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Summary. 3D morphological data have been used to quantitatively characterize

the morphological phenotype of pyramidal neurons in transgenic mice. We calculated

the multiscale fractal dimension (MFD) of reconstructed neuronal cells. Changes in

the complexity of neuronal morphology due to permanent activation of p21Ras in the

primary somatosensory cortex of transgenic mice correlate with changes in the MFD

of dendrites of pyramidal neurons. Transgenic neurons seem slightly less complex

(i.e. have lower peak fractal dimension) if compared with the wildtype. On the other

hand, the enhanced p21Ras activity in transgenic mice may lead to greater variety

of the cell morphological phenotype.
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1.1 Introduction

Transgenic mice mutations provide important means for understanding gene

function, as well as for developing therapies for genetic diseases. In these mu-

tants, the gene overexpression may affect several organs and tissues, including

the brain. In a specific mouse mutant introduced by [8] a permanently active

Ras protein (p21H-rasV al12) in post-mitotic neurons is expressed. Enhanced

p21Ras activity results in a dramatically enlarged dendritic tree. In both corti-

cal layers II/III and V, the total surface area and the total volume of dendritic

trees is greatly increased. This is mainly caused by increased dendritic diam-

eter and tree degree [1].

The aim of the present study was to provide further evidence for these find-

ings. For this, quantitative aspects of dendritic tree shape have been analyzed.

There are several methods for describing trees by quantitative measures. Neu-

rons are three-dimensional objects, and the location of their somata within

the nervous tissue, as well as the number, spatial dimensioning, branching

complexity and 3D embedding of their axonal and dendritic trees are salient

shape characteristics that may significantly distinguish between different cell

types.

The branching complexity of neuronal arborizations is determined both by
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topological and metrical properties (cf. [9]). For topological characterization,

a neuronal tree is reduced to a skeleton structure of points (branching or ter-

minal points) and segments between these points. Such a skeleton forms a

typical rooted tree out of a finite set of possible different tree types. Dendritic

segments can be labeled by centrifugal order (number of segments on the path

to the root). Metrical aspects include length and diameter of the segments,

path lengths (total length of the path from the dendritic root to a branch

point or terminal tip), radial distances of terminal tips from the center of

the cell and branching angles. Further description includes measures for the

irregularity, spatial orientation and curvature of the branches.

Another class of measures is related to the spatial embedding in 3D space, as

Fig. 1.1. Pyramidal cells rendered with CVAPP. Displayed are one example each

of transgenic (cell SE15, left) and wildtype neurons (cell WT17, right).

characterized by the spatial dimensioning, spatial density, spatial orientation
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and space filling of the structure. In this study, the focus is on space filling

or fractal aspects of dendritic tree shape. There are several methods for de-

scribing trees by fractal dimensions (see [10, 11] for early fractal analyses of

neuronal dendritic trees, and e.g. [6] for review).

Multiscale (or local) fractal analysis [7, 3, 4] has been demonstrated to be an

effective means for characterization of neuronal complexity . This type of anal-

ysis seems to be particularly suitable in the present case because the multiscale

fractal dimension is independent of size-related parameters like surface area

and volume. The aim of this study is to show that observed changes in the

complexity of neuronal morphology due to transgenic activation of p21Ras

in the primary somatosensory cortex of mice correlate with changes in the

multiscale fractal dimensions of dendrites of pyramidal neurons .

1.2 Materials and Methods

Two sets of pyramidal neurons (17 cells from wildtype and 26 cells from

transgenic mice) were reconstructed and digitized using Neurolucida (Micro-

BrightField, Inc.) as described elsewhere [1]. The morphology files created

with Neurolucida were processed with CVAPP [2], a freely available program

for cell viewing, editing and format converting (Fig. 1.1). Images were thresh-

olded resulting in binary images with 1- and 0-voxels representing the neuron

shape and background regions, respectively. Therefore, in digitized 3D binary

images, the shape of a neuron is represented by the set of 1-voxels.
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The binary images of the neuron shape patterns were used for calculating

the multiscale fractal dimension (MFD), a measure related to the image com-

plexity [7, 4]. It is computed through the Minkowski sausages approach which

can be described as follows: Let the neuron shape under study be represented

by the set S of the Cartesian coordinates of each of its 1-voxels. Its exact

dilation by a radius r is defined as the union of all spheres of radius r cen-

tered at each of the elements of S. A series of dilations on the image is made,

with radii ri equivalent to the intrinsic lattice distances, the so-called exact

distances . At each dilation, the volume V (ri) of the image is computed.

The volume V (r) of the shape S is therefore defined by

V (r) =

M
∑

i=1

V (ri) δ (r − ri) (1.1)

where δ(.) is the Dirac delta function and M is the index of the largest

exact distance being considered. As V (r) is a discontinuous function on r,

which is a consequence of the discrete nature of ri, it is necessary to interpolate

between the Dirac deltas, which is here accomplished by convolving V (r)

with the Gaussian gσ (r) = 1/σ/
√

2π exp
(

−0.5 (r/σ)
2

)

yielding the following

interpolated volume

vσ (r) =
M
∑

i=1

V (ri) gσ (r − ri) . (1.2)

It is important to choose a suitable value of the standard deviation pa-

rameter, σ, that is large enough just to interpolate between the largest gaps

between the exact radii, which occur for small values of r. The cumulative

volume is defined as
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C (s) =

s
∫

−∞

vσ (r) dr . (1.3)

The Euclidean distance is now represented in terms of its logarithm, lead-

ing to the spatial scale parameter s = log (r), so that the exact radii are

expressed as si = log (ri). The multiscale fractal dimension f(s) of the set S

of voxel elements can be defined then by

f (s) = 3 −

d

ds
log (C (s)) = 3 −

C′ (s)

C (s)
. (1.4)

Fig. 1.2. Example calculation of multiscale fractal dimension for transgenic cell

SE8. Shown is the multiscale fractal dimension in terms of s. See text for details.

While the traditional fractal dimension corresponds to a single scalar value,

the MFD becomes a function of the spatial scale parameter s, providing ad-

ditional information about the analyzed shapes. Among others, the following

measurements quantify meaningful features of the MFD curve: peak fractal-
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ity, fM (the maximum value along the MFD curve), characteristic scale, sM

(the value of the spatial scale for which fM is obtained) and average fractality,

< f >. For the computational implementation of this method, see [4].

1.3 Results

In Fig. 1.2, an example calculation of the MDF curve for the transgenic cell

SE8 is shown. Following the scheme defined in Equations 1.1–1.4, the mul-

tiscale fractal dimension depending on s eventually was obtained. As shown

there, the fractal dimension decreases at both micro and macro scales, and

the peak fractal dimension value, fM , is observed at an intermediate scale

value, sM . This behavior is caused by the finite size of neuron images (see

section 1.4).

The sample histograms of the three parameters utilized, fM , sM and

< f >, are presented in Fig. 1.3. For fM , a bimodal distribution for the

transgenic cases results, while wildtype cells produced a single mode (Fig.

1.3, top). The distribution of the characteristic scales sM observed suggests

that the two types of cells are characterized by similar values of this parame-

ter (Fig. 1.3, middle). Finally, the distributions of < f > are bimodal in the

case of transgenic cells, and unimodal for wildtype cells (Fig. 1.3, bottom).

The scatterplots in Fig. 1.4 depict the mutual relationships between fM ,

sM and < f >. The strong correlation between peak fractal dimension, fM ,

and maximum fractality scale, sM , is obvious.
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Fig. 1.3. Histograms of the three parameters calculated. Presented are numbers of

occurrence (ordinate) of peak fractal dimension, fM , characteristic scale, sM , and

average fractal dimension, < f >. Wildtype and transgenic cases are identified by

diamonds and crosses, respectively.
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Fig. 1.4. Scatterplots of fM versus sM (left) and fM versus < f > (right). The

meaning of symbols is as in Fig. 1.3.

Fig. 1.5 presents Gaussian densities after principal component analysis for

the feature combinations (fM , sM ) and (fM , < f >), after normal statistical

transformation (leading to null mean and unit variance in both cases). By the

strong correlation between fM and sM (Fig. 1.4) the first principal component

explains most of the variance and is usable as the measure of complexity .

Thus, the feature combination (fM , sM ) enables the separation of the two cell

types. As indicated in Fig. 1.5 (left), transgenic cells tend to be less complex

as they have a lower fractality, expressing at the same time greater variance.

1.4 Discussion

In the present study 3D data on neuronal morphology has been used to quan-

titatively characterize the phenotype of transgenic neurons. We calculated the

local / multiscale fractal dimension (MFD) of neuronal cells reconstructed in

3D. It is known that the fractality of objects in nature is limited and varies
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along the spatial scales. One one side, this is due to the finite size of any real

object, leading to behavior close to that of a point for spatial scales much

larger than the object diameter. On the other side, structural properties are

usually different at smaller spatial scales. For instance, a cauliflower or a

fern has fractal properties only over two or three hierarchical levels, with a

smoother characteristic at smaller scales. Moreover, the limited resolution of

the image acquisition devices imposes further constraints to the fractal be-

havior at small spatial scales. The MFD approach explicitely points at this

fact.

The advantages of the MFD (a function of the spatial scale) over the tradi-

tional fractal dimension (a single scalar value) reside in providing additional

information about the analyzed shapes. Thus, we computed complementary

features such as the peak fractality, the characteristic scale where it occurs,

and the average fractality, for quantifying and characterizing the cell types.

Fig. 1.5. Gaussian densities after principal component analysis for (fM , sM )(left)

and (fM , < f >)(right). The meaning of symbols is as in Fig. 1.3.
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Two sets of neurons, i.e. pyramidal cells from wildtype and p21H-rasV al12

transgenic mice, have been analyzed. The results obtained after principal

component analysis show that transgenic neurons are slightly less complex,

as measured by the peak fractal dimension, fM , if compared to their wild-

type counterpart, while the other two features considered (maximum fractal-

ity scale, sM , and average fractal dimension, < f >) did not reveal differences

between the two types. Transgenic pyramidal neurons are characterized by

increased dispersion if compared to the wildtype pyramidal neurons, suggest-

ing that the enhanced p21Ras activity in transgenic mice may lead to greater

variety of the cell morphological phenotype.

These findings have recently been substantiated by a percolation analysis ac-

complished with the same data set. The percolation transform [5] is particu-

larly useful for the characterization of spatial density of distributed points, and

it represents an alternative to the multiscale fractal analysis reported here. As

the latter, the percolation analysis is independent of size-related parameters

like area and volume of the neuronal cells. We were able to verify that changes

in the global character of the percolation transform curves derived from the

reference points (i.e., dendritic tips and branch points) of the dendrites of

pyramidal neurons correlate with changes in the complexity of neuronal mor-

phology due to the activation of p21Ras in the primary somatosensory cortex

of transgenic mice.
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