 𝑌2 = ⟨/𝐸, □, 0, 0, 2, 4⟩ with one bridg-
ing argument is added to the consequent item 𝑍 = ⟨𝑆/𝐸, 0, 2⟩.
Because excess length 1 is stored in 𝑍, context item 𝑌2 could also
have been added to 𝑌1, so this application of deduction rule 2 is
not allowed (marked by). Consequently, the canonical parse
tree of Figure 6.9b is enforced.

Example 6.5.2 Similarly, in Figure 6.11c, after combining context
item𝑌 = ⟨/𝐻, \𝐶/𝐸, 2, 2, 3, 4⟩ with𝑌1 = ⟨\𝐶/𝐸, /𝐸/𝐹, 1, 2, 4, 4⟩
with excess length 2, another context item 𝑌2 = ⟨/𝐹, □, 1, 1, 4, 5⟩
with one bridging argument is added to the consequent item.
Again, this is forbidden because 𝑌1 and 𝑌2 could have been
combined first and then added to 𝑌 in one step. Thus, the
canonical parse tree of Figure 6.11b is enforced.

Explanation We claim that this approach suffices to remove all
spurious ambiguity from the parsing algorithm. This is supported
by the following argument.

We first focus on the splitting of trees via deduction rule 2. Given
a spine, the applications of this deduction rule constitute its seg-
mentation into contexts. The split nodes of the splitting strategy
are positions where splitting has to take place necessarily, either
because they have a low arity and there are no lower arities closer
to the root, or because they have a low downstep arity with no
lower downstep arity closer to the lexical anchor. No context on
the given spine can contain these positions as nodes properly be-
tween the foot node and the root node. Thus, beyond these nodes,
contexts cannot be further extended in either direction, so their
context items can be used neither as first nor as second antecedent
of deduction rule 3. The splitting strategy chooses exactly those
nodes, showing that it yields maximally extended contexts.

6.5 Parser Extensions and Improvements 131

Now assume there was a splitting into smaller contexts that respects
the unavoidable split nodes, but additionally splits those maximal
contexts into smaller ones that cannot be combined with each other
to attain the desired maximal contexts. However, the extension
of a context item (by adding another context item as a second
antecedent) does not inhibit its ability to be added to other context
or tree items. This is because the bridging arguments are unaffected
and only the last two arguments of the excess may be exchanged
or removed. In other words, extending a context further in the
direction of the root node does not inhibit its ability to combine
with other context or tree items in the direction of the foot node.
Additionally, when a context item is added to a tree or context
item, its ability to have other context items added to it carries over
to the consequent item. In other words, the consequent item can
be extended further in the direction of the root node in at least the
same (and possibly more) ways as the added context item can. This
shows that no combination of context items (in accordance with
the given spine) prevents an extension to the maximally extended
context. If the maximal context is not attained yet, its smaller parts
can still be combined.

Example 6.5.3 Figure 6.12 shows the items (without indices)
corresponding to the combinatory rule applications along the
spine of the derivation tree of Figure 6.3 and visualizes how
these items are grouped into maximally extended contexts. Their
order is fixed by the reference derivation tree, so each item can
only be combined with the neighboring items or their respective
consequents. After combining ⟨\𝐶/𝐸, \𝐸/𝐹⟩ with ⟨/𝐹, □⟩, we can
still combine the consequent with ⟨/𝐻, \𝐶/𝐸⟩, since the bridging
arguments \𝐶/𝐸 of the first antecedent are preserved. In the
same manner, when combining ⟨\𝐶/𝐸, \𝐸/𝐹⟩ with ⟨/𝐻, \𝐶/𝐸⟩
first, the consequent can still be extended in the direction of the
root by adding ⟨/𝐹, □⟩ to it, since the excess \𝐸/𝐹 of the second
antecedent is transferred to the consequent.

Example 6.5.4 Using Figure 6.13, we demonstrate what happens
when we add smaller contexts than the intended maximal context
to some tree item. Assume that ⟨/𝐵, /𝐶/𝐸⟩ is added to ⟨𝑆/𝐵⟩.
Provided that the resulting category is in H, this is allowed since
the context item increases the arity of the tree item. Next, we
add ⟨/𝐸, /𝐹/𝐺⟩ to the consequent. This is allowed as well since
the two context items cannot be combined directly. However, it
is forbidden to add ⟨/𝐺, □⟩ afterwards. This item reduces the
arity and cannot be added to the combined item ⟨𝑆/𝐶/𝐹/𝐺⟩,
which stores the value 2 to indicate that an item with an excess
of length 2 or higher was added in the previous step.

132 6 Computational Complexity for Bounded Rule Degree

So we may add several non-maximal contexts in a row that increase
the arity (as long as the result is a category in H), but at some
point we need to preserve or reduce the arity in order to attain the
arity at the root of the maximally extended context, requiring a
combination that is forbidden. Due to the context definition, this
root has at most the arity of the category that is obtained by adding
the first arity-increasing context.

Now we turn to the splitting of contexts and to deduction rule 3.
First, we observe that the context that is split off clearly cannot be
extended further in the direction of the foot node due to its low
downstep arity. Then we use the same argumentation as for trees
and argue that, if the context is not maximally extended yet, its
parts can still be combined with each other.

Together, these properties indicate that there are no two competing
splittings with non-extendable second antecedents. However, a
formal treatment and proof are necessary to rule out that the
modified algorithm has any spurious ambiguity. This should be
addressed in future work.

Separation of Splitting Strategies A property of the described
strategy is that by following it, the two cases of the tree splitting in
the completeness proof (see Theorem 6.2.5, inductive case 2) are
strictly separated in the sense that on one side of the spine one case
is used consistently. These cases not only correspond to two variants
of deduction rule 2, but also correspond to guaranteed membership
in the sets H1 or H2, respectively. More precisely, closer to the root,
which is labeled by an instantiation of a secondary category or an
initial atomic category, the categories stored in the first antecedent
and the consequent item of deduction rule 2 are in H2 and the
rule has |𝛼| < |𝛽| (case 1). On the other hand, closer to the lexical
anchor, the first antecedent and the consequent item are in H1
and deduction rule 2 has |𝛼| ≥ |𝛽| (case 2). There is a specific
position on the spine where the strategies are switched, which is
the spinal node closest to the root among those of lowest arity. At
this position, the spinal category is in H1 ∩H2.

To demonstrate why this is the case, examine the condition for
case 2. After this condition (no lower downstep arity closer to the
lexical anchor) is true for the first time, it is true at each split node
that is chosen in the remaining part of the spine. Therefore, we can
use this case for every split node closer to lexical anchor as well.
Accordingly, deduction rule 2 is used along the spine as follows:
Starting at the lexical anchor, the arity of the category is reduced
until the position of lowest arity closest to the root is reached. Then,
the arity is increased to construct the secondary category labeling

6.5 Parser Extensions and Improvements 133

the root. Of course, depending on the spine, it can also be the case
that only one of the two cases is required at all.

6.5.2 Support for Rule Restrictions

A support for non-pure CCG and for rule restrictions in particular
is quite easy to implement. We employ the same approach that
was proposed by Kuhlmann and Satta [54], who pointed out that
it boils down to the same solution that was already employed for
the classical polynomial time parsing algorithm by Vĳay-Shanker
and Weir [91, 92].

There are two types of rule restrictions: target restrictions, which re-
strict the target of the primary category, and secondary restrictions,
which restrict the secondary category of a rule. When a category is
used as a secondary category, a rule of type 1 is used to convert the
corresponding tree item into a context item. This rule should be
restricted such that it can only be applied if the category in the an-
tecedent tree item matches an instantiation of a secondary category
of some combinatory rule and only in accordance with the type of
rule (composition or substitution and forward or backward), which
determines the length and leading slash of the bridging arguments.
This approach implements secondary restrictions as well as the
support for non-pure CCG. Additionally, if also target restrictions
are used by the grammar, each context item needs to store the
target along the spine of the corresponding derivation context. For
this, when a rule of type 1 is used to introduce a context item, the
target of the primary category of the matching combinatory rule
is stored in the consequent context item. Note that there can be
several choices if that instantiation is admissible for several targets
of primary categories. For two context items to be combined via
a rule of type 3, their stored targets have to match. Further, rules
of type 2 only allow combination of tree items and context items
if their respective targets coincide. Since a target is stored in each
context item, the total number of context items increases (at most)
with a multiplicative factor of |𝐴|, where 𝐴 is the set of atomic
categories of G. As the targets of the items combined via rules
of type 3 need to match, this leads to an overall increase of the
runtime of the parser by a multiplicative factor |𝐴| as well.

6.5.3 Support for Multi-Modal CCG

While rule restrictions provide derivational control by allowing
specific rules only for a subset of categories, there is a shift towards
multi-modal variants of CCG, which have a grammar-independent
universal set of rules, but use lexically assigned slash types to

134 6 Computational Complexity for Bounded Rule Degree

provide additional control over the applicability of rules, leading
to a fully lexicalized formalism [5, 6, 50, 83, 88]. For example,
/⋄ makes a category accessible to a forward harmonic rule, thus
the combinatory rule 𝑋/⋄𝑌 𝑌/⋄𝑍

𝑋/⋄𝑍 is allowed, but 𝑋/⋄𝑌 𝑌\⋄𝑍
𝑋\⋄𝑍 is not.

In most variants, both the primary and secondary category need
to be equipped with slash types that permit the respective rule.
However, in the variant proposed by Stanojević and Steedman [83],
only the outermost slash type of the primary category restricts the
allowed rules, and the slash types in the secondary category are
simply copied into the output category, thus permitting 𝑋/⋄𝑌 𝑌/×𝑍

𝑋/×𝑍 .
Note that the formal properties of multi-modal CCG depend on
the precise specification of operators; the generative capacity can
be lower than that of CCG with rule restrictions [49, 50].

Our parsing algorithm can easily be adapted to multi-modal
variants of CCG by enriching the slashes occurring in items with the
respective slash types and filtering the deduction rules accordingly.
The implementation details clearly depend on the specific variant
of multi-modal CCG, so we will sketch the idea exemplarily. Rules
of type 1 need to ensure that tree items are only transformed into
context items representing combinatory rules that are permitted
with the category stored in the tree item as a secondary category.
For instance, from items of the form ⟨𝑌/⋄𝑍, 𝑗, ℎ⟩, we may infer
⟨/⋄𝑌, /⋄𝑍, 𝑖, 𝑖, 𝑗 , ℎ⟩, but not ⟨\×𝑌, /⋄𝑍, 𝑗, ℎ, ℓ , ℓ⟩, where \× indicates
a backward crossed rule. Here, we already set the leading slash
type of the bridging arguments in accordance with the applied
combinatory rule. Rules of type 2 and 3 may only be applied if
the slash types at the end of the category or excess stored in the
first antecedent are consistent with the slash types of the bridging
arguments stored in the second antecedent.

Alternatively, some versions of multi-modal CCG can be converted
into an equivalent CCG with rule restrictions using the construc-
tion by Baldridge and Kruĳff [6] before employing the extension
described in the previous section.

6.5.4 Instantiated Secondary Categories

We have seen that the runtime complexity of the algorithm is expo-
nential in the maximum rule degree 𝑘 of the grammar. This holds
true for a CCG whose combinatory rules may contain variables in
their secondary categories, which thus require proper instantiation
with all possible lexical arguments. However, when considering
a grammar where the secondary categories in the combinatory
rules do not contain any variables, we can modify the deduction
system such that the runtime becomes polynomial in the size of

6.5 Parser Extensions and Improvements 135

the grammar. To see this, we have to examine the items of the
deduction system.

First, there exist tree items for all categories in H (in combination
with all spans of the input, but we are only concerned with the
grammar size here). H1 has size polynomial in |G| already when
secondary categories may contain variables. The size ofH2 becomes
also polynomial if all instantiated secondary categories are part
of G, since in the same manner as for H1, the relevant prefix of
each category in the set is already present in the grammar.

The crucial point are the context items. Instead of allowing an
arbitrary argument context of length 𝑘 or smaller in the excess, they
have to be restricted such that the bridging arguments together
with the excess follow the same pattern as H2 when the leading
slash is omitted. If there is only one bridging argument, that
argument concatenated with the excess has to follow the pattern
of H2, whereas if there are two bridging arguments, only the first
argument is concatenated with the excess. To understand that this
suffices, consider how context items arise and develop throughout
the deduction. A context item is introduced via a tree item, and this
conversion means that the category in the tree item gets applied
as a secondary category. Thus, at that point, if a composition
rule is simulated, the bridging arguments without the leading
slash concatenated with the excess have the form of this secondary
category. If a substitution rule is simulated, one of the arguments of
the secondary category occurs twice—as the last bridging argument
and as the first argument of the excess. Afterward, the context item
can only be modified by a deduction rule of type 3. Each use of
such a deduction rule leads to a modification of at most the two
last arguments of the excess, either by exchanging or by removing
them. Consequently, we start with a (segmented) category in H2
when the context item is introduced, and if the first antecedent of
deduction rule 3 contained a category in H2 before the application,
the consequent context item does as well. The argument that we
omitted before concatenating bridging arguments and excess is
a lexical argument, and their number is bounded by |G|. We can
conclude that the number of context items is polynomial in |G|. As
the number of items is polynomial in the grammar size, the same
holds for the number of instantiations of deduction rules.

Conclusion 7
7.1 Summary 137
7.2 Discussion 141
7.3 Outlook 142

In this chapter, we summarize the results presented in this thesis
and discuss them with regard to their connection and implications
within a larger context. We close with an outlook by turning to
open questions that should be addressed in future work.

7.1 Summary

The aim of this thesis was to study the generative and computational
power of CCG. This allows to identify properties that are desirable
in the sense that they entail an expressivity that is high enough
to capture natural language or limit computational complexity to
make parsing feasible. In both areas, similar techniques can be
used, like decomposing derivations into smaller parts (Sections 5.1,
6.2), encoding of trees (Definition 5.1.1) [44, 91], or tree rotation
(Sections 4.2.1, 5.2) [16, 49, 50, 82]. As a result, one area may
benefit from progress in the respective other. In this way, a formal
approach can not only deepen our understanding of CCG and
related formalisms, but might also shape the design of practical
applications.

7.1.1 Generative Power

The generative power of CCG was studied in Chapters 4 and 5. First,
in Chapter 4, we examined CCG with low rule degrees. We gave
a new proof of the characterization of classical categorial gram-
mar [10, Theorem 1.1], or more generally, CCG with application
rules (Theorem 4.1.9). It can generate the regular tree languages
whose min-height is bounded.1

1: Recall that a tree or tree language
is min-height bounded if for each
node, there exists a short path to
a leaf, such that the length of the
path does not exceed the bound (see
Section 4.1).

This holds regardless of whether
the CCG is pure. For CCG with composition of first degree we
have shown that it can generate exactly the regular tree languages
(Theorem 4.2.6). If it is pure, it is less powerful with regard to
tree languages (Theorem 5.2.2). However, in the string case, pure
CCG with composition of first degree can, like pure CCG with
only application rules (Theorem 4.1.1), still generate exactly the
context-free languages (Theorem 4.2.8).

In Chapter 5, we covered CCG with arbitrary degrees of composi-
tion. Our main result on the generative power of CCG is its strong
equivalence to TAG in terms of tree languages (Corollary 5.7.2).
For this, composition of degree 2 and first-order categories are
already sufficient (Corollary 5.7.4). Moreover, 𝜀-entries can be

138 7 Conclusion

omitted (Corollary 5.7.3). This is is an important finding since
these lexicon entries are in conflict with the Principle of Adja-
cency [86, page 54] and are computationally demanding [55]. Our
construction provides a procedure for removing 𝜀-entries from a
given CCG by first converting it into an sCFTG, then trimming
the symbol 𝜀 from the productions of the grammar, and finally
converting it back into a CCG without 𝜀-entries. This also reduces
the rule degree to 2. The class of tree-adjoining languages (see
Section 2.4) is well-studied, and due to the equivalence result,
the knowledge regarding it can be transferred to CCG. Notable
strongly equivalent formalisms are sCFTG (see Section 2.3.1) and
spine grammar (see Section 5.3), which we used in our proofs, but
also the linear top-down push-down tree automaton [21]. While
𝜀-entries can be avoided without affecting generative power, the
option to restrict the rule set is indispensable. As we have seen, pure
CCG cannot even generate all local tree languages (Theorem 5.2.2).
For an overview of the generative power of various variants of
CCG, we refer to Table 1.1.

We briefly discuss the table entries that immediately follow by
combining a result from the literature and a result of this thesis.
For prefix-closed CCG without target restrictions, it is known that
it can generate only a proper subset of tree-adjoining languages
in the string case [50]. Due to the fact that CCG generates only
tree-adjoining languages in the tree case as well (Corollary 5.7.2),
here we also have a proper inclusion in this set. On the other
hand, CCG with generalized composition of unlimited degree
and 𝜀-entries is strictly more expressive than TAG [97]. This is
shown by specifying a CCG that generates a non-tree-adjoining
language, which, however, does not rely on 𝜀-entries. Since CCG
without 𝜀-entries can generate exactly the tree-adjoining (tree)
languages (Corollary 5.7.2), we can transfer the result to this
variant and the tree case.

Finally, we would like to draw the attention to the major role that
the notion of spines played in this thesis, occurring in most of the
proofs. It is noteworthy that the sets of primary spines of the (rela-
beled) derivation trees of 0-CCG, 1-CCG, and 𝑘-CCG form finite,
regular, and context-free languages, respectively. This reminds
of the language hierarchy proposed by Weir [96], which aims to
generalize the step from context-free languages to tree-adjoining
languages by defining language classes based on trees consisting
of independent paths of increasing expressivity.

Grammar Size

The size of the sCFTG constructed in Definition 5.1.2 is exponential
in a grammar-specific constant that depends on the maximum

7.1 Summary 139

5: For this, the TAG is first con-
verted into a footed simple CFTG [45,
Proposition 7] that is then brought
into spine grammar normal form
[21, Theorem 1]. Due to the maxi-
mum node rank 2, establishing the
normal form can be achieved in poly-
nomial time. In the normalization
procedure of Theorem 5.3.4, the re-
moval of 𝜀-productions takes poly-
nomial time since the maximum size
of a production is bounded.

arity of secondary categories and of lexicon entries, in the worst
case leading to an exponential blow-up of the grammar size.
Note that the maximum arity of a secondary category is not only
determined by the rule degree, but also by the maximum arity of
categories occurring in lexical arguments. Without any specific
constraints regarding the CCG, due to the different computational
complexities of the universal recognition problem for TAG and CCG
(see Table 1.2), a translation from CCG to sCFTG in polynomial time
is not possible unless PTIME = NP. Note that sCFTG with bounded
node rank can be converted to TAG in polynomial time [45].2

2: For this, the sCFTG is made
collapse-free [45, Proposition 2] (i.e.,
not containing productions of the
form 𝑛 → □ for 𝑛 ∈ 𝑁) and footed
[45, Proposition 3] before it is con-
verted into a TAG [45, Proposition 6].
These two steps in the worst case re-
quire time exponential in the maxi-
mum size of a production. However,
it is possible to modify the gram-
mar beforehand such that the size
of each production is bounded by a
constant. This can be achieved as we
only consider trees with node rank
at most 2 and takes polynomial time.

,3

3: Also interesting in this context
is the fact that the universal recogni-
tion problem for well-nested LCFRS
with fan-out 2 can be solved in poly-
nomial time [24]. This formalism has
the same expressive power as TAG
as well [41, Theorem 5.2].

However, using the ideas that were used in the parsing algorithm
presented in Section 6.1, it is expected that the construction can be
improved such that its size is exponential only in the maximum
rule degree of the CCG. More specifically, the nonterminals of the
sCFTG could be restricted to represent only a certain subset of
categories, like the categories occurring in tree items. Moreover,
when all secondary categories in the rule set are instantiated,4

4: This was actually an assumption
in Chapter 5, albeit only for conve-
nience.

by
using the method described in Section 6.5.4, the construction could
become polynomial in the grammar size through a restriction of
the nonterminals that are similar to context items.

For the conversion from TAG to CCG, the size of the constructed
CCG is polynomial in the size of the given TAG. This can be verified
for each individual step of the construction, including that from
TAG to spine grammar [21, 45],5 all intermediate steps, and finally
the construction of Definition 5.6.1.

The removal of 𝜀-entries from a CCG through successive execution
of the two constructions, with an 𝜀-removal from the sCFTG
in between (Corollary 5.7.3), thus results in an exponential increase
of the grammar size in the worst case. Again, considering the
different complexities of the universal recognition problem for CCG
with and without 𝜀-entries (see Table 1.2), the removal of 𝜀-entries
cannot be performed in polynomial time unless NP = EXPTIME [55,
page 476]. As outlined above, the situation changes if we impose
certain restrictions on the CCG.

Closure Properties

Due to the characterizations shown for 0-CCG, 1-CCG and 𝑘-CCG,
we can derive a number of closure properties, of which the most
important ones are collected in Table 7.1. For more details on
the closure properties of TAL, see Section 2.4.2. For the closure
properties of RTL, see [22, Sections 1.5, 2.4]. From these, several
closure results for the tree languages generatable by 0-CCG can be
derived.

140 7 Conclusion

Table 7.1: Closure properties of
the tree languages generatable by
0-CCG, 1-CCG, and 𝑘-CCG.

closure 0-CCG 1-CCG 𝑘-CCG
(RTL) (TAL)

union ✓ ✓ ✓

intersection ✓ ✓ ✗

intersection with RTL ✓ ✓ ✓

complement ✗ ✓ ✗

relabeling ✓ ✓ ✓

𝛼-concatenation ✓ ✓ ✓

𝛼-iteration ✗ ✓ ✓

7.1.2 Computational Power

In Chapter 6, a new parsing algorithm for CCG is proposed. This
contributes to the understanding of the computational power of
CCG. When considering the influence of the input grammar size
on the runtime, it is found to be exponential only in the maximum
rule degree of the grammar (see Section 6.3). As a consequence,
bounding the rule degree by a constant leads to a parsing algorithm
that is polynomial in the grammar size (Theorem 6.3.1). If 𝜀-entries
are included in the grammar, the universal recognition problem
for CCG with bounded rule degree is PTIME-complete under
logspace-reduction (Corollary 6.3.3). This refines the results of
Kuhlmann, Satta, and Jonsson [55], who showed that the universal
recognition problem is NP-complete for CCG without 𝜀-entries and
EXPTIME-complete if 𝜀-entries are included. Table 1.2 summarizes
the results on the computational power of CCG. The fact that
parsing is exponential only in the maximum rule degree of the
grammar is particularly interesting since, as we have seen, rule
degree 2 is sufficient for the generative power in terms of string [93]
and tree languages (Corollary 5.7.4). Another contribution is that
our algorithm incorporates substitution rules, which, despite their
practical relevance, have hardly been addressed in a theoretical
setting so far. We propose several extensions of our algorithm. One
of them is a modification such that, if all secondary categories of the
grammar are instantiated, i.e., if they do not contain any variables,
the algorithm’s runtime is polynomial in the grammar size as well.
This emphasizes the importance of category variables in CCG rules
for the complexity results of Kuhlmann, Satta, and Jonsson [55].
Moreover, we discuss the retrieval of a CCG derivation tree from a
parse tree, the implementation of rule restrictions and multi-modal
CCG, and the removal of spurious ambiguity.

Runtime Complexity

Let 𝑤 be the input string and let G be the input grammar with rules
of degree at most 𝑘. Then the algorithm runs in O(𝜌 · |G|𝑘+4 · |𝑤|6),

7.2 Discussion 141

where O(𝜌) is the space required for the representation of an item.
The basic algorithm does not take into account rule restrictions.
If target restrictions are included, a multiplicative factor |𝐴| (i.e.,
the number of atomic categories) needs to be added. The equally
expressive TAG is known to be parsable in O(|G|2 · |𝑤|6) [74].

7.2 Discussion

We now broaden the view and discuss our results in a wider
context. We first take a look at what properties a suitable CCG
formalism should have. From a tree language perspective, rule
degree 2 and only composition rules are sufficient to achieve
the same expressivity as TAG, which as a formalism has gained
widespread recognition in natural language processing. While
𝜀-entries can safely be omitted, rule restrictions are necessary in
order to maintain the generative power. Bounding the maximum
rule degree by a low constant is highly desirable to keep the
computational complexity low. A low rule degree is also supported
by linguistic work, that proposes for example a maximum rule
degree of 3 as sufficient for English [86, page 43].

Kuhlmann, Satta, and Jonsson [55] show that CCG is more succinct
(cf. [28]) than TAG. This means that for generating the same lan-
guage class fewer resources in terms of grammar size are necessary.
This is a consequence of the different complexities of the univer-
sal recognition problem together with effective transformation
procedures. More precisely, unless PTIME = NP, it is clear that
there exist CCGs such that the constructed weakly equivalent TAG
has to be at least exponentially larger. If 𝜀-entries are allowed, no
assumption is needed, since PTIME ≠ EXPTIME always holds. On
the other hand, TAG can be converted into an equivalent CCG with
only polynomial increase of the grammar size. Our constructions
can not only convert a TAG into a CCG and vice versa, but they
also provide a way to remove 𝜀-entries and reduce the maximum
rule degree to 2. We can therefore, due to the complexity results
for CCG with and without 𝜀-entries and for CCG of bounded rule
degree, conclude that CCG with 𝜀-entries is more succinct than
CCG without 𝜀-entries, and that CCG of unbounded rule degree
is more succint than CCG with rule degree 2. This also means that
in general it is not possible to reduce computational effort by con-
verting a CCG with 𝜀-entries and a higher rule degree into a CCG
without 𝜀-entries and with rule degree 2, as this could also result
in a larger grammar, balancing out the more efficient parsing with
respect to grammar size. Therefore, together with the Principle
of Adjacency [86, page 54], which rejects 𝜀-entries, this should
rather be understood as a directive for the design of grammars.

142 7 Conclusion

Our proposed approach for parsing CCG with instantiated sec-
ondary categories in polynomial time also demonstrates that such
a CCG is less succinct than one that uses variables in secondary
categories. It intuitively makes sense that the high complexity of
the universal recognition problem of CCG in comparison to TAG
is a consequence of its ability to define a grammar in a concise way
through the use of variables. Although it may be responsible for
the high parsing complexity with regard to grammar size, precisely
the capacity to specify languages in a short way is an appealing
feature of CCG, and restricting it might therefore be undesirable.

7.3 Outlook

It has become apparent that rule restrictions are necessary, and it is
true that some kind of rule restrictions are necessary. We regarded
CCG with target and secondary restrictions that are implemented in
the rule system. Multi-modal CCG (see Section 6.5.3) offers a certain
degree of control over which rules can be applied, entirely through
the lexicon and without resorting to rule restrictions. However,
Kuhlmann, Koller, and Satta [49, 50] showed that without target
restrictions, the expressive power is reduced even for a variant of
multi-modal CCG. Another variant has been proposed that possibly
avoids this shortcoming since it is not prefix-closed [83]. Since
there are different ways to define multi-modal CCG, future work
should study its generative capacity under different conditions.

Other interesting questions arise from the inclusion of additional
rule types. For substitution, there exists a proof sketch for the
string case [86, page 210] that demonstrates that it at least does not
affect the weak generative capacity. There is an ongoing discussion
regarding the question how type-raising should be implemented
in CCG, and under what circumstances it can be simulated by
standard CCG. In particular, this concerns the question whether
type-raising should be treated as a lexical or grammatical opera-
tion [29, 34]. Steedman [86, page 211] gives an intuition of how
CCG with type-raising could be simultated by indexed grammar.
He argues that under the condition that type-raising is merely a
finite schema, i.e., each of the category variables 𝑦, 𝑧 in 𝑧

𝑦/(𝑦\𝑧) and
𝑧

𝑦\(𝑦/𝑧) ranges over a finite set of categories, only linear productions
are needed and it can thus be simulated by LIG. Since LIG is weakly
equivalent to CCG [93], this would also mean that type-raising can
be compiled into the lexicon. Komagata [48] suggests several other
restrictions on type-raising rules to keep the generative power
equivalent to the standard CCG formalism. Hoffman [33] shows
that the use of variables in the lexicon that allow instantiation with
arbitrary categories can raise the generative power of CCG over

7.3 Outlook 143

that of TAG. She uses categories of the form 𝑦\𝐵/(𝑦\𝐶), where
𝑦 is a category variable and 𝐵, 𝐶 are atoms. These categories are
different from what we see in type-raising, but this indicates that
the use of type-raised categories with variables in the lexicon
might increase the generative power as well. It still needs to be
determined if this is indeed the case, and if true, how much the
generative capacity increases.

This thesis considers strong generative capacity in terms of tree lan-
guages consisting of constituency trees. From another perspective,
it can be viewed in terms of dependency. Interestingly, differences
between TAG and CCG have been exposed in this regard, where
dependency is expressed either as generated dependency tree
sets [47] or as permutations [83]. A characterization of the class
of dependency tree sets generatable by CCG would help to better
understand the differences between these formalisms.

In the area of computational complexity, it is an open problem
if the universal recognition problem for pure CCG is solvable
in polynomial time. We have seen that the universal recognition
problem for CCG of bounded rule degree with 𝜀-entries is pre-
sumably not solvable in small (i.e., logarithmic) space, since it
is PTIME-complete under logspace-reduction (Corollary 6.3.3).
However, it is unclear whether this might be possible if 𝜀-entries
are omitted.

Bibliography

[1] Vito Michele Abrusci, Christophe Fouqueré, and Jacqueline Vauzeilles. ‘Tree adjoining
grammars in noncommutative linear logic’. In: International Conference on Logical Aspects of
Computational Linguistics (LACL). Springer. 1996, pp. 96–117 (cited on page 22).

[2] Kazimierz Ajdukiewicz. ‘Die syntaktische Konnexität’. In: Studia Philosophica 1 (1935), pp. 1–27
(cited on page 1).

[3] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. ‘Context-Free Languages and Pushdown
Automata’. In: Handbook of Formal Languages. Ed. by Grzegorz Rozenberg and Arto Salomaa.
Vol. 1. Springer, 1997. Chap. 3, pp. 111–174 (cited on pages 15, 74, 75).

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998 (cited on page 18).

[5] Jason Baldridge. ‘Lexically Specified Derivational Control in Combinatory Categorial Gram-
mar’. PhD thesis. University of Edinburgh, 2002 (cited on pages 1, 134).

[6] Jason Baldridge and Geert-Jan M. Kruĳff. ‘Multi-Modal Combinatory Categorial Grammar’.
In: Proceedings of the Tenth Conference of the European Chapter of the Association for Computational
Linguistics (EACL). 2003, pp. 211–218 (cited on page 134).

[7] Yehoshua Bar-Hillel. ‘A quasi-arithmetical notation for syntactic description’. In: Language
29.1 (1953), pp. 47–58 (cited on page 1).

[8] Yehoshua Bar-Hillel, Haim Gaifman, and Eli Shamir. ‘On categorial and phrase-structure
grammars’. In: Bulletin of the Research Council of Israel 9F.1 (1960), pp. 1–16 (cited on pages 1, 4,
6, 30, 35, 36, 50).

[9] Jean Berstel. Transductions and Context-Free Languages. Vol. 38. Leitfäden der angewandten
Mathematik und Mechanik. B. G. Teubner, 1979 (cited on pages 14, 78, 79).

[10] Wojciech Buszkowski. ‘Generative Power of Categorial Grammars’. In: Categorial Grammars
and Natural Language Structures. Ed. by Richard T. Oehrle, E. Bach, and Deirdre Wheeler.
Vol. 32. Studies in Linguistics and Philosophy. Springer, 1988. Chap. 4, pp. 69–94 (cited on
pages 6–8, 36, 137).

[11] Wojciech Buszkowski. ‘Mathematical linguistics and proof theory’. In: Handbook of logic and
language. Elsevier, 1997, pp. 683–736 (cited on page 7).

[12] Noam Chomsky. ‘Three models for the description of language’. In: IRE Transactions on
Information Theory 2.3 (1956), pp. 113–124 (cited on page 1).

[13] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic. Vol. 22. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1958 (cited on page 1).

[14] Normann Decker, Martin Leucker, and Daniel Thoma. ‘Impartiality and Anticipation for
Monitoring of Visibly Context-Free Properties’. In: Runtime Verification: 4th International
Conference. Ed. by Axel Legay and Saddek Bensalem. Vol. 8174. LNCS. Springer, 2013, pp. 183–
200 (cited on page 74).

[15] Manfred Droste, Sven Dziadek, and Werner Kuich. ‘Weighted simple reset pushdown
automata’. In: Theoretical Computer Science 777 (2019), pp. 252–259 (cited on page 16).

[16] Jason Eisner. ‘Efficient Normal-Form Parsing for Combinatory Categorial Grammar’. In:
Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics (ACL).
1996, pp. 79–86 (cited on pages 126, 137).

[17] Elisabet Engdahl. ‘Parasitic gaps’. In: Linguistics and philosophy (1983), pp. 5–34 (cited on
page 3).

[18] Herbert Fleischner. ‘On the equivalence of Mealy-type and Moore-type automata and a
relation between reducibility and Moore-reducibility’. In: Journal of Computer and System
Sciences 14.1 (1977), pp. 1–16 (cited on pages 74, 75).

[19] Timothy A. D. Fowler and Gerald Penn. ‘Accurate context-free parsing with combinatory
categorial grammar’. In: Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL). 2010, pp. 335–344 (cited on pages 4, 6, 46).

[20] Akio Fujiyoshi. ‘Restrictions on monadic context-free tree grammars’. In: Proceedings of the
20th International Conference on Computational Linguistics (COLING). 2004, pp. 78–84 (cited on
pages 17, 95, 96).

[21] Akio Fujiyoshi and Takumi Kasai. ‘Spinal-formed context-free tree grammars’. In: Theory of
Computing Systems 33.1 (2000), pp. 59–83 (cited on pages 8, 22, 66, 68, 69, 94, 95, 138, 139).

[22] Ferenc Gécseg and Magnus Steinby. ‘Tree Automata’. 2015 (cited on pages 7, 18, 22, 36, 38, 42,
46, 139).

[23] Leslie M. Goldschlager. ‘𝜀-productions in context-free grammars’. In: Acta Informatica 16.3
(1981), pp. 303–308 (cited on pages 120, 121).

[24] Carlos Gómez-Rodríguez, Marco Kuhlmann, and Giorgio Satta. ‘Efficient parsing of well-
nested linear context-free rewriting systems’. In: Proceedings of the 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL). 2010,
pp. 276–284 (cited on page 139).

[25] Saul Gorn. ‘Explicit definitions and linguistic dominoes’. In: Proceedings of the Systems and
Computer Science Conference. University of Toronto Press, 1965, pp. 77–115 (cited on page 16).

[26] Sheila A. Greibach. ‘A new normal-form theorem for context-free phrase structure grammars’.
In: Journal of the ACM (JACM) 12.1 (1965), pp. 42–52 (cited on page 36).

[27] Michael A. Harrison. Introduction to formal language theory. Addison-Wesley, 1978 (cited on
pages 22, 69, 120).

[28] Juris Hartmanis. ‘On the Succinctness of Different Representations of Languages’. In: SIAM
Journal on Computing 9.1 (1980), pp. 114–120 (cited on page 141).

[29] Julia Hockenmaier and Yonatan Bisk. ‘Normal-form parsing for Combinatory Categorial
Grammars with generalized composition and type-raising’. In: Proceedings of the 23rd In-
ternational Conference on Computational Linguistics (COLING). 2010, pp. 465–473 (cited on
page 142).

[30] Julia Hockenmaier and Mark Steedman. ‘Generative Models for Statistical Parsing with
Combinatory Categorial Grammar’. In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL). 2002, pp. 335–342 (cited on page 126).

[31] Julia Hockenmaier and Peter Young. ‘Non-Local Scrambling: The Equivalence of TAG and
CCG Revisited’. In: Proceedings of the 9th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+). 2008, pp. 41–48 (cited on page 6).

[32] Dieter Hofbauer, Maria Huber, and Gregory Kucherov. ‘Some Results on Top-Context-Free
Tree Languages’. In: Proceedings of the 19th International Colloquium on Trees in Algebra and
Programming. Vol. 787. LNCS. Springer, 1994, pp. 157–171 (cited on page 22).

[33] Beryl Hoffman. ‘The formal consequences of using variables in CCG categories’. In: Proceedings
of the 31st Annual Meeting of the Association for Computational Linguistics (ACL). 1993, pp. 298–300
(cited on page 142).

[34] Matthew Honnibal and James R. Curran. ‘Fully lexicalising CCGbank with hat categories’. In:
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2009, pp. 1212–1221 (cited on page 142).

[35] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979 (cited on pages 4, 14).

[36] Neil D. Jones and William T. Laaser. ‘Complete problems for deterministic polynomial time’.
In: Theoretical Computer Science 3.1 (1976), pp. 105–117 (cited on page 120).

[37] Aravind K. Joshi. ‘Tree Adjoining Grammars: How Much Context-Sensitivity Is Required to
Provide Reasonable Structural Descriptions?’ In: Natural Language Parsing. Ed. by David R.
Dowty, Lauri Karttunen, and Arnold M. Zwicky. Cambridge University Press, 1985, pp. 206–
250 (cited on pages 1, 9, 20, 22, 23).

[38] Aravind K. Joshi and Yves Schabes. ‘Tree-Adjoining Grammars’. In: Beyond Words. Ed. by
Grzegorz Rozenberg and Arto Salomaa. Vol. 3. Handbook of Formal Languages. Springer,
1997, pp. 69–123 (cited on pages 4, 19).

[39] Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer,
2010 (cited on pages 20–23, 121).

[40] Makoto Kanazawa. The convergence of well-nested mildly context-sensitive grammar formalisms.
Invited talk at the 14th International Conference on Formal Grammar (FG). 2009. url:
https://makotokanazawa.ws.hosei.ac.jp/talks/fg2009_talk.pdf (cited on page 23).

[41] Makoto Kanazawa. Formal Grammar: An Introduction. Lecture 5: Mildly Context-Sensitive
Languages. Lecture notes for the course Mathematical Linguistics. 2016. url: https://
makotokanazawa.ws.hosei.ac.jp/FormalGrammar/lecture5.pdf (cited on pages 23, 139).

[42] Makoto Kanazawa and Sylvain Salvati. ‘The copying power of well-nested multiple context-
free grammars’. In: International Conference on Language and Automata Theory and Applications
(LATA). Springer. 2010, pp. 344–355 (cited on page 23).

[43] Makoto Kanazawa and Sylvain Salvati. ‘MIX Is Not a Tree-Adjoining Language’. In: Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics (ACL). 2012, pp. 666–674
(cited on page 23).

[44] Yoshihide Kato and Shigeki Matsubara. ‘A New Representation for Span-based CCG Parsing’.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2021, pp. 10579–10584 (cited on page 137).

[45] Stephan Kepser and Jim Rogers. ‘The equivalence of tree adjoining grammars and monadic
linear context-free tree grammars’. In: Journal of Logic, Language and Information 20.3 (2011),
pp. 361–384 (cited on pages 8, 17, 21, 94, 139).

[46] Dan Klein and Christopher D. Manning. ‘Parsing and Hypergraphs’. In: Proceedings of the
Seventh International Workshop on Parsing Technologies (IWPT). Tsinghua University Press, 2001,
pp. 123–134 (cited on page 122).

https://makotokanazawa.ws.hosei.ac.jp/talks/fg2009_talk.pdf
https://makotokanazawa.ws.hosei.ac.jp/FormalGrammar/lecture5.pdf
https://makotokanazawa.ws.hosei.ac.jp/FormalGrammar/lecture5.pdf

[47] Alexander Koller and Marco Kuhlmann. ‘Dependency Trees and the Strong Generative
Capacity of CCG’. In: Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics (EACL). 2009, pp. 460–468 (cited on pages 6, 7, 143).

[48] Nobo Komagata. ‘Generative Power of CCGs with Generalized Type-Raised Categories’. In:
Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL). 1997,
pp. 513–515 (cited on page 142).

[49] Marco Kuhlmann, Alexander Koller, and Giorgio Satta. ‘The Importance of Rule Restrictions
in CCG’. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
(ACL). 2010, pp. 534–543 (cited on pages 4–6, 46, 134, 137, 142).

[50] Marco Kuhlmann, Alexander Koller, and Giorgio Satta. ‘Lexicalization and Generative Power
in CCG’. In: Computational Linguistics 41.2 (2015), pp. 187–219 (cited on pages 1, 5, 6, 50, 64, 65,
94, 95, 134, 137, 138, 142).

[53] Marco Kuhlmann and Giorgio Satta. ‘Tree-Adjoining Grammars are not Closed Under Strong
Lexicalization’. In: Computational Linguistics 38.3 (2012), pp. 617–629 (cited on page 6).

[54] Marco Kuhlmann and Giorgio Satta. ‘A New Parsing Algorithm for Combinatory Categorial
Grammar’. In: Transactions of the Association for Computational Linguistics (TACL) 2 (2014),
pp. 405–418 (cited on pages 9, 98, 99, 133).

[55] Marco Kuhlmann, Giorgio Satta, and Peter Jonsson. ‘On the Complexity of CCG Parsing’. In:
Computational Linguistics 44.3 (2018), pp. 447–482 (cited on pages 8–10, 138–141).

[56] Tom Kwiatkowksi, Luke S. Zettlemoyer, Sharon Goldwater, and Mark Steedman. ‘Inducing
probabilistic CCG grammars from logical form with higher-order unification’. In: Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2010,
pp. 1223–1233 (cited on page 1).

[57] Tom Kwiatkowski, Sharon Goldwater, Luke S. Zettlemoyer, and Mark Steedman. ‘A proba-
bilistic model of syntactic and semantic acquisition from child-directed utterances and their
meanings’. In: Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics (EACL). 2012, pp. 234–244 (cited on page 1).

[58] Joachim Lambek. ‘The mathematics of sentence structure’. In: American Mathematical Monthly
65.3 (1958), pp. 154–170 (cited on page 7).

[59] Kenton Lee, Mike Lewis, and Luke S. Zettlemoyer. ‘Global neural CCG parsing with optimality
guarantees’. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2016, pp. 2366–2376 (cited on page 1).

[60] Mike Lewis and Mark Steedman. ‘Unsupervised induction of cross-lingual semantic relations’.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2013, pp. 681–692 (cited on page 1).

[61] Andreas Maletti and Joost Engelfriet. ‘Strong lexicalization of tree adjoining grammars’. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL).
Ed. by Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and Jong C. Park. 2012,
pp. 506–515 (cited on page 69).

[64] Christopher Manning and Hinrich Schütze. Foundations of statistical natural language processing.
MIT press, 1999 (cited on pages 5, 6).

[65] Shunichi Matsubara and Takumi Kasai. ‘A characterization of TALs by the generalized Dyck
language’. In: IEICE Transactions on Information and Systems (Japanese Edition) J90-D.6 (2007),
pp. 1417–1427 (cited on page 22).

[66] Uwe Mönnich. ‘A logical characterization of extended TAGs’. In: Proceedings of the 11th
International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+). 2012, pp. 37–
45 (cited on page 22).

[67] Richard Moot and Christian Retoré. The logic of categorial grammars: A deductive account of
natural language syntax and semantics. Vol. 6850. LNCS. Springer, 2012 (cited on page 36).

[68] Frank Morawietz and Uwe Mönnich. ‘A model-theoretic description of tree adjoining
grammars’. In: Electronic Notes in Theoretical Computer Science 53 (2004), pp. 210–232 (cited on
page 22).

[69] Johannes Osterholzer. ‘New Results on Context-Free Tree Languages’. PhD thesis. Dresden
University of Technology, 2018 (cited on page 22).

[70] Johannes Osterholzer, Toni Dietze, and Luisa Herrmann. ‘Linear context-free tree languages
and inverse homomorphisms’. In: Information and Computation 269 (2019). Special Issue on the
10th International Conference on Language and Automata Theory and Applications (LATA),
p. 104454 (cited on page 22).

[71] James Rogers. ‘wMSO theories as grammar formalisms’. In: Theoretical Computer Science 293.2
(2003), pp. 291–320 (cited on page 22).

[72] William C. Rounds. ‘Tree-Oriented Proofs of Some Theorems on Context-Free and Indexed
Languages’. In: Proceedings of the Second Annual ACM Symposium on Theory of Computing
(STOC). Association for Computing Machinery, 1970, 109–116 (cited on pages 7, 17, 22).

[73] Sylvain Salvati. ‘MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and the
OI hierarchies’. In: Journal of Computer and System Sciences 81.7 (2015), pp. 1252–1277 (cited on
page 23).

[74] Yves Schabes. ‘Mathematical and computational aspects of lexicalized grammars’. PhD thesis.
University of Pennsylvania, 1990 (cited on pages 9, 141).

[75] Yves Schabes, Anne Abeillé, and Aravind K. Joshi. ‘Parsing Strategies with ‘Lexicalized’
Grammars: Application to Tree Adjoining Grammars’. In: Proceedings of the 12th International
Conference on Computational Linguistics (COLING). 1988, pp. 578–583 (cited on page 45).

[78] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. ‘On multiple context-
free grammars’. In: Theoretical Computer Science 88.2 (1991), pp. 191–229 (cited on page 23).

[79] Stuart M. Shieber. ‘Evidence Against the Context-Freeness of Natural Language’. In: Linguistics
and Philosophy 8.3 (1985), pp. 333–343 (cited on page 1).

[80] Stuart M. Shieber, Yves Schabes, and Fernando Pereira. ‘Principles and Implementation of
Deductive Parsing’. In: Journal of Logic Programming 24.1–2 (1995), pp. 3–36 (cited on page 103).

[81] Michael Sipser. Introduction to the Theory of Computation. Second Edition. Thomson Course
Technology, 2006 (cited on page 64).

[82] Miloš Stanojević and Mark Steedman. ‘CCG Parsing Algorithm with Incremental Tree
Rotation’. In: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL). 2019, pp. 228–239 (cited on page 137).

[83] Miloš Stanojević and Mark Steedman. ‘Formal Basis of a Language Universal’. In: Computational
Linguistics 47.1 (2021), pp. 9–42 (cited on pages 6, 7, 134, 142, 143).

[84] Mark Steedman. ‘Dependency and coördination in the grammar of Dutch and English’. In:
Language 61.3 (1985), pp. 523–568 (cited on pages 5, 20).

[85] Mark Steedman. A very short introduction to CCG. Unpublished manuscript. 1996. url: https:
//www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf (cited on page 97).

[86] Mark Steedman. The Syntactic Process. MIT Press, 2000 (cited on pages 1–3, 5–7, 10, 29, 138,
141, 142).

[87] Mark Steedman. Taking scope: The natural semantics of quantifiers. MIT Press, 2011 (cited on
pages 22, 97).

[88] Mark Steedman and Jason Baldridge. ‘Combinatory Categorial Grammar’. In: Non-Transfor-
mational Syntax: Formal and Explicit Models of Grammar. Ed. by Robert D. Borsley and Kersti
Börjars. Blackwell, 2011. Chap. 5, pp. 181–224 (cited on pages 1, 134).

[89] Hans-Jörg Tiede. ‘Deductive Systems and Grammars: Proofs as Grammatical Structures’.
PhD thesis. Bloomington, IN, USA: Indiana University, 1999 (cited on pages 7, 36, 46).

[90] Krishnamurti Vĳay-Shanker. ‘A study of tree adjoining grammars’. PhD thesis. University of
Pennsylvania, 1988 (cited on pages 4, 22, 23).

[91] Krishnamurti Vĳay-Shanker and David J. Weir. ‘Polynomial time parsing of combinatory cate-
gorial grammars’. In: Proceedings of the 28th Annual Meeting of the Association for Computational
Linguistics (ACL). 1990, pp. 1–8 (cited on pages 1, 9, 133, 137).

[92] Krishnamurti Vĳay-Shanker and David J. Weir. ‘Parsing some constrained grammar for-
malisms’. In: Computational Linguistics 19.4 (1993), pp. 591–636 (cited on pages 1, 9, 133).

[93] Krishnamurti Vĳay-Shanker and David J. Weir. ‘The Equivalence of Four Extensions of
Context-Free Grammars’. In: Mathematical Systems Theory 27.6 (1994), pp. 511–546 (cited on
pages 1, 4–7, 10, 21, 25, 28, 30, 33–35, 94, 140, 142).

[94] Krishnamurti Vĳay-Shanker, David J. Weir, and Aravind Joshi. ‘Characterizing structural
descriptions produced by various grammatical formalisms’. In: 25th Annual Meeting of the
Association for Computational Linguistics (ACL). 1987, pp. 104–111 (cited on page 23).

[95] David J. Weir. ‘Characterizing mildly context-sensitive grammar formalisms’. PhD thesis.
University of Pennsylvania, 1988 (cited on pages 21–23, 94).

[96] David J. Weir. ‘A geometric hierarchy beyond context-free languages’. In: Theoretical Computer
Science 104.2 (1992), pp. 235–261 (cited on page 138).

[97] David J. Weir and Aravind K. Joshi. ‘Combinatory Categorial Grammars: Generative Power
and Relationship to Linear Context-Free Rewriting Systems’. In: Proceedings of the 26th Annual
Meeting of the Association for Computational Linguistics (ACL). 1988, pp. 278–285 (cited on
pages 5–8, 138).

[98] Luke S. Zettlemoyer and Michael Collins. ‘Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars’. In: Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence (UAI). 2005, pp. 658–666 (cited on page 1).

[99] Luke S. Zettlemoyer and Michael Collins. ‘Online learning of relaxed CCG grammars for
parsing to logical form’. In: Proceedings of the 2007 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2007, pp. 678–687 (cited on page 1).

https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf
https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf

Bibliographische Daten

Begutachtete Veröffentlichungen

▶ Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. ‘The Tree-Generative Capacity of
Combinatory Categorial Grammars’. In: Proceedings of the 39th Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS). Ed. by A. Chattopadhyay and
P. Gastin. Vol. 150. LIPIcs. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2019

▶ Lena K. Schiffer and Andreas Maletti. ‘Strong Equivalence of TAG and CCG’. In: Transactions
of the Association for Computational Linguistics (TACL) 9 (2021)

▶ Marco Kuhlmann, Andreas Maletti, and Lena K. Schiffer. ‘The Tree-Generative Capacity of
Combinatory Categorial Grammars’. In: Journal of Computer and System Sciences 124 (2022).
Extended version.

▶ Lena K. Schiffer, Marco Kuhlmann, and Giorgio Satta. ‘Tractable Parsing for CCGs of Bounded
Degree’. In: Comput. Linguist. 48.3 (2022)

▶ Andreas Maletti and Lena K. Schiffer. ‘Combinatory Categorial Grammars as Acceptors of
Weighted Forests’. In: Information and Computation 294 (2023). Not part of this dissertation.

Unveröffentlichte Manuskripte

▶ Andreas Maletti and Lena K. Schiffer. ‘Strong Equivalence of TAG and CCG’. Extended
version. Unpublished manuscript. 2022. arXiv: 2205.07743 [cs.FL]

https://arxiv.org/abs/2205.07743

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde Hilfe
angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und Hilfsmittel benutzt
und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten
Schriften entnommen wurden, und alle Angaben, die auf mündlichen Auskünften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder
erbrachten Dienstleistungen als solche gekennzeichnet.

. .
(Ort, Datum)

. .
(Lena Katharina Schiffer)

	Acknowledgments
	Abstract
	Introduction
	Basic Concept

	Basic Concept
	Research Focus

	Research Focus
	Generative Power

	Generative Power
	Weak Generative Power
	Strong Generative Power
	Contributions
	Computational Power

	Computational Power
	Contributions
	Overview of the Dissertation

	Overview of the Dissertation
	Preliminaries
	Basic Definitions

	Basic Definitions
	String Languages

	String Languages
	Nondeterministic Finite Automata
	Context-Free Grammar
	Push-Down Automata
	Tree Languages

	Tree Languages
	Tree Grammars
	Tree-Adjoining Grammar
	Mild Context-Sensitivity

	Mild Context-Sensitivity
	Definition
	Tree-Adjoining Languages
	Multiple Context-Free Languages
	Combinatory Categorial Grammar
	Categories

	Categories
	Rules

	Rules
	Combinatory Rules
	Rule Restrictions
	Instantiation
	Rule System
	Type-Raising
	Grammars

	Grammars
	Generated String Language
	Generated Tree Language
	Lexical Arguments
	Generative Power for Low Rule Degrees
	0-CCG

	0-CCG
	1-CCG

	1-CCG
	Pure 1-CCG
	Generative Power
	Inclusion in the Simple Monadic Context-Free Tree Languages

	Inclusion in the Simple Monadic Context-Free Tree Languages
	Proper Inclusion for Pure CCG

	Proper Inclusion for Pure CCG
	Spine Grammar

	Spine Grammar
	Decomposition into Spines

	Decomposition into Spines
	Moore Push-Down Automata

	Moore Push-Down Automata
	CCG Construction

	CCG Construction
	Relating CCG Spines and Automaton Runs
	Combining Spines
	Strong Equivalence

	Strong Equivalence
	Computational Complexity for Bounded Rule Degree
	Parsing Algorithm

	Parsing Algorithm
	Definitions and Notation
	Algorithm Specification
	Correctness

	Correctness
	Soundness
	Completeness
	Runtime Analysis

	Runtime Analysis
	Argument Contexts and Root Categories
	Items
	Deduction Rules
	Implementation and Runtime
	Hardness for CCG with -entries
	From Parse Tree to Derivation Tree

	From Parse Tree to Derivation Tree
	Parse Trees and Parse Forests
	Construction of the Derivation Tree
	Parser Extensions and Improvements

	Parser Extensions and Improvements
	Eliminating Spurious Ambiguity
	Support for Rule Restrictions
	Support for Multi-Modal CCG
	Instantiated Secondary Categories
	Conclusion
	Summary

	Summary
	Generative Power
	Computational Power
	Discussion

	Discussion
	Outlook

	Outlook
	Bibliography

