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Abstract
Visualizations benefit from the use of intuitive organized color application, enabling a clearer understanding and commu-
nication. In this paper, we apply the concept of semantic color association to the generation of thematic colormaps for the 
environmental sciences in combination with principals of artistic color theory to expand feature resolution and create visual 
hierarchies within a visualization. In particular, we provide sets of color scales, colormaps and color organization guidance 
for semantically aligned water, atmosphere, land, and vegetation visualization. Strategies for directing attention via satura-
tion levels and saturation sets of colormaps enable deployment of these techniques. All are publicly available online and 
accompanied by tools and strategy guidance.

Keywords Colormaps · Visualization · Semantic color and environmental data

Introduction

Environmental data is growing in size and complexity, chal-
lenging the scientist who needs to communicate effectively 
at many levels: to peers, to policy makers, and to the gen-
eral public. Communication is critical for fostering under-
standing and disseminating scientific knowledge on which 

decisions are based. To attend to this growing complexity, 
scientists are seeking means of visual dimensionality reduc-
tion and detail enhancement. Here, we focus on addressing 
these needs (Agrawal et al. 2015).

Color is a critical channel for communicating data in 
visualization Ware (2012). Our scientific understanding of 
color comes from research from the perceptual and cognitive 
sciences as well as from mathematical models of percep-
tual color spaces. A complementary understanding comes 
from the artistic community whose knowledge is based on 
centuries of observing and rendering nature onto a canvas. 
We tap that artistic knowledge to develop sets of sequential 
custom color scales that intuitively reflect environmental 
themes—water, atmosphere, land, and vegetation. These 
color scales draw on artistic expertise in manipulating color 
contrast and color interactions to construct colormaps with 
high discriminative power. Building on the associative color 
and color theory foundations used successfully in visualiza-
tion by Harrower and Brewer (2003), Schloss et al. (2019), 
Stone (2016), Ware (1988), Zhou and Hansen (2016), our 
colorscales are designed to provide greater feature resolution 
by weaving multiple types of contrast—hue, saturation, and 
value—within a single color scale.

We are motivated to apply the concept of intuitive color 
assignment from researchers who have preceded our efforts 
(see Sect. 2). Norman (2013), in The Design of Everyday 
Things, summarizes that “We need to design things to be 

This material is based upon work supported by Dr. Lucy Nowell 
and Dr. Laura Biven of the U.S. Department of Energy Office of 
Science, Advanced Scientific Computing Research under Award 
Numbers DE-AS52-06NA25396 and DE-SC-0012516.

This article is part of a Topical Collection in Environmental 
Earth Sciences on “Visual Data Exploration”, guest edited by 
Karsten Rink, Roxana Bujack, Stefan Jänicke, and Dirk Zeckzer.

 * Francesca Samsel 
 figs@cat.utexas.edu

 Phillip Wolfram 
 wolfram@lanl.gov

 Annie Bares 
 abares@utexas.edu

 Terece L. Turton 
 tlturton@lanl.gov

 Roxana Bujack 
 bujack@lanl.gov

1 University of Texas at Austin, Austin, TX, USA
2 Los Alamos National Laboratory, Los Alamos, NM, USA

http://orcid.org/0000-0002-8596-6159
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-019-8237-9&domain=pdf


 Environmental Earth Sciences (2019) 78:269

1 3

269 Page 2 of 12

intuitively obvious and color representation and visual com-
munication is no different.” Robertson (1990) has pointed 
out: “The first step to developing a systematic approach to 
characterizing and choosing effective visual representations 
of data is to look for guidance from our interpretation of 
the real world.” Heer and Stone (2012): “User interfaces 
that model human category judgments might enable more 
compelling forms of reference and selection.” Thyng et al. 
(2016) states: “Intuition for the meaning of a colormap can 
be developed through experiencing colors in nature.”

Visual communication is hardwired by nature and experi-
ence. Research in cognition and color has elucidated impor-
tant points to consider in colormapping. The natural relation 
between content and color allows an observer to facilitate 
automated processes that require less conscious concentra-
tion (Bajo 1988). Additionally, nameable colors tend to be 
easier to remember (Berry 1991; Roberson et al. 2000).

The main contribution of this paper is to provide a diverse 
range of color scales, colormaps, and strategies enabling 
clearer, more intuitive representation and communication of 
data from the environmental sciences. We provide the scien-
tific community with intuitively associated color scales, such 
as a series of blues for water and a series of greens for flora, 
as well as palettes integrated into a domain-specific color-
map customization tool, ColorMoves, www.SciVi sColo r.org, 
enabling environmental scientists to quickly and easily select 
and customize colormaps and color systems to meet their 
observation, exploration, and communication needs. Our 
color scales weave multiple types of color contrast to pro-
vide greater discriminative power while staying within hue 
ranges, thus maintaining the associative properties of hue 
and natural features. Also included are divergent colormaps 
specifically designed for the environmental sciences needed 
to structure the areas of importance within a visualization. 
Finally, we provide a case study that outlines the process 
wherein an environmental scientist applies these principles, 
resources, and tools to better understand scientific data.

Related work

Colormap design rules

Colormapping is a very old technique with many rules and 
guidelines available in the literature by authors such as Zhou 
and Hansen (2016), Bujack et al. (2018), and Silva et al. 
(2011).

Common themes include order (Sloan and Brown 1979; 
Trumbo 1981; Bujack et al. 2018; Wainer and Francolini 
1980), uniformity (Pizer 1981; Robertson and O’Callaghan 
1986; Tajima 1983; Ware et al. 2018), smoothness (Levkow-
itz 1996; Robertson and O’Callaghan 1986; Rogowitz and 
Treinish 1998), monotonicity in luminance (Bergman et al. 

1995; Pham 1990; Rogowitz et al. 1996), and a high dis-
criminative power (Levkowitz and Herman 1992; Pizer et al. 
1982; Tajima 1983). While most of these rules can theoreti-
cally be satisfied using the shortest path through a perceptu-
ally uniform color space, high discriminative power requires 
a long path through a color space, which is in direct conflict 
with the other design rules. Additionally, individual percep-
tion is highly nonlinear and not fully understood; optimiza-
tion of this space is impractical at present. It is likely that 
multiple solutions exist but cannot fully address the heuristic 
experience of peoples’ color perception as that is strongly 
influenced by the interaction with adjacent hues (Albers 
2009; Lotto and Purves 2000) and the relative proportion of 
the surrounding hue properties. Artists are able to control 
these relationships and are trained to do so but in scientific 
visualization the data drives the hue selection and cover-
age. Color interaction is strongest in the presence of highly 
saturated values (Itten 1961), thus in "Employing saturation 
to direct attention" we discuss means of allocating saturated 
palettes to areas of importance, contrasting contextual data 
using low-saturation color scales. For a comprehensive treat-
ment of colormap design rules, we refer the reader to Ware 
(2012), Bujack et al. (2018) and Zhou and Hansen (2016).

Intuitive colors in visualization

Robertson (1990), in introducing his natural scene para-
digm, states that for the display of multiple variables in com-
plex scenes (such as those which occur predominantly in the 
environmental sciences (Bujack and Middel 2016)), intuitive 
representations of the data are very important.

The importance of color names for the design of color 
palettes is stressed and applied by Brewer (1994) and Har-
rower and Brewer (2003). Havasi et al. (2010) provide an 
algorithm that associates a color to a word. They make 
use of known associations from databases and interpolate 
between the colors and related concepts for unknown words. 
Heer and Stone (2012) and Stone (2016) stress that the nam-
ing of colors strongly influences an observer’s capacity to 
categorize and judge the physical world. They provide a 
framework for probabilistic color naming.

Lin et al. (2013) demonstrate how colors that semanti-
cally correspond to the displayed content increase the speed 
of bar chart reading and develop an algorithm to correlate a 
set of colors to words.

Extensive research has been done on the study of color 
and visualization. Many disciplines have applied their 
expertise to the task—computer science, information visu-
alization, cognition, perception, and color theory. Despite 
concerted efforts by all of these communities and in spite 
of the rainbow colormap being recognized as sub-optimal, 
it maintains prevalence, sometimes for historical reasons but 
mostly because of its default “ease of use” (Borland and 
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Taylor 2007; Light and Bartlein 2004; Rogowitz and Trein-
ish 1998; Zhou and Hansen 2016; Dietrich et al. 2010; Mid-
del et al. 2014; Windyty 2016). The recent work of Thyng 
et al. (2016), Schloss et al. (2019), and Samsel et al. (2015) 
are notable exceptions.

Schloss and Heck (2017), and Spence and Wong (2006) 
specifically address complexities and variation of color asso-
ciation in environmental visualization. Schloss et al. (2019) 
describe how internal expectations such as the dark-is-more 
or the opaque-is-more biases influence how observers inter-
pret colormaps.

Thyng et al. (2016) suggest a set of colormaps, cmocean, 
for the visualization of ocean data. They agree with general 
colormap theory in that uniformity is important and that 
sequential, diverging, or cyclic colormaps need to be chosen 
to match the data type. But they also suggest two new rules. 
One is consistency, by which they mean that within one con-
text two variables should not be represented by the same 
colormap, just as two variables would also not be assigned 
the same Greek symbol. The other one is intuition, mean-
ing that cultural implications and the nature of matter and 
variables can enhance understanding; for example, sea ice 
should be visualized using blues and whites.

Samsel et al. (2015) worked with the Climate, Ocean, 
Sea-Ice Modeling team at Los Alamos National Laboratory 
to identify how artistic color knowledge may provide greater 
insight into ocean models via more complex colormapping.

Colormap design tools

Many common visualization tools, such as ParaView 
(Ahrens et al. 2005) or VisIt (Childs et al. 2012), come with 
an integrated colormap editor and a set of suggested default 
colormaps but no guidance or analysis.

The visualization community has provided several tools 
for the guided generation of colormaps. Bergman et al. 
(1995) introduced PRAVDA Color and suggested colormaps 
based on the visualization task, data types, and spatial fre-
quency. ColorBrewer (Harrower and Brewer 2003) provides 
carefully designed discrete color palettes and recommen-
dations based on different data types and goals. ColorCAT 
(Mittelstdt et al. 2015) extends the task-based concept of 
PRAVDA Color to combinations of visualization tasks. The 
matplotlib (Hunter 2007) extension VisCM (http://githu 
b.com/matpl otlib /viscm ) lets the user design uniform color-
maps that increase linearly in luminance through adjusting 
the control points of a spline in the chromaticity plane. The 
platform I want Hue (http://tools .media lab.scien ces-po.fr/
iwant hue/index .php) generates discrete color palettes with 
custom restrictions of hue, chroma, and luminance.

Our color scales are grounded in the detailed analysis of 
color interaction research and artistic color theory which 
draws on 500 years of painting traditions. As with many 

researchers in colormap design, (e.g. Brewer 1994), we build 
on the work or Albers and Itten (Albers 2009; Itten 1961) 
as well as more contemporary sources (Bujack et al. 2018; 
Ware 2012). The subtle manipulation of types and degrees 
of contrast articulated by Itten and further studied by Albers 
enable the subtle shifts within the color scales to provide 
the discriminative power within the narrower hue range. 
The flexible tool ColorMoves (Samsel et al. 2016, 2018) 
allows users to build customized colormaps by combining 
pre-designed colormaps at specific value ranges via drag and 
drop in real time on their own data.

Color scales for associative palettes

Environmental scientists face many challenges when it 
comes to the visualization of their data Boulton (2018). They 
often need to display several variables (temperature, salin-
ity, wind speed, etc.) at once to see and analyze multivari-
able correlations. Since the spatial embedding often plays 
an important role, they must include topographic features 
(e.g., geopolitical borders, rivers, or terrain information) that 
require both space and colors in a visualization. The ability 
to see perceptual depth (discriminative power) in the data 
is usually a key goal. Communication to a broad audience 
with a mixed background of knowledge must be considered.

The sets of color scales that we provide address these 
challenges while striving to follow some of the more impor-
tant colormap design rules. They are designed to respect 
intuitive order and uniformity. These requirements are bal-
anced against the need to create a longer line in color space 
so as not to sacrifice the discriminative power available in 
the color scales despite the narrow hue range.

Using semantic colors, the non-scientific audience is 
invited to participate in the visualization because we know 
from the cognitive sciences that intuitive color choices help 
scientists and non-scientists alike to more quickly under-
stand the content of a visualization (Lin et al. 2013; Shi-
nomori 2018; Schloss and Heck 2017; Spence and Wong 
2006).

These colormaps also help to remedy the other common 
problems faced by the environmental scientist. When dis-
playing many variables, each can be shown in a different 
intuitive color scale, emphasizing the contrast between vari-
ables. When spatial contextual information is crucial for the 
interpretation of their findings, these color scales provide the 
visual distinction when employing multiple color scales. A 
color scale that goes through too broad a spectrum creates 
issues when insufficient color channels are left for encoding 
all variables or auxiliary information.

The colormap design approach draws on the concepts of 
color contrast theory. Figure 2 illustrates the construction 
of colormaps that employ multiple types of color contrast 

http://github.com/matplotlib/viscm
http://github.com/matplotlib/viscm
http://tools.medialab.sciences-po.fr/iwanthue/index.php
http://tools.medialab.sciences-po.fr/iwanthue/index.php
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within a single color scale, a colormap with one luminance 
range. Green Pond goes beyond a simple dark to light 
contrast by employing both cool and warm greens as pri-
mary control points. Moving through two types of contrast 
increases the discriminatory power of the colormap. Fig-
ure 2 shows the development of Green Pond, which com-
bines these additional shifts of cool/warm greens stepping 
through the linear value distribution. These complementary 
shifts of multiple types and distributions of contrast create 
greater discriminative power, as was found in Samsel et al. 
(2015), an early example of color evaluation work.

The full set of color scales, shown in Fig. 1, is designed to 
provide a variety of color scales that address specific color 
themes in environmental science. Blues are used for water, 
ice, and sky/air. Greens can be used for land or water. The 
browns, reds, and yellows cover earth and air. Within these 
color families are many varieties of contrast types. Color 
scales have different value ranges. Some span only a sec-
tion of the value scale such as YellowFields. Others move 
from black to white within the family, useful for a general 
overview of data. Color scales within one hue family also 
vary in saturation level and distribution.

Color scales with a wider range of hues (BlueSpectrum, 
RedSky, GreenFields) can be used to get an overview of 
data, taking a longer arc through color space. Color scales 
that span a greater luminance range with similar intensities 
(e.g., BlueIce, GreenPond, YellowFields) work well together 
in a blended colormap. To create distinct breaks along a 
dividing line between environments (e.g., water vs. land), 
colormaps that extend to the darkest values (BlueWater, 
BrownEarth) are used. Continuity can be emphasized by 

combining a series of colormaps, light end to light end and 
dark end to dark end.

Artistic color contrast theory speaks of contrast of hue, 
contrast of saturation, and contrast of value (Itten 1961). 
Contrast is what enables us to see the data. Here, we are 
using hue as an intuitive association for the subject mat-
ter. For example, the ocean is blue, foliage is green, and 
dry areas are brown. In addition to communicating intuitive 
subject matter properties, hue also denotes physical proper-
ties. Examples include that red is associated with higher 
temperatures, higher kinetic energy, as well as danger.

Color contrast theory can also help to inform user choices 
as color scales are combined (Albers 2009; Ware 2012). 
Types of contrast such as warm–cool are useful starting 
points. If two similar hues are needed, choosing one warm 
and one cool will highlight the differences. e.g., mixing the 
warm GreenPond and the cool GreenSeas. Across color 

Fig. 1  Blue color scales for water and sky, from top to bottom: Blue-
Clear, BlueWater, BlueSky, BlueDeep, BlueIce, BlueSpectrum. 
Green color scales for vegetation and water, from top to bottom: 
GreenPond, GreenLagoon, GreenPines, GreenSeas, GreenFoliage, 

GreenFields. Brown, red, and yellow color scales for earth and air, 
from top to bottom: YellowFields, YellowFire, RedSky, BrownYel-
low, BrownEarth, BrownGray. XML files for these color scales are 
available on the SciVisColor website, sciviscolor.org/colormaps

Fig. 2  This figure shows the construction of a green color scale that 
moves from a warm dark yellow-green through a mid-range cool 
blue-green and back to a warm light yellow-green. This allows the 
color scale to maintain intuitive order while moving between warm 
and cool greens, shifts that create greater contrast
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ranges, a warm green (GreenLagoon) with a cool blue (Blue-
Deep) will maximize contrast. The yellows can also provide 
a warm contrast to mix with the cooler greens or blues.

Figure 3 provides a set of ready-made divergent color-
maps aligned with environmental themes. Users can choose 
from divergent colormaps with blue, green, or yellow hues 
based on subject matter.

In Fig. 3, the grid of divergent colormaps is organized by 
saturation level and types of hue combinations. Columns, 
from left to right, represent the primary hue tones associ-
ated with: water, flora, and earth, soil, and air in the third 
column. The rows from, top to bottom, are: similar divergent 
hues; saturated divergent hues; alternative medium satura-
tion divergent colormaps; and muted hues. Usage applica-
tion guidance can be found in Sect. 4.2. All .xml files can 
be downloaded at https ://scivi scolo r.org/home/envir onmen 
tal-palet tes.

Custom colormapping

No single colormap is optimal for all domains, statistical 
distributions, or tasks (Zhou and Hansen 2016). Here, we 
illustrate how clarity and communication can be improved 
via semantic color usage aligned with physical features 
within a visualization and how attention can be directed via 
hierarchical contrast application.

Environmental semantics

The previously released tool, ColorMoves (Samsel et al. 
2018), allows the scientist to build custom colormaps, 
delineating regions of interest with pins and nests. These 
defined regions in the data can be given their own color 
scales. The ability to interactively adjust the endpoints of 
these regions in real time enables the scientist to craft very 
data-specific colormaps. Full details on its use can be found 

on the ColorMoves site: http://scivi scolo r.org/home/color 
moves . The environmental colormaps are included in the 
ColorMoves interface and shown, as organized here, on the 
Environmental Color Sets page https ://scivi scolo r.org/home/
envir onmen tal-palet tes.

Arctic scientists are studying how subtle changes in the 
tundra topography can lead to significant changes in vegeta-
tion type and distribution. The visualizations in Fig. 4 illus-
trates topographical LIDAR data collected representing the 
Arctic tundra studied to understand the relationship between 
topological shifts, hydrology, and foliage distribution.

Figure 4 compares standard colormaps to semantically 
intuitive colormaps with data and luminance aligned repre-
sentations of LIDAR data measuring topographic changes in 
the Arctic tundra. This figure illustrates the value of intuitive 
hues aligned with the specific science content illustrating the 
science while also providing greater detail. The visualiza-
tions in the top row, rendered in the standard Viridis and 
cool–warm colormaps, lack the intuitive representation of 
the subject matter—the link between changes in topography 
and hydrology that are driving significant changes in the 
ecosystems of the Arctic.

Employing saturation to direct attention

In addition to guiding intuitive associations between hue and 
subject matter, color contrast theory also speaks of satura-
tion as an attentive property that organizes data based on 
importance. Here, we provide a guide for choosing color 
scales that enable the easy creation of visual hierarchies 
within a visualization.

Saturation is the primary channel for directing attention 
visually. Areas of high saturation draw the most attention 
visually and those of least saturation draw the least atten-
tion. Figure 5 presents color scales in three hues—blue, 
green, and red at three levels of saturation, increasing from 
the left column of muted color scales to the right column 

Fig. 3  Divergent environmental hue colormaps from the left: Column 
1—BlueFlorals, BlueGreenJewel, BlueGreenSeaCoast, BlueGreen-
Mist; Column 2—GreenAquatics, GreenBrownForest, TurqoiseCoast, 
GreenBrownMist; Row 3—RedPumpkins, RedGrayStrata, GrayDust-

Fire, GraySun. The top rows, from the top, contain divergent maps 
with similar hues, saturated color scales, mixed color scales and 
muted color scales. The columns, left to right, contain the same three 
categories shown in the color scales of Fig. 1

https://sciviscolor.org/home/environmental-palettes
https://sciviscolor.org/home/environmental-palettes
http://sciviscolor.org/home/colormoves
http://sciviscolor.org/home/colormoves
https://sciviscolor.org/home/environmental-palettes
https://sciviscolor.org/home/environmental-palettes
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of saturated color scales. Users should select high satura-
tion for areas with the most important data, medium satu-
ration for areas with contextual data, and low saturation 
for areas with background or nonessential data.

In Fig. 6, visualizations of coastal flood data demon-
strate how color theory principles pertaining to hue and 
saturation can be used to focus and direct attention to 
areas of highest interest while balancing the presentation 

Fig. 4  Arctic tundra lidar data visualization divergent colormap com-
parison: A—viridis; B—cool–warm; C—green brown divergent; D—
blue-green divergent. Semantically associated colormaps, such as C 

and D, convey topics of concern to the scientist: dry areas; foliage 
coverage; and wet areas

Fig. 5  Comparison of three hues of colormaps that range from low to high saturation. Aligning the saturation level, low, medium, and high, left 
to right, to the areas of highest interest enables one to direct the attention, sequentially, through levels of significance within the data
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of the contextual areas. Figure 6a, b is commonly used 
colormaps—rainbow and cool–warm—generic defaults 
that are not aligned with intuitive associations and do not 
successfully focus attention on the important regions. Fig-
ure 6c, d draws on intuitive associations between hue and 
subject matter in using blue for water, a linear and diver-
gent, respectively, with Fig. 6d communicating areas of 
important data using saturation, in which the most impor-
tant areas are the most saturated blue, whereas the least 
important areas are low saturation. Figure 6e, f draws on 
physical associations of hue using red to convey danger 
associated with flooding. In Figure 6e, f, red areas indi-
cate a dangerous point has been reached. Figure 6F also 
employs two levels of saturation, applying a high-satu-
ration colormap only to the areas of danger, thus draw-
ing attention almost entirely to those areas. One of the 

challenges in the visualization of environmental data is 
the need for providing spatial context and the comparison 
multiple regions within a visualization (Boulton 2018). 
Using different saturation levels along with hue shifts is 
particularly effective in such cases as these methods dis-
tinguish between regions, presents multiple scalar ranges 
and steers attention (Ware 2012).

Case study

Phillip Wolfram applied the principles to create custom 
colormaps, using the tools discussed above for higher 
discriminatory power in his visualization. The data are a 
simulation of biogeochemistry within the Model for Pre-
diction Across Scales Ocean (MPAS-O) (Ringler et al. 

Fig. 6  This comparison of visualizations of coastal flooding data demonstrates the ability of saturation allocation to focus and direct attention to 
the areas of importance
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2013) that is designed to represent the transport of nutri-
ents that are needed to assess the growth of macroalgae 
to perform a suitability assessment of mariculture for the 
macroalgae production for biofuels. For simplicity, in this 
paper we consider surface nitrate ( mmolm

−3 ). We focus 
on the California coast due to its rich nitrate waters, which 
arise from coastal upwelling along the coast. Nitrate is 
designated via the colormap.

Transport of nutrients from the upwelled waters occurs 
due to large eddies in this eddy-permitting simulation. Sea 
surface height, which can be used to indicate the presence 
of eddies, is contoured in black as it provides a simple 
way to visualize current rotational motions via closed 
circular contours, which are indicative of eddies. Thus, 
eddies pull filaments of nutrient-rich waters away from 
the coast and entrain the nutrients away from shore, which 
provides a potential physical process that may be lever-
aged to facilitate macroalgae growth production. However, 
identification of these eddies and the filaments they pro-
duce is challenging and improved visualization is useful 
to better communicate the engineering possibilities sug-
gested by the data, clearly illustrate the physical processes 
responsible for the mixing, and highlight some connec-
tions between eddies and the nutrients as needed to assess 
viability of macroalgae production via seeding in eddies.

The colormap highlights regions of interest in the sim-
ulation: greens indicate regions of high nitrate, orange 
regions of medium nitrate for possible consideration for 
macroalgae farming, and grays and blues with low back-
ground level of nitrate unsuitable for macroalgae farm-
ing. The nested structure of the colormap allows the detail 
inherent in the data to be extracted.

The following steps were involved in honing the visuali-
zation to best align with the data, colormap, and message 
and correspond to the panels in Fig. 7:

1. Using ColorMoves, he began by applying a muted map 
to the unimportant data (the land and water far from the 
coast) and a highlight map for the important data (water 
near the coast). This is shown in the far left of Fig. 7.

2. In the second panel in Fig. 7, he changed the muted 
green to a muted blue. He made this decision because it 
allowed him to use bright green to indicate areas rich in 
nitrate. The muted blue also aligns more intuitively with 
the subject matter of the ocean.

3. He then added a bright blue as a third indicator of the 
area most likely to produce macroalgae, third panel in 
Fig. 7.

4. As the area most likely to produce macroalgae is the 
most important area in the visualization, he changed 
it from bright blue to red, the most saturated, atten-
tive color. He then used bright blue to indicate the area 

where fish that produce the nutrients that help the mac-
roalgae to grow live. The green area indicates nitrates. 
While these are not the most important areas of data, 
they both provide an important context. This iteration, 
shown in the far right panel of Fig. 7, emerged as the 
favorite. Fig. 8 is a full-size version.

Colormap construction via ColorMoves

ColorMoves, the interactive interface for the construction 
of colormaps tuned to data can be seen in Fig. 8. Color-
Moves enables interactive colormap construction from 
a series of color scales. This enables alignment of color 
and contrast with the structure of the data and goals of 
the visualization. Watching the changes on data in real 
time provides the ability to precisely place color scales 
within specific data ranges. It enables the movement of 
color scales across areas of the data, facilitating explora-
tion. Providing the means to highlight multiple areas of 
interest using different color scales facilitates presentation 
and communication. By loading multiple time steps into 
the viewer area you can create colormaps effective across 
time-varying data. Once created the colormap is export-
able in .xml or .json. All resources are openly available at 
www.SciVi sColo r.org.

Using these color scales within ColorMoves, Phillip 
Wolfram of the COSIM group at LANL notes, “Separation 
of the ocean and land boundary in the coastal zone, allow-
ing key detail to be manifest, is particularly important 
because it allows key gradients in the terrestrial aquatic 
interface to be found. Having these abilities will enable me 
to more quickly share this information.”

In this paper, we have introduced sets of intuitive envi-
ronmental color scales that have been incorporated into 
an online tool, providing environmental scientists with a 
means of specifying the placement, hue, saturation level, 
and order of color within their visualizations to enable 
clearer, more intuitive results.

These colormaps, and their suggested use, address the 
most important challenges that environmental scientists 
understanding and conveying their data. The association 
of the challenges with the specific characteristic of the 
colormaps are summarized in Table 1.

Conclusions

The value of semantic color association has been well docu-
mented Shinomori (2018); however, given its power to assist 
in intuitive understanding of environmental visualization 

http://www.SciVisColor.org
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beyond the widely used standards—rainbow, viridis, and 
cool–warm—we have extended its availability by creating 
color scales and palettes specifically designed for the envi-
ronmental community. Combined with the tools and work-
flows developed by Samsel et al. (2018), scientists now have 

a practical means to apply semantic hues and to direct the 
viewer’s attention to the areas of highest importance. The 
value of these combined principals is demonstrated in Fig. 6 
and reasoning outlined in Table 1. All of the resources pre-
sented here along with more in-depth research and guidance 
are freely available at www.SciVi sColo r.org.

Fig. 7  Wolfram built the colormap for the visualization to align the 
hues with subject matter and to use saturation to organize the data 
by importance. Muted blue came to indicate background data and 

the ocean; bright blues and greens indicated areas of contextual data; 
highly saturated reds indicated the areas of most importance that were 
most likely to produce macroalgae

http://www.SciVisColor.org
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Fig. 8  Biogeochemistry MPAS simulation using hue and saturation to communicate the five categories of locations with roles in marcoalgae 
production

Table 1  Summary of how the suggested color scales, tool, and workflow help the environmental scientists face typical visualization challenges 
Zhou and Hansen (2016)

Challenge Solution

Broad audience with varying scientific backgrounds Intuitive colormaps work on many levels
Visualizations need to leave colors for the display of other parameters, 

spatial context, highlights, or glyphs
Narrow hue range and distinct saturation levels of intuitive color scales 

enables clear thematic distinction from other visualization items
Not enough perceptual depth, or detail in the data Artist-designed color scales provide high discriminative power despite 

narrow hue range
The colormaps do not reflect the complicated structure of the data or 

do not sufficiently emphasize the central statement
The provided tool: ColorMoves allows simple and precise fitting of the 

colormap to data and tasks while saturation levels guide attention
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