

Vorlesung "Formale Argumentation"

7. Definierbarkeit und Bezeugende Frameworks

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

23. Mai 2024 Leipzig

... set the scene.

Gegeben einen logische Sprache $\mathcal L$ zusammen mit einer Semantik $\sigma_{\mathcal L}: \mathbf 2^{\mathcal L} \to \mathbf 2^{\mathcal I}$. Somit bekomme ich für jede $\mathcal L$ -theorie $\mathcal T \subseteq \mathcal L$ eine Menge von Modellen/Extensionen $\sigma_{\mathcal L}(\mathcal T)$.

... set the scene.

Gegeben einen logische Sprache $\mathcal L$ zusammen mit einer Semantik $\sigma_{\mathcal L}: 2^{\mathcal L} \to 2^{\mathcal I}$. Somit bekomme ich für jede $\mathcal L$ -theorie $\mathcal T \subseteq \mathcal L$ eine Menge von Modellen/Extensionen $\sigma_{\mathcal L}(\mathcal T)$.

Zum Beispiel:

① Aussagenlogik: $T = \{a, b \lor c\}$, $Mod(T) = \{\{a, b\}, \{a, c\}, \{a, b, c\}\}$

... set the scene.

Gegeben einen logische Sprache $\mathcal L$ zusammen mit einer Semantik $\sigma_{\mathcal L}: 2^{\mathcal L} \to 2^{\mathcal I}$. Somit bekomme ich für jede $\mathcal L$ -theorie $\mathcal T \subseteq \mathcal L$ eine Menge von Modellen/Extensionen $\sigma_{\mathcal L}(\mathcal T)$.

Zum Beispiel:

- ① Aussagenlogik: $T = \{a, b \lor c\}$, $Mod(T) = \{\{a, b\}, \{a, c\}, \{a, b, c\}\}$
- **2** Argumentationtheorie: $F = (\{a, b\}, \{(a, b), (b, a)\}), stb(F) = \{\{a\}, \{b\}\}$

Definierbarkeit beschäftigt sich mit der Umkehrung, d.h.:

... set the scene.

Gegeben einen logische Sprache $\mathcal L$ zusammen mit einer Semantik $\sigma_{\mathcal L}: \mathbf 2^{\mathcal L} \to \mathbf 2^{\mathcal I}$. Somit bekomme ich für jede $\mathcal L$ -theorie $\mathcal T \subseteq \mathcal L$ eine Menge von Modellen/Extensionen $\sigma_{\mathcal L}(\mathcal T)$.

Zum Beispiel:

- Aussagenlogik: $T = \{a, b \lor c\}$, $Mod(T) = \{\{a, b\}, \{a, c\}, \{a, b, c\}\}$
- 2 Argumentationtheorie: $F = (\{a, b\}, \{(a, b), (b, a)\}), stb(F) = \{\{a\}, \{b\}\}$

Definierbarkeit beschäftigt sich mit der Umkehrung, d.h.:

Gegeben eine Menge von Modellen/Extensionen $\mathbb{S} \subseteq \mathcal{I}$. Existiert eine \mathcal{L} -theorie T mit $\sigma_{\mathcal{L}}(T) = \mathbb{S}$?

Definierbarkeit

... set the scene.

Gegeben einen logische Sprache $\mathcal L$ zusammen mit einer Semantik $\sigma_{\mathcal L}: 2^{\mathcal L} \to 2^{\mathcal I}$. Somit bekomme ich für jede $\mathcal L$ -theorie $\mathcal T \subseteq \mathcal L$ eine Menge von Modellen/Extensionen $\sigma_{\mathcal L}(\mathcal T)$.

Zum Beispiel:

- Aussagenlogik: $T = \{a, b \lor c\}$, $Mod(T) = \{\{a, b\}, \{a, c\}, \{a, b, c\}\}$
- **2** Argumentationtheorie: $F = (\{a, b\}, \{(a, b), (b, a)\}), stb(F) = \{\{a\}, \{b\}\}$

Definierbarkeit beschäftigt sich mit der Umkehrung, d.h.:

Gegeben eine Menge von Modellen/Extensionen $\mathbb{S} \subseteq \mathcal{I}$. Existiert eine \mathcal{L} -theorie T mit $\sigma_{\mathcal{L}}(T) = \mathbb{S}$?

...ist einfach. Warum?

...ist einfach. Warum?

Proposition

 $Sei \mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

... ist einfach. Warum?

Proposition

Sei $\mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

• $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee \ldots \vee D_n$ (n Disjunkte)

...ist einfach. Warum?

Proposition

Sei $\mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee \ldots \vee D_n$ (n Disjunkte)
- $D_i = \bigwedge_{a \in M_i} a \land \bigwedge_{a \in A \setminus M_i} \neg a$ (exakte Wahrheitsbedingung)

...ist einfach. Warum?

Proposition

Sei $\mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee \ldots \vee D_n$ (n Disjunkte)
- $D_i = \bigwedge_{a \in M_i} a \land \bigwedge_{a \in A \setminus M_i} \neg a$ (exakte Wahrheitsbedingung)

Beispiel:

Sei
$$\mathbb{S} = \{\{a_1\}, \{a_1, a_2\}, \{a_2, a_3\}\}$$
 und $\mathcal{A} = \{a_1, a_2, a_3\}$. Somit

... ist einfach. Warum?

Proposition

Sei $\mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee \ldots \vee D_n$ (n Disjunkte)
- $D_i = \bigwedge_{a \in M_i} a \land \bigwedge_{a \in A \backslash M_i} \neg a$ (exakte Wahrheitsbedingung)

Beispiel:

Sei
$$\mathbb{S} = \{\{a_1\}, \{a_1, a_2\}, \{a_2, a_3\}\}$$
 und $\mathcal{A} = \{a_1, a_2, a_3\}$. Somit

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee D_3$ (3 Disjunkte)
- $D_1 = a_1 \wedge \neg a_2 \wedge \neg a_3$, $D_2 = a_1 \wedge a_2 \wedge \neg a_3$, $D_3 = \neg a_1 \wedge a_2 \wedge a_3$

...ist einfach. Warum?

Proposition

Sei $\mathbb{S} = \{M_1, \dots, M_n\}$ eine endliche Menge von Interpretation mit $M_i \subseteq \{a_1, a_2, a_3, \dots, a_m\} = \mathcal{A}$. Es gilt $Mod(\phi_{\mathbb{S}}) = \mathbb{S}$ wobei

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee \ldots \vee D_n$ (n Disjunkte)
- $D_i = \bigwedge_{a \in M_i} a \land \bigwedge_{a \in A \setminus M_i} \neg a$ (exakte Wahrheitsbedingung)

Beispiel:

Sei $\mathbb{S} = \{\{a_1\}, \{a_1, a_2\}, \{a_2, a_3\}\}$ und $\mathcal{A} = \{a_1, a_2, a_3\}$. Somit

- $\phi_{\mathbb{S}} = D_1 \vee D_2 \vee D_3$ (3 Disjunkte)
- $D_1 = a_1 \wedge \neg a_2 \wedge \neg a_3$, $D_2 = a_1 \wedge a_2 \wedge \neg a_3$, $D_3 = \neg a_1 \wedge a_2 \wedge a_3$

Frage: Ist Definierbarkeit auch einfach für $\mathcal{A} = \{a_1, a_2, a_3, \ldots\}$?

Definition

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

Anmerkungen:

 Die Realizierbarkeit einer Menge S garantiert die Existenz eines Zeugen-AFs F. Dies heißt nicht, daß wir zwangsweise so ein F kennen.

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

Anmerkungen:

- Die Realizierbarkeit einer Menge S garantiert die Existenz eines Zeugen-AFs F. Dies heißt nicht, daß wir zwangsweise so ein F kennen.
- Angabe eines Zeugen-AFs ist aber hinreichend für die Verifikation der Bealisierbierkeit

 \Rightarrow Rate (glücklich) F mit $\sigma(F) = \mathbb{S}$

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

Anmerkungen:

- Die Realizierbarkeit einer Menge S garantiert die Existenz eines Zeugen-AFs F. Dies heißt nicht, daß wir zwangsweise so ein F kennen.
- Angabe eines Zeugen-AFs ist aber hinreichend für die Verifikation der Realisierbierkeit.
 - \Rightarrow Rate (glücklich) F mit $\sigma(F) = \mathbb{S}$
- Die Falsifikation der Realsierbarkeit ist eine Aussage über alle AFs, d.h. σ(F₁) ≠ S, σ(F₂) ≠ S, σ(F₃) ≠ S, . . .
 - ⇒ Kein Raten möglich

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

• Ist $S = \emptyset$ *cf*-realisable?

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

1 Ist $S = \emptyset$ cf-realisable? Nein! Für jedes F gilt $\emptyset \in cf(F)$.

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

1 Ist $S = \emptyset$ cf-realisable? Nein! Für jedes F gilt $\emptyset \in cf(F)$.

$$\mathbb{S}$$
 cf-realisable \Rightarrow $\mathbb{S} \neq \emptyset$

2 Ist $S = \{\emptyset, \{a, b\}\}\$ cf-realisable?

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

1 Ist $S = \emptyset$ cf-realisable? Nein! Für jedes F gilt $\emptyset \in cf(F)$.

$$\mathbb{S}$$
 cf-realisable \Rightarrow $\mathbb{S} \neq \emptyset$

Ist $\mathbb{S} = \{\emptyset, \{a, b\}\}$ cf-realisable? Nein! Für jedes F gilt: Wenn $E \in cf(F)$, dann auch jede Teilmenge $E' \subseteq E$.

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

1 Ist $S = \emptyset$ cf-realisable? Nein! Für jedes F gilt $\emptyset \in cf(F)$.

$$\mathbb{S}$$
 cf-realisable \Rightarrow $\mathbb{S} \neq \emptyset$

② Ist $\mathbb{S} = \{\emptyset, \{a, b\}\}$ cf-realisable? Nein! Für jedes F gilt: Wenn $E \in cf(F)$, dann auch jede Teilmenge $E' \subseteq E$.

$$\mathbb{S}$$
 cf-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S})$

wobei
$$dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}\$$
 (downward-closure)

Definition

Definition

- \bigcirc \mathbb{S} cf-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- **3** Ist $S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$ cf-realisable?

Definition

- \bigcirc \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} \neq \emptyset$
- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- Ist $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ cf-realisable? Nein! Es müsste auch $\{a, b, c\}$ konfliktfrei sein.

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

- \bigcirc \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} \neq \emptyset$
- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- Ist $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$ cf-realisable? Nein! Es müsste auch $\{a,b,c\}$ konfliktfrei sein. Genauer: Die Menge $\{a,b\}$ kann ich um c erweitern, da wir schon wissen, daß $\{a,c\}$ und $\{b,c\}$ auch konfliktfrei sind

 \mathbb{S} cf-realisable \Rightarrow \mathbb{S} ist tight

• $Args_{\mathbb{S}} = \bigcup \mathbb{S}$

- (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Beispiel:

Für $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ ergibt sich

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Beispiel:

Für
$$S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$$
 ergibt sich

- $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\} \cup \{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}$

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Beispiel:

Für
$$S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$$
 ergibt sich

- $Args_{\mathbb{S}} = \{a, b, c\}$
- $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\} \cup \{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}$

Definition

•
$$Args_{\mathbb{S}} = \bigcup \mathbb{S}$$
 (Menge aller Argumente)

•
$$Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$$
 ("verträgliche" Paare)

Beispiel:

Für
$$S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$$
 ergibt sich

•
$$Args_{\mathbb{S}} = \{a, b, c\}$$

•
$$Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\} \cup \{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}$$

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

Intuitiv: Falls S nicht um a erweitert werden kann, dann muß es ein Argument s in S geben, welches nicht mit a verträglich ist.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

- \bigcirc S *cf*-realisable \Rightarrow S $\neq \emptyset$
- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- ③ \mathbb{S} *cf*-realisable \Rightarrow \mathbb{S} ist tight Beweis: \mathbb{S} ist *cf*-realisable, d.h. es ex. ein *F* mit *cf*(*F*) = \mathbb{S} .

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- ③ \mathbb{S} *cf*-realisable \Rightarrow \mathbb{S} ist tight Beweis: \mathbb{S} ist *cf*-realisable, d.h. es ex. ein *F* mit *cf*(*F*) = \mathbb{S} . Ang. nicht tight, dann ex. $S \in cf(F)$ und $a \in Args_{cf(F)}$ mit $S \cup \{a\} \notin cf(F)$, aber für alle $s \in S$, $(a, s) \in Pairs_{cf(F)}$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

- **1** \bigcirc S *cf*-realisable \Rightarrow S ≠ Ø
- \bigcirc \mathbb{S} cf-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- ③ \mathbb{S} *cf*-realisable \Rightarrow \mathbb{S} ist tight Beweis: \mathbb{S} ist *cf*-realisable, d.h. es ex. ein F mit $cf(F) = \mathbb{S}$. Ang. nicht tight, dann ex. $S \in cf(F)$ und $a \in Args_{cf(F)}$ mit $S \cup \{a\} \notin cf(F)$, aber für alle $s \in S$, $\{a, s\} \in Pairs_{cf(F)}$. Letzteres bedeutet, daß für alle $s \in S$, $\{a, s\} \in cf(F)$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

- **①** \mathbb{S} *cf*-realisable \Rightarrow \mathbb{S} ≠ \emptyset
- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- ③ \mathbb{S} *cf*-realisable \Rightarrow \mathbb{S} ist tight Beweis: \mathbb{S} ist *cf*-realisable, d.h. es ex. ein F mit $cf(F) = \mathbb{S}$. Ang. nicht tight, dann ex. $S \in cf(F)$ und $a \in Args_{cf(F)}$ mit $S \cup \{a\} \notin cf(F)$, aber für alle $s \in S$, $\{a, s\} \in Pairs_{cf(F)}$. Letzteres bedeutet, daß für alle $s \in S$, $\{a, s\} \in cf(F)$. Des Weiteren impliziert $a \in Args_{cf(F)}$, daß $\{a\} \in cf(F)$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

- **1** \bigcirc S *cf*-realisable \Rightarrow S ≠ Ø
- ② \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S}) = \{S' \mid S' \subseteq S, S \in \mathbb{S}\}$
- ③ \mathbb{S} cf-realisable \Rightarrow \mathbb{S} ist tight Beweis: \mathbb{S} ist cf-realisable, d.h. es ex. ein F mit $cf(F) = \mathbb{S}$. Ang. nicht tight, dann ex. $S \in cf(F)$ und $a \in Args_{cf(F)}$ mit $S \cup \{a\} \notin cf(F)$, aber für alle $s \in S$, $\{a, s\} \in Pairs_{cf(F)}$. Letzteres bedeutet, daß für alle $s \in S$, $\{a, s\} \in cf(F)$. Des Weiteren impliziert $a \in Args_{cf(F)}$, daß $\{a\} \in cf(F)$. Kombiniert mit $S \in cf(F)$ folgt $S \cup \{a\} \in cf(F)$. W!

- 2 \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S})$
- ③ S cf-realisable \Rightarrow S ist tight

- 2 \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S})$
- ③ S *cf*-realisable \Rightarrow S ist tight

Auch hinreichend? Falls ja, wie beweist man das?

Beispiel: Sei $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}.$

- 2 \mathbb{S} *cf*-realisable \Rightarrow $\mathbb{S} = dcl(\mathbb{S})$
- ③ S *cf*-realisable \Rightarrow S ist tight

Auch hinreichend? Falls ja, wie beweist man das?

Beispiel: Sei $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}\}$. Klar, $\mathbb{S} \neq \emptyset$ und $\mathbb{S} = dcl(\mathbb{S})$.

- ③ S cf-realisable \Rightarrow S ist tight

Auch hinreichend? Falls ja, wie beweist man das?

Beispiel: Sei $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}$. Klar, $\mathbb{S} \neq \emptyset$ und $\mathbb{S} = dcl(\mathbb{S})$. Des Weiteren ist $Args_{\mathbb{S}} = \{a, b, c\}$, $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\}$ und somit \mathbb{S} auch tight.

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

- ③ S cf-realisable \Rightarrow S ist tight

Auch hinreichend? Falls ja, wie beweist man das?

Beispiel: Sei $\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}\}$. Klar, $\mathbb{S} \neq \emptyset$ und $\mathbb{S} = dcl(\mathbb{S})$. Des Weiteren ist $Args_{\mathbb{S}} = \{a, b, c\}$, $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\}$ und somit \mathbb{S} auch tight.

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

ein Zeugen-AF würde die Realisierbarkeit zeigen

Definition

Gegen eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Wir definieren

$$\textit{F}^\textit{cf}_{\mathbb{S}} = (\textit{Args}_{\mathbb{S}}, (\textit{Args}_{\mathbb{S}} \times \textit{Args}_{\mathbb{S}}) \setminus \textit{Pairs}_{\mathbb{S}})$$

Definition

Gegen eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Wir definieren

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}})$$

Beispiel:

Für
$$\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}$$
 ist $Args_{\mathbb{S}} = \{a, b, c\}$ und $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\}$. Somit

Definition

Gegen eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Wir definieren

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}})$$

Beispiel:

Für
$$S = \{\emptyset, \{a\}, \{b\}, \{c\}\}\$$
 ist $Args_S = \{a, b, c\}\$ und $Pairs_S = \{(a, a), (b, b), (c, c)\}\$. Somit

$$F_{\mathbb{S}}^{cf} = (\{a,b,c\},\{(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\})$$

Es gilt
$$\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$$
.

Definition

Gegen eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Wir definieren

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}})$$

Beispiel:

Für
$$\mathbb{S} = \{\emptyset, \{a\}, \{b\}, \{c\}\}$$
 ist $Args_{\mathbb{S}} = \{a, b, c\}$ und $Pairs_{\mathbb{S}} = \{(a, a), (b, b), (c, c)\}$. Somit

$$F_{\mathbb{S}}^{cf} = (\{a,b,c\},\{(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\})$$

Es gilt
$$\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$$
.

Einfache Eigenschaften:

- $F_{\mathbb{S}}^{cf}$ ist symmetrisch
- $L(F_{\mathbb{S}}^{cf}) = \emptyset$

(keine self-loops)

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

Proof.

(←) Schon gezeigt.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (⊆) Sei $S \in S$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_S$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (<) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (⊆) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (⊇) Indirekt.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (<) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf(F_{\mathbb{S}}^{cf}) \setminus \mathbb{S}$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (<) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen. Da $E \in cf\left(F^{cf}_{\mathbb{S}}\right)$ ang. gilt für $a,b \in E$: $(a,b) \in Pairs_{\mathbb{S}}$. Somit nach Def. ex. $S' \in \mathbb{S}$: $\{a,b\} \subseteq S' \subset E$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen. Da $E \in cf\left(F^{cf}_{\mathbb{S}}\right)$ ang. gilt für $a,b \in E$: $(a,b) \in Pairs_{\mathbb{S}}$. Somit nach Def. ex. $S' \in \mathbb{S}$: $\{a,b\} \subseteq S' \subset E$. Da \mathbb{S} endl., ex. ein \subseteq -maximales $S \in \mathbb{S}$ mit $\{a,b\} \subseteq S \subset E$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen. Da $E \in cf\left(F^{cf}_{\mathbb{S}}\right)$ ang. gilt für $a,b \in E$: $(a,b) \in Pairs_{\mathbb{S}}$. Somit nach Def. ex. $S' \in \mathbb{S}$: $\{a,b\} \subseteq S' \subset E$. Da \mathbb{S} endl., ex. ein \subseteq -maximales $S \in \mathbb{S}$ mit $\{a,b\} \subseteq S \subset E$. D.h. $S \cup \{c\} \notin \mathbb{S}$ für ein $c \in E \setminus S \subseteq Args_{\mathbb{S}}$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (\Rightarrow) Wir zeigen $\mathbb{S} = cf(F_{\mathbb{S}}^{cf})$.
 - (\subseteq) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a, b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf\left(F^{cf}_{\mathbb{S}}\right) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen. Da $E \in cf\left(F^{cf}_{\mathbb{S}}\right)$ ang. gilt für $a,b \in E$: $(a,b) \in Pairs_{\mathbb{S}}$. Somit nach Def. ex. $S' \in \mathbb{S}$: $\{a,b\} \subseteq S' \subset E$. Da \mathbb{S} endl., ex. ein \subseteq -maximales $S \in \mathbb{S}$ mit $\{a,b\} \subseteq S \subset E$. D.h. $S \cup \{c\} \notin \mathbb{S}$ für ein $c \in E \setminus S \subseteq Args_{\mathbb{S}}$. Ferner ist $S \cup \{c\} \subseteq E$ und somit $S \cup \{c\} \in cf\left(F^{cf}_{\mathbb{S}}\right)$.

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, $\mathbb{S} = dcl(\mathbb{S})$, \mathbb{S} tight \Leftrightarrow \mathbb{S} cf-realisable

- (←) Schon gezeigt.
- (⇒) Wir zeigen $S = cf(F_S^{cf})$.
 - (⊆) Sei $S \in \mathbb{S}$. Dann gilt für alle $a, b \in S$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit $(a,b) \notin R(F_{\mathbb{S}}^{cf})$ und folglich, $S \in cf(F_{\mathbb{S}}^{cf})$.
 - (2) Indirekt. Sei $E \in cf(F_{\mathbb{S}}^{cf}) \setminus \mathbb{S}$. Da $\mathbb{S} = dcl(\mathbb{S})$ ex. kein $S \in \mathbb{S}$ mit $E \subseteq S$. Des Weiteren da $\mathbb{S} \neq \emptyset$ können wir $E \neq \emptyset$ annehmen. Da $E \in cf(F_{\mathbb{S}}^{cf})$ ang. gilt für $a, b \in E$: $(a, b) \in Pairs_{\mathbb{S}}$. Somit nach Def. ex. $S' \in \mathbb{S}$: $\{a, b\} \subseteq S' \subset E$. Da \mathbb{S} endl., ex. ein \subseteq -maximales $S \in \mathbb{S}$ mit $\{a, b\} \subseteq S \subset E$. D.h. $S \cup \{c\} \notin \mathbb{S}$ für ein $c \in E \setminus S \subseteq Args_{\mathbb{S}}$. Ferner ist $S \cup \{c\} \subseteq E$ und somit $S \cup \{c\} \in cf(F_{\mathbb{S}}^{cf})$. Da S tight ex. ein $s \in S$ mit $(c, s) \notin Pairs_{\mathbb{S}}$ im W! zu $c, s \in E'$ welches $(c, s) \in Pairs_{\mathbb{S}}$ garantiert s_{cabs}

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

• Ist $S = \emptyset$ *stb*-realizable?

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

• Ist $\mathbb{S} = \emptyset$ stb-realizable? Ja! Betrachte $F = (\{a\}, \{(a, a)\})$.

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

- Ist $S = \emptyset$ stb-realizable? Ja! Betrachte $F = (\{a\}, \{(a, a)\})$.
- 2 Ist $S = \{\{a\}, \{a, b\}\}$ stb-realizable?

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

- Ist $\mathbb{S} = \emptyset$ stb-realizable? Ja! Betrachte $F = (\{a\}, \{(a, a)\})$.
- Ist S = {{a}, {a,b}} stb-realizable? Nein! Für jedes F gilt: stb(F) ist ⊆-Antikette (incomparable)

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

- Ist $\mathbb{S} = \emptyset$ stb-realizable? Ja! Betrachte $F = (\{a\}, \{(a, a)\})$.
- Ist S = {{a}, {a,b}} stb-realizable? Nein! Für jedes F gilt: stb(F) ist ⊆-Antikette (incomparable)

 \mathbb{S} *stb*-realizable \Rightarrow \mathbb{S} incomparable

3 Ist $S = \{\{a, b\}, \{a, c\}, \{b, c\}\}$ *stb*-realizable?

Definition

Gegeben eine Semantik σ . Eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$ ist σ -realizable, sofern es ein AF F gibt mit: $\sigma(F) = \mathbb{S}$.

- Ist $\mathbb{S} = \emptyset$ stb-realizable? Ja! Betrachte $F = (\{a\}, \{(a, a)\})$.
- Ist S = {{a}, {a,b}} stb-realizable? Nein! Für jedes F gilt: stb(F) ist ⊆-Antikette (incomparable)

 \mathbb{S} *stb*-realizable \Rightarrow \mathbb{S} incomparable

③ Ist $\mathbb{S} = \{\{a, b\}, \{a, c\}, \{b, c\}\}$ stb-realizable? Nein! \mathbb{S} ist nicht tight.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

- \bigcirc \mathbb{S} stb-realizable \Rightarrow \mathbb{S} incomparable

Beweis: Sei \mathbb{S} *stb*-realizable, d.h. es ex. ein F mit $stb(F) = \mathbb{S}$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

- \bigcirc \mathbb{S} stb-realizable \Rightarrow \mathbb{S} incomparable

Beweis: Sei \mathbb{S} *stb*-realizable, d.h. es ex. ein F mit $stb(F) = \mathbb{S}$. Sei $S \in stb(F)$ und $a \in Args_{stb(F)}$ mit $S \cup \{a\} \notin stb(F)$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a, b) \mid \{a, b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

- \bigcirc \mathbb{S} stb-realizable \Rightarrow \mathbb{S} incomparable

Beweis: Sei \mathbb{S} *stb*-realizable, d.h. es ex. ein F mit $stb(F) = \mathbb{S}$. Sei $S \in stb(F)$ und $a \in Args_{stb(F)}$ mit $S \cup \{a\} \notin stb(F)$. Klar, $a \notin S$ und somit nach Def. stable semantics ex. $s \in S$ mit $(s, a) \in R(F)$.

- $Args_{\mathbb{S}} = \bigcup \mathbb{S}$ (Menge aller Argumente)
- $Pairs_{\mathbb{S}} = \{(a,b) \mid \{a,b\} \subseteq S, S \in \mathbb{S}\}$ ("verträgliche" Paare)

Definition

Eine Menge $\mathbb S$ heißt tight, sofern für alle $S \in \mathbb S$ und $a \in Args_{\mathbb S}$ gilt: Falls $S \cup \{a\} \notin \mathbb S$, dann existiert ein $s \in S$ mit $(a, s) \notin Pairs_{\mathbb S}$.

- \bigcirc \mathbb{S} *stb*-realizable \Rightarrow \mathbb{S} incomparable

Beweis: Sei S stb-realizable, d.h. es ex. ein F mit stb(F) = S. Sei $S \in stb(F)$ und $a \in Args_{stb(F)}$ mit $S \cup \{a\} \notin stb(F)$. Klar, $a \notin S$ und somit nach Def. stable semantics ex. $s \in S$ mit $(s,a) \in R(F)$. Demzufolge, für alle $E \in stb(F)$ gilt, $\{s,a\} = \{a,s\} \notin E$. Dies bedeutet $(a,s) \notin Pairs_{stb(F)}$.

Definition

Gegeben eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Das kanonische $F^{cf}_{\mathbb{S}}$ ist gegeben durch

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}}) = (A, R).$$

Sei nun $\mathcal{E} = stb\left(F_{\mathbb{S}}^{cf}\right) \setminus \mathbb{S}$. Wir definieren weiter

$$\textit{F}^\textit{stb}_\mathbb{S} = \left(\textit{A} \cup \{\overline{\textit{E}} \mid \textit{E} \in \mathcal{E}\}, \textit{R} \cup \{(\overline{\textit{E}}, \overline{\textit{E}}), (\textit{a}, \overline{\textit{E}}) \mid \textit{E} \in \mathcal{E}, \textit{a} \in \textit{Args}_\mathbb{S} \times \textit{E}\}\right)$$

Definition

Gegeben eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Das kanonische $F^{cf}_{\mathbb{S}}$ ist gegeben durch

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}}) = (A, R).$$

Sei nun $\mathcal{E} = stb\left(F_{\mathbb{S}}^{cf}\right) \setminus \mathbb{S}$. Wir definieren weiter

$$\textit{F}^{\textit{stb}}_{\mathbb{S}} = \left(\textit{A} \cup \{\overline{\textit{E}} \mid \textit{E} \in \mathcal{E}\}, \textit{R} \cup \{(\overline{\textit{E}}, \overline{\textit{E}}), (\textit{a}, \overline{\textit{E}}) \mid \textit{E} \in \mathcal{E}, \textit{a} \in \textit{Args}_{\mathbb{S}} \setminus \textit{E}\}\right)$$

Intuition: Für jede "überflüssige" stable extension E, füge ich ein neues Argument \overline{E} ein, welches von allen Argumenten außerhalb von E attackiert wird. Somit ist E dann nicht mehr stable. (siehe Übung 3)

Definition

Gegeben eine Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$. Das kanonische $F_{\mathbb{S}}^{cf}$ ist gegeben durch

$$F_{\mathbb{S}}^{cf} = (Args_{\mathbb{S}}, (Args_{\mathbb{S}} \times Args_{\mathbb{S}}) \setminus Pairs_{\mathbb{S}}) = (A, R).$$

Sei nun $\mathcal{E} = stb\left(F_{\mathbb{S}}^{cf}\right) \setminus \mathbb{S}$. Wir definieren weiter

$$F_{\mathbb{S}}^{stb} = \left(A \cup \{\overline{E} \mid E \in \mathcal{E}\}, R \cup \{(\overline{E}, \overline{E}), (a, \overline{E}) \mid E \in \mathcal{E}, a \in Args_{\mathbb{S}} \setminus E\}\right)$$

Proposition

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

$$\mathbb{S} \neq \emptyset$$
, \mathbb{S} incomparable, \mathbb{S} tight $\Rightarrow \mathbb{S} = stb(F_{\mathbb{S}}^{stb})$

Charakterisierung - Stable Semantics

Theorem

Gegeben eine endliche Menge $\mathbb{S} \subseteq 2^{\mathcal{U}}$.

 \mathbb{S} incomparable, \mathbb{S} tight \Leftrightarrow \mathbb{S} stb-realisable

Vorlesung "Formale Argumentation"

7. Definierbarkeit und Bezeugende Frameworks

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

23. Mai 2024 Leipzig

