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Abstract. It is now widely accepted that the operation of forgetting in the context
of Answer Set Programming [10,18] is best characterized by the so-called strong
persistence, a property that requires that all existing relations between the atoms
not to be forgotten be preserved. However, it has been shown that strong persis-
tence cannot always be satisfied. What happens if we must nevertheless forget?
One possibility that has been explored before is to consider weaker versions of
strong persistence, although not without a cost: some relations between the atoms
not to be forgotten are broken in the process. A different alternative is to enhance
the logical language so that all such relations can be maintained after the forget-
ting operation. In this paper, we borrow from the recently introduced notion of
fork [1] – a conservative extension of Equilibrium Logic and its monotonic basis,
the logic of Here-and-There – which has been shown to be sufficient to overcome
the problems related to satisfying strong persistence. We map this notion into
the language of logic programs, enhancing it with so-called anonymous cycles,
and we introduce a concrete syntactical forgetting operator over this enhanced
language that we show to always obey strong persistence.

1 Introduction

There has been a substantial interest in investigating the operation of forgetting in the
context of Answer Set Programming (c.f. [10] for a recent survey). Intuitively, when we
forget some atoms from a logic program, the goal is to come up with another program,
written in a language that does not include the atoms to be forgotten, which preserves
the meaning with respect to the remaining atoms.

Whereas different approaches over the years, e.g., [6,23,5,24,9,12,7,8], proposed
different ways to semantically characterize this operation, it is now rather well accepted
that strong persistence [16] best captures its essence. Strong persistence is a property
that requires that all existing relations between the atoms not to be forgotten be pre-
served during the forgetting operation. However, it has been shown that strong persis-
tence cannot always be satisfied [11]. There are cases where the atoms to be forgotten
play such a pivotal role in the original program that one cannot represent its effects
on the remaining atoms without them. These cases are usually associated with atoms
involved in the so-called even cycles through negation (somehow equivalent to choice
rules) that generate different stable models (or answer sets).



What if we are faced with a situation in which we must forget – e.g., because of
a court order, or any other strong reason – but we cannot while obeying strong persis-
tence? This problem was first tackled in [13], where the authors investigated different
ways to weaken strong persistence. However, that does not come without a cost: some
relations between the atoms not to be forgotten are broken in the process. This may
result, for example, in the unwanted disappearance of existing stable models, or the
appearance of new ones. What if we cannot afford to loose any relations between the
non-forgotten atoms, but must proceed with the forgetting operation? One alternative
is to enhance the logical language so that all such relations can be maintained after
the forgetting operation. Recently, in [1], the authors introduced the notion of fork – a
conservative extension of Equilibrium Logic and its monotonic basis, the logic of Here-
and-There – which, in a nutshell, allows for the specification of formulas whose stable
models are the union of the stable models of separate formulas. They also proved that
forks are sufficient to overcome the problems related to satisfying strong persistence.

Inspired by the concept of forks, we begin this paper by enhancing the language
of logic programs with so-called anonymous cycles, aiming at being able to specify
concrete forgetting operators that satisfy strong persistence. Extending the language of
logic programs with anonymous cycles essentially amounts to extending the alphabet
with a set of anonymous atoms that can only be used in anonymous cycles, i.e., to
generate and condition alternatives, which are then ignored when the stable models
are considered. We then introduce a concrete forgetting operator over this enhanced
language, which we show to obey strong persistence.

The new operator is syntactical in nature, i.e., it achieves the result by syntactically
manipulating the rules of the input program – there is no need to compute any models –
and it is the first concrete forgetting operator that obeys strong persistence, albeit for this
enhanced language. One might argue, somehow cynically, that if we allow ourselves to
extend the language and use new atoms, then why not simply keep the ones we were
supposed to forget, perhaps renaming them to appear as if they are not the same. Even if
this renaming would obey strong persistence, modulo these new atoms, it could hardly
be classified as forgetting. By ensuring that all the non-forgotten atoms introduced by
our forgetting operator are anonymous, thus used in a very constrained and fixed way,
we ensure a clear syntactical distinction between these and the forgotten ones. Equally
important is the fact that the operator is closed under the language of logic programs
with anonymous cycles. This allows its iteration, admitting for any number of atoms to
be forgotten from a program in any sequence, while still obeying strong persistence.

2 Preliminaries

In this section, we recall necessary notions on answer set programming. We assume a
propositional signature Σ. A logic program P over Σ is a finite set of rules of the form

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm, not not d1, ..., not not dn, (1)

where all a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn are atoms of Σ. Such rules
r are also written more succinctly as

H (r)← B+(r), notB−(r), not notB−−(r), (2)



where H (r) = {a1, . . . , ak}, B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm}, and
B−−(r) = {d1, . . . , dn}, and we will use both forms interchangeably. Given a rule
r, H (r) is called the head of r, and B(r) = B+(r) ∪ notB−(r) ∪ not notB−−(r)
is called the body of r, where, for a set A of atoms, notA = {not q : q ∈ A} and
not notA = {not not q : q ∈ A}. We term the elements in B(r) (body) literals. Σ(P )
and Σ(r) denote the set of atoms appearing in P and r, respectively. Given a program
P and an interpretation, i.e., a set I ⊆ Σ of atoms, the reduct of P given I , is defined
as P I = {H (r)← B+(r) : r ∈ P such that B−(r) ∩ I = ∅ and B−−(r) ⊆ I}.

An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ Σ. Given a program P , an
HT-interpretation 〈X,Y 〉 is an HT-model of P if Y |= P and X |= PY , where |=
denotes the standard consequence relation for classical logic. We admit that the set
of HT-models of a program P is restricted to Σ(P ) even if Σ(P ) ⊂ Σ. We denote
by HT (P ) the set of all HT-models of P . A set of atoms Y is an answer set of P if
〈Y, Y 〉 ∈ HT (P ), but there is noX ⊂ Y such that 〈X,Y 〉 ∈ HT (P ). The set of all an-
swer sets of P is denoted byAS(P ). Two programs P1, P2 are equivalent ifAS(P1) =
AS(P2) and strongly equivalent, P1 ≡ P2, ifAS(P1 ∪R) = AS(P2 ∪R) for any pro-
gram R. It is well-known that P1 ≡ P2 exactly when HT (P1) = HT (P2) [19]. Given
a set V ⊆ Σ, the V -exclusion of a set of answer sets (a set of HT-interpretations)M,
denotedM‖V , is {X\V | X ∈M} ({〈X\V, Y \V 〉 | 〈X,Y 〉 ∈ M}).

3 Forgetting with Anonymous Cycles

Forgetting in answer set programming (ASP) aims at eliminating certain elements from
the languageΣ, without affecting the consequences inferable for the language elements
that remain. However, it is not always possible to forget in ASP [11], intuitively, because
some elements of the language are crucial to preserve certain dependencies between
atoms in the program. A way to avoid this problem would thus be to not remove such
atoms entirely, but rather preserve them in a localized form, such that later, under certain
circumstances, they could potentially be removed, e.g., after all related atoms have been
forgotten. This has been tackled by proposing an extension of ASP with a new construct,
called forks [1]. Here, we map this notion into the language of logic programs, but
instead of extending the language with the fork constructor, we enhance the language
with a set of distinguished atoms, called anonymous atoms, that can only be used in a
very restricted way, namely to generate so-called anonymous cycles.

Thus, in this section, we first introduce programs with anonymous cycles and, then,
we reconcile the notions of forgetting in ASP with this extension of programs. We start
by extending the signature to allow for an infinite number of anonymous atoms.

Definition 1. An anonymous signature is a pair 〈Σ,Σan〉 where Σ is a signature and
Σan is an infinite set of atoms such that Σ ∩Σan = ∅.

We use Roman letters to denote elements of Σ and Greek letters to denote elements
of Σan. In what follows, we assume a fixed anonymous signature 〈Σ,Σan〉. Based on
this, we now define the class of programs with anonymous cycles.

Definition 2. A program with anonymous cycles (over 〈Σ,Σan〉) is a program P such
that, for each δ ∈ Σan and r ∈ P , exactly one of the following conditions is true:



– δ does not appear in r;
– δ belongs only to B+(r);
– δ belongs only to B−(r);
– r is of the form δ ← not not δ.

We term a rule r of the latter form an anonymous cycle.

Therefore, in a program with anonymous cycles, the atoms of Σan can only appear
in a very restricted way. Namely, they can only be used to generate cycles, in anonymous
cycles,4 and, in addition, appear in the positive or negative body of rules. This means
that for an anonymous atom δ ∈ Σan, the rule δ ← not not δ is the only rule in which
δ is allowed to appear in the head or in the double negated body.

Since the atoms of Σan are to be seen as auxiliary, the semantics of programs with
anonymous cycles over an anonymous signature 〈Σ,Σan〉 is defined as the restriction
to Σ of the semantics of the program when considered as program over Σ ∪Σan.

Definition 3. Let P be a program with anonymous cycles over 〈Σ,Σan〉, and P ∗ the
program over Σ ∪Σan with the same rules as P . Then, the set of HT-models of P and
the set of answer sets of P are defined, respectively, as

HT (P ) = HT (P ∗)‖Σan
AS(P ) = AS(P ∗)‖Σan

.

Example 1. Consider the program with anonymous cycles P over 〈Σ,Σan〉:

a← b, δ c← not δ δ ← not not δ

where a, b, c ∈ Σ and δ ∈ Σan. If we consider program P ∗ overΣ∪Σan with precisely
the same rules as P , we have that AS(P ∗) = {{δ}, {c}} and AS(P ) = {∅, {c}}.

We are now ready to extend notions of forgetting in ASP from the literature to the
class of programs with anonymous cycles.

A forgetting operator over a class C of programs with anonymous cycles5 over
〈Σ,Σan〉 is a partial function f : C × 2Σ → C s.t. the result of forgetting about V from
P , denoted as f(P, V ), is a program with anonymous cycles over 〈Σ(P )\V,Σan〉, for
each P ∈ C and V ⊆ Σ. We denote the domain of f by C(f). The operator f is called
closed for C′ ⊆ C(f) if f(P, V ) ∈ C′, for every P ∈ C′ and V ⊆ Σ. A class F of
forgetting operators (over C) is a set of forgetting operators f s.t. C(f) ⊆ C, commonly
satisfying some definition of the class.

The notions in the remainder of the section are indeed very similar to the ones
introduced for programs (without anonymous cycles). They can essentially be re-used
here due to our definition of HT-models and answer sets for programs with anonymous
cycles, and because we never forget anonymous atoms.

Arguably, among the many properties introduced for different classes of forgetting
operators in ASP [10], strong persistence [16] is the one that should intuitively hold,
since it imposes the preservation of all original direct and indirect dependencies be-
tween atoms not to be forgotten. In the following, F is a class of forgetting operators.

4 Note that this term is due to the fact that the answer sets of such an anonymous cycle are
precisely {δ} and {}.

5 In this paper, we only consider the very general class of programs introduced before, but, often,
subclasses of it appear in the literature of ASP and forgetting in ASP.



(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ Σ, we have
AS(f(P, V )∪R) = AS(P ∪R)‖V , for all programsR ∈ C(f) withΣ(R) ⊆ Σ\V .

Thus, (SP) requires that the answer sets of f(P, V ) correspond to those of P , no matter
what programs R over Σ\V we add to both, which is closely related to the concept
of strong equivalence. Among the many properties implied by (SP) [10], (SI) indicates
that rules not mentioning atoms to be forgotten can be added before or after forgetting.
(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈ C(f) and V ⊆ Σ,

we have f(P, V )∪R ≡ f(P ∪R, V ) for all programsR ∈ C(f) withΣ(R) ⊆ Σ\V .
Although (SP) is the central property one wants to ensure to hold when forgetting

atoms from an answer set program, it was shown in [11] that this is not always possible,
that is, there is no forgetting operator that satisfies (SP) and that is defined for all pairs
〈P, V 〉, called forgetting instances, where P is a program and V is a set of atoms to
be forgotten from P . Moreover, a sound and complete criterion, Ω, was presented to
characterize when exactly it is not possible to forget while satisfying (SP). In addition,
a corresponding class of forgetting operators, FSP, was introduced. It was shown that
every operator in FSP satisfies (SP) for instances 〈P, V 〉 that do not satisfyΩ, i.e., those
instances for which it is possible to forget V from P while satisfying (SP). This makes
FSP the ideal choice whenever forgetting is possible. Nevertheless, FSP has two main
problems: first, it is only defined semantically, i.e., it only specifies the HT-models that
a result of forgetting a set of atoms V from program P should have; and second, for
instances 〈P, V 〉 that satisfy Ω, i.e., those instances for which we know that it is not
possible to forget V from P while satisfying (SP), the result f(P, V ) necessarily does
not have a strong connection with P as imposed by (SP).

4 A Syntactic Operator

Our main result of this paper is that the impossibility result for forgetting in ASP can be
overcome at the cost of introducing anonymous cycles (whenever necessary). Moreover,
we do it in a syntactic way, by only manipulating the rules of the input program. Note
again that this approach does not coincide with, e.g., renaming some atom, as in the end
only one rule with the new anonymous atom in the head exists.

Thus, in this section, we introduce the operator fAC which, by syntactical manip-
ulation of the input, removes an atom from a program with anonymous cycles. As this
operator produces in the worst case a program with anonymous cycles, we will then
extend it in a straightforward way to forget any number of atoms iteratively and show
that the order of doing so in fact has no effect on the correctness of the result.

To simplify the presentation and the cases that are considered in the construction,
and also to reduce the size of the input, we reduce programs to a normal form, similar to
[16] and previous related work [14,15,4,20]. There are two essential differences to the
normal form considered in [16]. First of all, contrarily to [16], our normal form applies
to programs with disjunctive heads. Moreover, we eliminate non-minimal rules [2],
which further strengthens the benefits of using normal forms, since non-minimal rules
do not have to be considered any longer. Formally, a rule r in P is minimal if there is no
rule r′ ∈ P such that H (r′) ⊆ H (r)∧B(r′) ⊂ B(r) or H (r′) ⊂ H (r)∧B(r′) ⊆ B(r).



Definition 4. Let P be a logic program with anonymous cycles over 〈Σ,Σan〉. We say
that P is in normal form if the following conditions hold:

– for every a ∈ Σ and r ∈ P , at most one of a, not a or not not a is in B(r);
– if a ∈ H(r), then neither a, nor not a are in B(r);
– all rules in P are minimal.

Note that though the restrictions on appearance of atoms in the definition of the
normal form are only on non-anonymous atoms, they are met by the anonymous ones
too, thanks to the restrictions within the definition of programs with anonymous cycles.
The next definition shows how to transform any program into one in normal form.

Definition 5. Let P be a logic program with anonymous cycles over 〈Σ,Σan〉. The
normal form NF (P ) is obtained by:
1. removing from P all tautological rules r, i.e. rules with H (r) ∩ B+(r) 6= ∅,

with B+(r) ∩ B−(r) 6= ∅ or with B−(r) ∩ B−−(r) 6= ∅;
2. removing, from the remaining rules, occurrences of double negated atoms from the

body, if the atoms appear in the positive body of the same rule;
3. removing, from the remaining rules r, the atoms from the head of r that also occur

in the negated body of r;
4. finally, removing from the resulting program P ′ all rules r that are not minimal.

Note that the above construction ensures that all items of Def. 4 are satisfied, namely the
first item of Def. 4 is ensured by condition 1. and 2. of Def. 5, the second by conditions
1. and 3., and the third by conditions 1. and 4. Notably, not only we can show that the
construction of NF (P ) is correct, i.e. that NF (P ) is in normal form, but, additionally,
we can show that it is strongly equivalent to the original program P .

Proposition 1. Let P be an logic program with anonymous cycles. Then, NF (P ) is in
normal form and is strongly equivalent to P .

In addition, NF (P ) can be computed in at most quadratic time in terms of the number
of rules in P (as ensuring minimality requires comparing all n rules with each other).

Proposition 2. Let P be an logic program with anonymous cycles. Then, the normal
form NF (P ) can be computed in PTIME.

Thus for the remainder of the paper, we only consider programs in normal form, as
these can be efficiently computed and are syntactically equal to the original programs
apart from redundancies in the rules.

Forgetting about an atom from a program while satisfying (SP) should imply the
preservation of the implicit dependencies between the atoms that are not forgotten.

Example 2. Consider the following program P :

a← q q ← c q ← d

Whenever c or d are true, a is indirectly implied via q. Therefore, when forgetting about
q from P , the implicit relationship between a and c, and that between a and d should
be preserved. This can be expressed using the following rules without q:

a← c a← d



These rules correspond to replacing the positive occurrences of q in a rule body with
the body of the rules in which q appears in their head.

If q is not the only atom in the head of a rule, then we need to consider these additional
atoms in the head of the resulting rule.

Example 3. Consider the following program P :

a← q q ∨ b← c

When forgetting about q from P the implicit relation between c and a must be pre-
served. This can be expressed by the rule:

a ∨ b← c

But what happens if the atom to be forgotten appears in the negative body of a rule?

Example 4. Consider the following program P :

a← not q q ∨ b← c q ← d

In this case, there is an implicit relationship between a and the atoms b, c, and d. When
forgetting about q from P such relationship must be preserved. For the literal not q in
the body of the first rule to be true we must have, for each rule r in which q appears in
the head, either the body r is false (c in the case of the second rule and d in the case
of the third rule), or the other atoms that appear in head of r must not be false (b in the
case of the second rule). This can be represented by the following two rules:

a← not d, not c a← not d, not not b

This problem has been tackled by collecting a set of conjunctions of literals [6,16],
each of which can be used to replace not q, but preserves its truth value.

Accordingly, we now generalize the notion of as-dual from [16], for which we need
to introduce some auxiliary functions first. Let N be the function that applies a number
of negation symbols to literals. Formally, for all p ∈ Σ, N 0(p) = p, N 0(not p) =
not p, N 0(not not p) = not not p, N 1(p) = N 1(not not p) = not p, N 1(not p) =
not not p, N 2(p) = N 2(not not p) = not not p, N 2(not p) = not p. For a set of
literals S, N i(S) = {N i(s) : s ∈ S}. The sets B\q(r) and H\q(r) respectively denote
the set of body and head literals after removing every occurrence of q, i.e., B\q(r) =
B(r)\{q, not q, not not q} and H\q(r) = H(r)\{q}.

To make this notion concrete, we introduce the as-dual Dqas(P ) for forgetting about
q from P that collects the set of conjunctions of literals, that can be used to replace
not q, the negated occurrence of the atom to be forgotten.

Dqas(P ) = {{N1(l1), . . . , N
1(lm)} ∪ {N2(lm+1), . . . , N

2(ln)} :
li ∈ B\q(ri), 1 ≤ i ≤ m, lj ∈ H\q(rj),m+ 1 ≤ j ≤ n,
〈{r1, . . . , rm}, {rm+1, . . . , rn}〉 is a partition of P}



The idea is to pass to the operator all the rules that have q in their head as an argument.
Then, we consider the possible partitions 〈F, T 〉 of P , and the sets obtained by collect-
ing the negation of exactly one element (except q) from the body of each rule of F , thus
guaranteeing that the body of every rule of F is not satisfied, together with the double
negation of exactly one head atom (except q) from each rule of T , thus guaranteeing
that the head of every rule of T is satisfied. This definition covers all possible cases
to provide the set of all rules for a program P such that the considered q cannot be
derived. In particular, there are two interesting corner cases: If there is no rule with q
in its head, i.e. the input program P is empty, Dqas(P ) = {∅}, meaning that negating q
requires no atom to have a particular truth value. Furthermore, if P contains q as a fact,
Dqas(P ) = ∅, because it is impossible to negate q.

In the examples above, when forgetting about q from a program P , we were able to
capture the implicit relationships using rules only over the remaining atoms. As already
mentioned, the impossibility results in [11] show that this is in general not possible.
In fact, if the atom to be forgotten has self-cycles, it may be the case that we cannot
faithfully represent the implicit relationships between the remaining atoms using only
rules over these remaining atoms. In theses cases we consider the use of anonymous
atoms within anonymous cycles.

Example 5. Consider the following program P :

q ← not not q, b a← q c← not q

When b is not true, the first rule does not allow us to conclude q, and therefore c must
be true by the third rule. This implicit relationship between b and c can be captured
by the rule c ← not b, which is obtained by the substitution pattern mentioned in the
previous examples. Whenever b is true, the self-cycle on q of the first rule generates a
choice between a and c. Such choice cannot be represented using only rules over a, b
and c. We therefore use anonymous cycles to generate such choice. So, additionally to
the rule c← not b, the result of forgetting about q from P has also the rules:

a← b, δq c← not δq δq ← not not δq

where δq is a fresh anonymous atom from Σan. These rules faithfully capture the im-
plicit relationship between a, b and c in P .

We are now ready to present the formal definition of the operator fAC . As this def-
inition is technically involved, we will first present the new operator itself that allows
forgetting about a single atom from a given program and subsequently explain and illus-
trate its definition. Forgetting about a set of atoms iteratively is presented subsequently.

In order to guarantee the uniqueness of the construction of the operator fAC , we
assume a fixed enumeration δ0, δ1, . . . δn, . . . of the elements of Σan.

Definition 6. Let P be a program with anonymous cycles over 〈Σ,Σan〉, and q ∈ Σ.
Let Pnf = NF (P ) be the normal form of P and δq the anonymous atom with the
lowest index that does not occur in P . Consider the sets

R := {r ∈ Pnf | q 6∈ Σ(r)} R2 := {r ∈ Pnf | not not q ∈ B(r), q 6∈ H(r)}
R0 := {r ∈ Pnf | q ∈ B(r)} R3 := {r ∈ Pnf | not not q ∈ B(r), q ∈ H(r)}
R1 := {r ∈ Pnf | not q ∈ B(r)} R4 := {r ∈ Pnf | not not q 6∈ B(r), q ∈ H(r)}



The result of forgetting about q in P , fAC(P, q), is the normal form of the program
composed of the following rules:

– each r ∈ R
– for each r4 ∈ R4

1a for each r0 ∈ R0

H (r0) ∪H \q(r4)← B\q(r0) ∪ B(r4)
1b for each r2 ∈ R2

H (r2)← B\q(r2) ∪N1(H \q(r4)) ∪N2(B(r4))
– for each r′ ∈ R1 ∪R4

2a for each D ∈ Dqas(R3 ∪R4 \ {r′})
H \q(r′)← B\q(r′) ∪D

– for each r3 ∈ R3

3a for each r0 ∈ R0

H (r0) ∪H \q(r3)← B\q(r0) ∪ B\q(r3) ∪ {δq}
3b for each r2 ∈ R2

H (r2)← B\q(r2) ∪N1(H \q(r3)) ∪N2(B\q(r3)) ∪ {δq}
– if R3 6= ∅

4a for each r′ ∈ R1 ∪R4, D ∈ Dqas(R4 \ {r′})
H \q(r′)← B\q(r′) ∪D ∪ {not δq}

AC δq ← not not δq

The first step is to obtain the normal form Pnf of P using Def. 5. Then, five sets of
rules, R0, R1, R2, R3, and R4, are defined over Pnf , in each of which q appears in the
rules in a different form. In addition, R contains all rules from Pnf that do not mention
q. These latter rules are preserved in the final result of forgetting.

In general terms, the construction is divided in two major cases: one for the rules
which contain q or not not q in the body (those in R0 or R2), and one for the rules that
contain not q in the body or q in the head (those in R1 or R4).

Derivation rules 1a and 1b connect rules in which q occurs positively in the body
with non-cyclic supports of q. In the case of Ex. 2 and 3 the occurrences of q in rule
bodies are replaced with the body literals of rules that have q in the head.

Derivation rule 2 replaces negative occurrences of q in the body of rules by a proof
that q cannot be derived, i.e., an element of Dqas(R3 ∪ R4). This is illustrated in Ex. 4.
If P does not have rules with cyclic support on q, then only rules 1a, 1b, and 2 are used
to obtain the result of forgetting about q from P .

If P has rules with cyclic support for q, i.e., R3 is not empty, then fAC creates an
anonymous cycle with a fresh anonymous atom δq from Σan. This anonymous atom is
then used as an arbiter between rules derived by 3a, 3b and 4. The derivation rules 3a
and 3b replace the positive occurrences of q in rule bodies by the anonymous atom δq ,
along with the body literals of the corresponding rule of R3. Derivation rule 4 replaces
negative occurrences of q in rules by a proof that there is no non-cyclic support for q,
i.e., an element of Dqas(R4) and not δq . These derivation rules are illustrated in Ex. 5.

We now prove that our operator fAC behaves in a desirable way, in the sense that it
preserves the HT-models of the original program (modulo the forgotten atom), thus nec-
essarily preserving the (direct or indirect) relationships between the remaining atoms.



Theorem 1. Let P be a program with anonymous cycles over 〈Σ,Σan〉, and q ∈ Σ.
Then, we have that:

HT (fAC(P, q)) = HT (P )‖{q}
We have defined an operator that forgets only one atom from a given program. In

order to forget a set of atoms, we need to iterate the operator. Iteration is only possible
if the operator is closed under the considered class of programs. Although fundamental,
this property is not satisfied by some operators in the literature, namely the one in [16],
thus not allowing the iteration of the operators. In the case of fAC , we can prove that it
is closed for the class of programs with anonymous cycles.

Proposition 3. Let P be a logic program with anonymous cycles over 〈Σ,Σan〉 and
q ∈ Σ. Then fAC(P, q) is a logic program with anonymous cycles over 〈Σ\{q}, Σan〉.

When forgetting a set of atoms iteratively, although the concrete result of forgetting
depends on the order by which the atoms are forgotten, the following result shows that
this is not a problem, in the sense that the results are strongly equivalent.

Proposition 4. LetP be a program with anonymous cycles over 〈Σ,Σan〉, and q1, q2 ∈
Σ. Then we have that:

fAC(fAC(P, q1), q2) ≡ fAC(fAC(P, q2), q1)

In order to define a concrete extension of the operator fAC that allows forgetting a
sets of atoms, we assume a fixed linear order on Σ, which we denote by <.

Definition 7. Let P be a program with anonymous cycles over 〈Σ,Σan〉 and V =
{q1, q2, . . . , qn} ⊆ Σ a set of atoms with qi < qj for each 1 ≤ i < j ≤ n. The result of
forgetting about V from P , denoted by f∗AC(P, V ), is defined inductively as:

f∗AC(P, ∅) = P

f∗AC(P, {q1, q2, . . . , qn}) = f∗AC(fAC(P, q1), {q2, . . . , qn})

Example 6. Consider the following program P :

a← q. c← p. p← not q. q ← b, not p.

In order to forget about the set V = {p, q} from P , we start by forgetting about p from
P using fAC . Since there are no cycles on p, fAC does not introduce anonymous cycles,
and we thus obtain the rules:

a← q. c← not q. q ← b, not not q.

If we now subsequently forget also q, and since now there are cycles on the atom to
be forgotten, fAC introduces anonymous cycles, and thus the following program with
anonymous cycles is obtained:

a← b, δ. c← not δ. c← not b. δ ← not not δ.

which is the result of f∗AC(P, {p, q}) 6.
6 We could have chosen a different order by which p and q are forgotten, but, according to

Prop. 4, the result would be strongly equivalent.



We can now state the main result of the paper. Namely, our new operator f∗AC satis-
fies (SP), thus making it the first (syntactical) operator that satisfies (SP) for all forget-
ting instances.

Theorem 2. The operator f∗AC satisfies (SP), i.e. for each program with anonymous
cycles P over 〈Σ,Σan〉, and V ⊆ Σ, we have that

AS(f∗AC(P, V ) ∪R) = AS(P ∪R)‖V ,

for all programs R with Σ(R) ⊆ Σ\V .

This result guarantees that we can use the operator f∗AC to forget about a set of
atoms from a program, while preserving all the dependencies between the atoms that
were not forgotten. Given the already mentioned impossibility results of [11], the use
of anonymous cycles is essential to allow the preservation of all dependencies. An im-
portant consequence of the previous theorem is the fact that f∗AC satisfies also several
other properties of forgetting. In particular, f∗AC satisfies (SI), which guarantees that
all rules of a program P not mentioning the atoms to be forgotten be preserved when
forgetting. It is worth noting that, although (SI) is a desirable property for forgetting,
several classes of forgetting operators in the literature fail to satisfy this condition.

Proposition 5. The operator f∗AC satisfies (SI).

An important consequence of this result, together with the fact that f∗AC is a syntac-
tic operator, is the fact that the result of forgetting about a set of atoms from a program P
according to f∗AC can ben obtained by a syntactic manipulation of only those rules of P
that mention the atoms to be forgotten, while the remaining rules are simply preserved
in the result of forgetting.

5 Conclusions

We enhanced the language of logic programming to include anonymous cycles so that
we can express relations between atoms that, under traditional logic programming se-
mantics, were only possible to be expressed by the help of third atoms that act as ar-
biters. We then used this enhanced language to formulate a syntactic operator that for-
gets atoms from logic programs while obeying strong persistence, and is closed under
this language, which means that it can be iterated, making it possible for any number of
atoms to be forgotten from a program, in any order, while still maintaining (SP). This
is an improvement over existing operators, which either were only defined for very
restricted classes of programs [16], or did not obey most desirable properties [25,6].

Future work includes investigating syntactic operators defined over traditional logic
programs for the semantics in [13], that correspond to weaker versions of (SP), as well
as investigating how forgetting relates to other operations such as updating , and how it
translates to hybrid knowledge representation formalisms [17,22,3].
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tially supported by FCT projects FORGET (PTDC/CCI-INF/32219/2017) and NOVA
LINCS (UID/CEC/04516/2013).



References

1. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting auxiliary
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