

Vorlesung "Formale Argumentation"

6. Komplexität von typischen Entscheidungsproblemen

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

16. Mai 2024 Leipzig

• Credulous Acceptance (Cred $_{\sigma}$)
Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$.
Frage: Gilt $a \in \bigcup \sigma(F)$?

- Credulous Acceptance (Cred $_{\sigma}$)
 Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$.
 Frage: Gilt $a \in \bigcup \sigma(F)$?
- Skeptical Acceptance (Scept $_{\sigma}$)
 Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$.
 Frage: Gilt $a \in \bigcap \sigma(F)$?

- Credulous Acceptance (Cred $_{\sigma}$)
 Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$.
 Frage: Gilt $a \in \bigcup \sigma(F)$?
- ② Skeptical Acceptance (Scept $_{\sigma}$) Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$. Frage: Gilt $a \in \bigcap \sigma(F)$?
- Solution (Ver $_{\sigma}$)
 Gegeben: Ein AF F = (A, R) und ein Menge $E \subseteq A$.
 Frage: Gilt $E \in \sigma(F)$?

- Credulous Acceptance (Cred_σ)
 Gegeben: Ein AF F = (A, R) und ein Argument a ∈ A.
 Frage: Gilt a ∈ ∪ σ(F)?
- ② Skeptical Acceptance (Scept $_{\sigma}$) Gegeben: Ein AF F = (A, R) und ein Argument $a \in A$. Frage: Gilt $a \in \bigcap \sigma(F)$?
- **③** Verification (Ver $_{\sigma}$) Gegeben: Ein AF F = (A, R) und ein Menge $E \subseteq A$. Frage: Gilt $E \in \sigma(F)$?
- Existence (Exists_{σ}) Gegeben: Ein AF F = (A, R). Frage: Gilt $\sigma(F) \neq \emptyset$?

... eine kurze Wiederholung.

Komplexitätstheorie beschäftigt sich mit

... eine kurze Wiederholung.

Komplexitätstheorie beschäftigt sich mit

- 1 den Kosten, um ein Problem zu lösen.
- dem Maß an benötigter Zeit (Anzahl Schritte) und Platzverbrauch.

... eine kurze Wiederholung.

Komplexitätstheorie beschäftigt sich mit

- den Kosten, um ein Problem zu lösen.
- dem Maß an benötigter Zeit (Anzahl Schritte) und Platzverbrauch.
- dem worst case Verhalten (schwierigste Instanzen).
- dem asymptotischen Verhalten (große Instanzen).

... eine kurze Wiederholung.

Komplexitätstheorie beschäftigt sich mit

- den Kosten, um ein Problem zu lösen.
- dem Maß an benötigter Zeit (Anzahl Schritte) und Platzverbrauch.
- dem worst case Verhalten (schwierigste Instanzen).
- dem asymptotischen Verhalten (große Instanzen).

Probleme können unterschiedlich schwer sein. Wie kann man das herausfinden?

Wir wollen zeigen: Problem A ist höchstens so schwer wie

Problem B. In Zeichen: $A \le B$. Zeige dafür:

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

1 ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

 \bigcirc I ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B

R ist effizient berechenbar (hier: in Polynomialzeit)

Intuitiv: Lösungsalgo für B ergibt Lösungsalgo für A

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

- \bigcirc I ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B
- R ist effizient berechenbar (hier: in Polynomialzeit)

Intuitiv: Lösungsalgo für *B* ergibt Lösungsalgo für *A* Beispiel:

• A: Folgerungsproblem für endliches T, d.h.: Gilt $T \models \phi$?

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

- \bigcirc I ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B
- R ist effizient berechenbar (hier: in Polynomialzeit)

Intuitiv: Lösungsalgo für B ergibt Lösungsalgo für A

Beispiel:

- A: Folgerungsproblem für endliches T, d.h.: Gilt $T \models \phi$?
- B: Unerfüllbarkeitsproblem (UNSAT), d.h.: Gilt $Mod(\psi) = \emptyset$?

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

- \bigcirc I ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B
- R ist effizient berechenbar (hier: in Polynomialzeit)

Intuitiv: Lösungsalgo für B ergibt Lösungsalgo für A

Beispiel:

- A: Folgerungsproblem für endliches T, d.h.: Gilt $T \models \phi$?
- B: Unerfüllbarkeitsproblem (UNSAT), d.h.: Gilt $Mod(\psi) = \emptyset$?
- $R: (2^{\mathcal{F}})_{fin} \times \mathcal{F} \to \mathcal{F} \text{ mit } (T, \phi) \mapsto R(T, \phi) = \bigwedge T \land \neg \phi$

Wir wollen zeigen: Problem A ist höchstens so schwer wie Problem B. In Zeichen: $A \le B$. Zeige dafür:

Es gibt eine Reduktion R von A auf B m.d.E.

- \bigcirc I ist Ja-Instanz von A gdw. R(I) ist Ja-Instanz von B
- R ist effizient berechenbar (hier: in Polynomialzeit)

Intuitiv: Lösungsalgo für B ergibt Lösungsalgo für A

Beispiel:

- A: Folgerungsproblem für endliches T, d.h.: Gilt $T \models \phi$?
- B: Unerfüllbarkeitsproblem (UNSAT), d.h.: Gilt $Mod(\psi) = \emptyset$?
- $R: (2^{\mathcal{F}})_{fin} \times \mathcal{F} \to \mathcal{F} \text{ mit } (T, \phi) \mapsto R(T, \phi) = \bigwedge T \land \neg \phi$
 - Warum?
 - Klar.

 Komplexitätsklasse C ist eine Menge von Problemen, welche mit vorgegebenen Resourcen lösbar sind

- Komplexitätsklasse C ist eine Menge von Problemen, welche mit vorgegebenen Resourcen lösbar sind
- Problem B ist C-schwer, sofern für jedes Problem A ∈ C gilt:
 A ≤ B
 (I.A. hängt die Art der Reduktion von C ab.)

- Komplexitätsklasse C ist eine Menge von Problemen, welche mit vorgegebenen Resourcen lösbar sind
- Problem B ist C-schwer, sofern für jedes Problem A ∈ C gilt:
 A < B
 (I.A. h\u00e4not die Art der Reduktion von C ab.)
- Problem B ist \mathcal{C} -vollständig, sofern B ist \mathcal{C} -schwer und $B \in \mathcal{C}$

- Komplexitätsklasse C ist eine Menge von Problemen, welche mit vorgegebenen Resourcen lösbar sind
- Problem B ist C-schwer, sofern für jedes Problem A ∈ C gilt:
 A ≤ B
 (I.A. hängt die Art der Reduktion von C ab.)
- Problem B ist \mathcal{C} -vollständig, sofern B ist \mathcal{C} -schwer und $B \in \mathcal{C}$
- \Rightarrow Falls A und B C-vollständig, dann $A \le B$ und $B \le A$ (schwerste Probleme in C)

- Komplexitätsklasse C ist eine Menge von Problemen, welche mit vorgegebenen Resourcen lösbar sind
- Problem B ist C-schwer, sofern für jedes Problem A ∈ C gilt:
 A ≤ B
 (I.A. hängt die Art der Reduktion von C ab.)
- Problem B ist \mathcal{C} -vollständig, sofern B ist \mathcal{C} -schwer und $B \in \mathcal{C}$
- \Rightarrow Falls A und B C-vollständig, dann $A \le B$ und $B \le A$ (schwerste Probleme in C)
- \Rightarrow Problem B ist \mathcal{C} -schwer, sofern für ein \mathcal{C} -vollständiges Problem A gilt: $A \leq B$ (nur eine Reduktion)

 P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind P-vollständiges Problem:

 P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind P-vollständiges Problem: HORNSAT, d.h. Erfüllbarkeit von aussagenlogischen Horn-Formeln

- P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind
 P-vollständiges Problem: HORNSAT, d.h. Erfüllbarkeit von aussagenlogischen Horn-Formeln
- NP (Non-Deterministic Polynomial Time): Probleme, die auf nicht-deterministischer TM in Polynomialzeit lösbar sind (Ja-Instanz, falls es einen akzeptierenden Lauf gibt) NP-vollständiges Problem:

- P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind
 P-vollständiges Problem: HORNSAT, d.h. Erfüllbarkeit von aussagenlogischen Horn-Formeln
- NP (Non-Deterministic Polynomial Time): Probleme, die auf nicht-deterministischer TM in Polynomialzeit lösbar sind (Ja-Instanz, falls es einen akzeptierenden Lauf gibt) NP-vollständiges Problem: SAT, d.h. Erfüllbarkeit von aussagenlogischen Formeln

- P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind
 P-vollständiges Problem: HORNSAT, d.h. Erfüllbarkeit von aussagenlogischen Horn-Formeln
- NP (Non-Deterministic Polynomial Time): Probleme, die auf nicht-deterministischer TM in Polynomialzeit lösbar sind (Ja-Instanz, falls es einen akzeptierenden Lauf gibt) NP-vollständiges Problem: SAT, d.h. Erfüllbarkeit von aussagenlogischen Formeln
- coNP: Probleme, deren Komplemente in NP sind (Ja-Instanz, falls alle Läufe akzeptierend sind) coNP-vollständiges Problem:

- P (Polynomial Time): Probleme, die auf deterministischer TM in Polynomialzeit lösbar sind
 P-vollständiges Problem: HORNSAT, d.h. Erfüllbarkeit von aussagenlogischen Horn-Formeln
- NP (Non-Deterministic Polynomial Time): Probleme, die auf nicht-deterministischer TM in Polynomialzeit lösbar sind (Ja-Instanz, falls es einen akzeptierenden Lauf gibt) NP-vollständiges Problem: SAT, d.h. Erfüllbarkeit von aussagenlogischen Formeln
- coNP: Probleme, deren Komplemente in NP sind (Ja-Instanz, falls alle Läufe akzeptierend sind) coNP-vollständiges Problem: UNSAT, d.h. Unerfüllbarkeit von aussagenlogischen Formeln

Es gilt: $P \subseteq NP$ und $P \subseteq coNP$

 Σ₂^ρ: Probleme, die in NP sind, sofern man ein NP-Orakel verwenden darf Σ₂^ρ-vollständiges Problem:

Σ₂^p: Probleme, die in NP sind, sofern man ein NP-Orakel verwenden darf
 Σ₂^p-vollständiges Problem: Gültigkeit einer QBF der Form ∃ Y ∀ Zφ(Y, Z)

- $\sum_{i=1}^{p}$: Probleme, die in NP sind, sofern man ein NP-Orakel verwenden darf \sum_{2}^{p} -vollständiges Problem: Gültigkeit einer QBF der Form $\exists Y \forall Z \phi(Y,Z)$
- verwenden darf bzw. Probleme, deren Komplemente in $\sum_{n=1}^{p}$ sind
 - \prod_{2}^{p} -vollständiges Problem:

- Σ₂^ρ: Probleme, die in NP sind, sofern man ein NP-Orakel verwenden darf
 Σ₂^ρ-vollständiges Problem: Gültigkeit einer QBF der Form ∃ Y ∀ Zφ(Y, Z)
- Π_2^p : Probleme, die in coNP sind, sofern man ein NP-Orakel verwenden darf bzw. Probleme, deren Komplemente in Σ_2^p sind
 - Π_2^{ρ} -vollständiges Problem: Gültigkeit einer QBF der Form $\forall Y \exists Z \phi(Y, Z)$

- Σ₂^p: Probleme, die in NP sind, sofern man ein NP-Orakel verwenden darf
 Σ₂^p-vollständiges Problem: Gültigkeit einer QBF der Form ∃ Y ∀ Zφ(Y, Z)
- Π_2^p : Probleme, die in coNP sind, sofern man ein NP-Orakel verwenden darf bzw. Probleme, deren Komplemente in Σ_2^p sind

 Π_2^p -vollständiges Problem: Gültigkeit einer QBF der Form $\forall Y \exists Z \phi(Y, Z)$

Es gilt: NP, coNP $\subseteq \sum_{2}^{p}$ und NP, coNP $\subseteq \prod_{2}^{p}$

① Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$?

1 Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.

- **1** Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.
- 2 Scept_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap cf(F)$?

- **1** Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.
- ② Scept_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap cf(F)$? ⇒ Trivial, da $\emptyset \in cf(F)$ und somit $\bigcap cf(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.

Entscheidungsprobleme für Conflict-free Sets

- **1** Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.
- ② Scept_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap cf(F)$? ⇒ Trivial, da $\emptyset \in cf(F)$ und somit $\bigcap cf(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- **③** Ver_{cf}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in cf(F)$?

Entscheidungsprobleme für Conflict-free Sets

- **1** Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.
- ② Scept_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap cf(F)$? ⇒ Trivial, da $\emptyset \in cf(F)$ und somit $\bigcap cf(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- ③ Ver_{cf}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in cf(F)$? ⇒ Teste ob $(a, b) \in R$ mit $a, b \in E$. Also, Ver_{cf} $\in P$.
- **1** Exists_{cf}: Gegeben F = (A, R). Gilt $cf(F) \neq \emptyset$?

Entscheidungsprobleme für Conflict-free Sets

- **1** Cred_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup cf(F)$? ⇒ Teste ob $(a, a) \in R$. Also, Cred_{cf} ∈ P.
- ② Scept_{cf}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap cf(F)$? ⇒ Trivial, da $\emptyset \in cf(F)$ und somit $\bigcap cf(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- ③ Ver_{cf}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in cf(F)$? ⇒ Teste ob $(a, b) \in R$ mit $a, b \in E$. Also, Ver_{cf} $\in P$.
- **③** Exists_{cf}: Gegeben F = (A, R). Gilt $cf(F) \neq \emptyset$? ⇒ Trivial, da $\emptyset \in cf(F)$ und somit $cf(F) \neq \emptyset$. Antwort ist also immer "Ja", egal welcher Input.

- **①** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$?
- **③** Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?
- **4** Exists_{ad}: Gegeben F = (A, R). Gilt $ad(F) \neq \emptyset$?

- **1** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$?
- **③** Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?
- **4** Exists_{ad}: Gegeben F = (A, R). Gilt $ad(F) \neq \emptyset$?

Welche Probleme sind trivial bzw. auf jeden Fall in P?

- **1** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.

- **1** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- **③** Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?

- **①** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- ③ Ver_{ad}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in ad(F)$? ⇒ 1. Konfliktfreiheit: Teste ob $E \in cf(F)$.

- **1** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?
 ⇒ 1. Konfliktfreiheit: Teste ob E ∈ cf(F). 2. Verteidigung: Überprüfe für jedes a ∈ E: Wenn (b, a) ∈ R, dann existiert ein (c, b) ∈ R mit c ∈ E. Also, Ver_{ad} ∈ P.

- **1** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?
 ⇒ 1. Konfliktfreiheit: Teste ob E ∈ cf(F). 2. Verteidigung: Überprüfe für jedes a ∈ E: Wenn (b, a) ∈ R, dann existiert ein (c, b) ∈ R mit c ∈ E. Also, Ver_{ad} ∈ P.
- **1** Exists_{ad}: Gegeben F = (A, R). Gilt $ad(F) \neq \emptyset$?

- **①** Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?
- ② Scept_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \cap ad(F)$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $\cap ad(F) = \emptyset$. Antwort ist also immer "Nein", egal welcher Input.
- Ver_{ad}: Gegeben F = (A, R) und E ⊆ A. Gilt E ∈ ad(F)?
 ⇒ 1. Konfliktfreiheit: Teste ob E ∈ cf(F). 2. Verteidigung: Überprüfe für jedes a ∈ E: Wenn (b, a) ∈ R, dann existiert ein (c, b) ∈ R mit c ∈ E. Also, Ver_{ad} ∈ P.
- **③** Exists_{ad}: Gegeben F = (A, R). Gilt $ad(F) \neq \emptyset$? ⇒ Trivial, da $\emptyset \in ad(F)$ und somit $ad(F) \neq \emptyset$. Antwort ist also immer "Ja", egal welcher Input.

Was ist mit Credad?

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Ored_{ad} ∈ NP. Benutze dafür folgenden guess-and-check Algorithmus:

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

• Cred_{ad} \in NP.

Benutze dafür folgenden guess-and-check Algorithmus:

- Rate *E* ⊆ *A* \ {*a*}
- Überprüfe ob $E \cup \{a\} \in ad(F)$ (Ver_{ad} $\in P$)

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

- Ored_{ad} ∈ NP. Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in ad(F)$ (Ver_{ad} $\in P$)
- Cred_{ad} ist NP-schwer. Wir zeigen 3-SAT ≤ Cred_{ad}.

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

- Ored_{ad} ∈ NP. Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in ad(F)$ (Ver_{ad} $\in P$)
- ② Cred_{ad} ist NP-schwer. Wir zeigen 3-SAT ≤ Cred_{ad}.
 - 3-SAT ist Erfüllbarkeit von 3-KNF
 - 3-SAT ist auch NP-vollständig

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

- Ored_{ad} ∈ NP. Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in ad(F)$ (Ver_{ad} $\in P$)
- Cred_{ad} ist NP-schwer. Wir zeigen 3-SAT ≤ Cred_{ad}.
 - 3-SAT ist Erfüllbarkeit von 3-KNF
 - 3-SAT ist auch NP-vollständig

Wir geben eine Reduktion R an, die eine 3-KNF ϕ auf ein AF F_{ϕ} = (A_{ϕ}, R_{ϕ}) abbildet, so daß:

F_φ ist effizient berechenbar

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

- Ored_{ad} ∈ NP. Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in ad(F)$ (Ver_{ad} $\in P$)
- Cred_{ad} ist NP-schwer. Wir zeigen 3-SAT ≤ Cred_{ad}.
 - 3-Sat ist Erfüllbarkeit von 3-KNF
 - 3-SAT ist auch NP-vollständig

Wir geben eine Reduktion R an, die eine 3-KNF ϕ auf ein AF F_{ϕ} = (A_{ϕ}, R_{ϕ}) abbildet, so daß:

- F_φ ist effizient berechenbar
- Für ein spezielles Argument a_φ ∈ A_φ gilt:

 ϕ ist erfüllbar gdw. $a_{\phi} \in \bigcup ad(F_{\phi})$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

- $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$ (*m* Klauseln)
- $C_i = I_{i1} \vee I_{i2} \vee I_{i3}$ für jedes $1 \le i \le m$ (3-Klausel)

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

•
$$\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$
 (*m* Klauseln)

•
$$C_i = I_{i1} \lor I_{i2} \lor I_{i3}$$
 für jedes $1 \le i \le m$ (3-Klausel)

Beispiel:
$$\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$$

•
$$\sigma(\phi) = \{a_1, a_2, a_3, a_4\}$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

•
$$\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$
 (*m* Klauseln)

•
$$C_i = I_{i1} \lor I_{i2} \lor I_{i3}$$
 für jedes $1 \le i \le m$ (3-Klausel)

Beispiel: $\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$

- $\sigma(\phi) = \{a_1, a_2, a_3, a_4\}$
- $\bullet \phi = C_1 \wedge C_2 \wedge C_3$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

•
$$\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$
 (*m* Klauseln)

•
$$C_i = I_{i1} \lor I_{i2} \lor I_{i3}$$
 für jedes $1 \le i \le m$ (3-Klausel)

Beispiel: $\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$

- $\sigma(\phi) = \{a_1, a_2, a_3, a_4\}$
- $\bullet \ \phi = C_1 \wedge C_2 \wedge C_3$
- $I_{23} = \neg a_4$ (neg. Literal), $I_{32} = a_2$ (pos. Literal), . . .

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{c_m\} \cup$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

Definiere ein AF $F_{\phi} = (A_{\phi}, R_{\phi})$ mit

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

Beispiel: $\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

Definiere ein AF $F_{\phi} = (A_{\phi}, R_{\phi})$ mit

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

Beispiel: $\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$

$$\bullet \ A_{\phi} = \{a_1, a_2, a_3, a_4\} \cup \{\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{a_4}\} \cup \{c_1, c_2, c_3\} \cup \{a_{\phi}\}$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(*m* Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

•
$$R_{\phi} = \{(a, \overline{a}), (\overline{a}, a) \mid a \in \sigma(\phi)\} \cup$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

$$\bullet \ \phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$

(*m* Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

•
$$R_{\phi} = \{(a, \overline{a}), (\overline{a}, a) \mid a \in \sigma(\phi)\} \cup \{(c_i, a_{\phi}) \mid 1 \leq i \leq m\}$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

•
$$\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$
 (*m* Klauseln)

•
$$C_i = I_{i1} \lor I_{i2} \lor I_{i3}$$
 für jedes $1 \le i \le m$ (3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

•
$$R_{\phi} = \{(a, \overline{a}), (\overline{a}, a) \mid a \in \sigma(\phi)\} \cup \{(c_i, a_{\phi}) \mid 1 \le i \le m\} \cup \{(I, c_i) \mid I \in \{I_{i1}, I_{i2}, I_{i3}\} \text{ pos. Literal, } i \in \{1, \dots, m\}\}$$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \leq i \leq m$

(3-Klausel)

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

•
$$R_{\phi} = \{(a, \overline{a}), (\overline{a}, a) \mid a \in \sigma(\phi)\} \cup \{(c_i, a_{\phi}) \mid 1 \le i \le m\}$$

 $\cup \{(I, c_i) \mid I \in \{I_{i1}, I_{i2}, I_{i3}\} \text{ pos. Literal, } i \in \{1, \dots, m\}\}$
 $\cup \{(\overline{I}, c_i) \mid I \in \{I_{j1}, I_{j2}, I_{j3}\} \text{ neg. Literal, } i \in \{1, \dots, m\}\}$

Cred_{ad}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup ad(F)$?

Definition (Standardreduktion)

Gegeben eine 3-KNF ϕ mit Signatur $\sigma(\phi) = \{a_1, a_2, \dots, a_n\}$ und

(m Klauseln)

•
$$C_i = I_{i1} \vee I_{i2} \vee I_{i3}$$
 für jedes $1 \le i \le m$

(3-Klausel)

Definiere ein AF $F_{\phi} = (A_{\phi}, R_{\phi})$ mit

•
$$A_{\phi} = \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\} \cup \{c_1, \ldots, c_m\} \cup \{a_{\phi}\}$$

•
$$R_{\phi} = \{(a, \overline{a}), (\overline{a}, a) \mid a \in \sigma(\phi)\} \cup \{(c_i, a_{\phi}) \mid 1 \le i \le m\}$$

 $\cup \{(I, c_i) \mid I \in \{I_{i1}, I_{i2}, I_{i3}\} \text{ pos. Literal, } i \in \{1, \dots, m\}\}$
 $\cup \{(\overline{I}, c_i) \mid I \in \{I_{i1}, I_{i2}, I_{i3}\} \text{ neg. Literal, } i \in \{1, \dots, m\}\}$

Beispiel: $\phi = (a_1 \lor a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3 \lor \neg a_4) \land (\neg a_1 \lor a_2 \lor a_4)$

$$\bullet \ A_{\phi} = \{a_1, a_2, a_3, a_4\} \cup \{\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{a_4}\} \cup \{c_1, c_2, c_3\} \cup \{a_{\phi}\}$$

• R_{ϕ} \Rightarrow siehe Tafel

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(⇒) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(⇒) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1, 2, 3\}$ mit $B(l_{ij_i}) = 1$.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Rightarrow) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1, 2, 3\}$ mit $B(I_{ij_i}) = 1$. Sei $L = \{I_{1j_1}, \ldots, I_{mj_m}\}$ und $E_L = \{I \mid I \in L \text{ pos. Literal}\} \cup \{\overline{I} \mid I \in L \text{ neg. Literal}\}$.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(⇒) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1, 2, 3\}$ mit $B(l_{j_i}) = 1$. Sei $L = \{l_{1j_1}, \ldots, l_{mj_m}\}$ und $E_L = \{l \mid l \in L \text{ pos. Literal}\} \cup \{\bar{l} \mid l \in L \text{ neg. Literal}\}$. Per Konstruktion ist $E_L \in cf(F_\phi)$ (Komplementäre Literale nicht gleichzeitig wahr)

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Rightarrow) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1,2,3\}$ mit $B(l_{ij_i}) = 1$. Sei $L = \{l_{1j_1}, \ldots, l_{mj_m}\}$ und $E_L = \{l \mid l \in L \text{ pos. Literal}\} \cup \{\bar{l} \mid l \in L \text{ neg. Literal}\}$. Per Konstruktion ist $E_L \in cf(F_\phi)$ (Komplementäre Literale nicht gleichzeitig wahr) und auch $E_L \in ad(F_\phi)$ ($c_i's$ und a_ϕ attackieren nicht).

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Rightarrow) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1,2,3\}$ mit $B(l_{ij_i}) = 1$. Sei $L = \{l_{1j_1},\ldots,l_{mj_m}\}$ und $E_L = \{l \mid l \in L \text{ pos. Literal}\} \cup \{\bar{l} \mid l \in L \text{ neg. Literal}\}$. Per Konstruktion ist $E_L \in cf(F_\phi)$ (Komplementäre Literale nicht gleichzeitig wahr) und auch $E_L \in ad(F_\phi)$ (c_i 's und a_ϕ attackieren nicht). Da Literal l_{ij_i} Disjunkt in Klausel C_i sind alle Argumente c_i von einem Element aus E_L attackiert, d.h.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Rightarrow) Sei ϕ erfüllbar. Somit ex. Belegung $B \subseteq \sigma(\phi)$ mit $B(\phi) = 1$. Da Konjunktion folgt $B(C_i) = 1$ für $1 \le i \le m$. Da C_i Disjunktion ex. ein $j_i \in \{1,2,3\}$ mit $B(l_{j_i}) = 1$. Sei $L = \{l_{1j_1}, \ldots, l_{mj_m}\}$ und $E_L = \{l \mid l \in L \text{ pos. Literal}\} \cup \{\bar{l} \mid l \in L \text{ neg. Literal}\}$. Per Konstruktion ist $E_L \in cf(F_\phi)$ (Komplementäre Literale nicht gleichzeitig wahr) und auch $E_L \in ad(F_\phi)$ (C_i 's und C_i attackieren nicht). Da Literal C_i Disjunkt in Klausel C_i sind alle Argumente C_i von einem Element aus C_i attackiert, d.h. C_i verteidigt C_i in C_i Nach Fundamentallemma C_i admissible in C_i admissible in C_i .

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Leftarrow) Sei $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$. Da a_{ϕ} von allen c_i attackiert muß $E \setminus \{a_{\phi}\}$ jedes Argument c_i gegenattackieren.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Leftarrow) Sei $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$. Da a_{ϕ} von allen c_i attackiert muß $E \setminus \{a_{\phi}\}$ jedes Argument c_i gegenattackieren. Genauer, für jedes c_i ex. ein Argument $I_i \in E \setminus \{a_{\phi}\}$ mit $(I_i, c_i) \in R_{\phi}$.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Leftarrow) Sei $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$. Da a_{ϕ} von allen c_i attackiert muß $E \setminus \{a_{\phi}\}$ jedes Argument c_i gegenattackieren. Genauer, für jedes c_i ex. ein Argument $l_i \in E \setminus \{a_{\phi}\}$ mit $(l_i, c_i) \in R_{\phi}$. Per Konstruktion gilt $l_i \in \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\}$.

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Leftarrow) Sei $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$. Da a_{ϕ} von allen c_i attackiert muß $E \setminus \{a_{\phi}\}$ jedes Argument c_i gegenattackieren. Genauer, für jedes c_i ex. ein Argument $l_i \in E \setminus \{a_{\phi}\}$ mit $(l_i, c_i) \in R_{\phi}$. Per Konstruktion gilt $l_i \in \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\}$. Betrachte $B = E \cap \sigma(\phi)$. Offensichtlich gilt $B(C_i) = 1$

Theorem

Gegeben eine 3-KNF ϕ . Es gilt:

 ϕ erfüllbar gdw. es ex. ein $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$

Proof.

(\Leftarrow) Sei $E \in ad(F_{\phi})$ mit $a_{\phi} \in E$. Da a_{ϕ} von allen c_i attackiert muß $E \setminus \{a_{\phi}\}$ jedes Argument c_i gegenattackieren. Genauer, für jedes c_i ex. ein Argument $I_i \in E \setminus \{a_{\phi}\}$ mit $(I_i, c_i) \in R_{\phi}$. Per Konstruktion gilt $I_i \in \sigma(\phi) \cup \{\overline{a} \mid a \in \sigma(\phi)\}$. Betrachte $B = E \cap \sigma(\phi)$. Offensichtlich gilt $B(C_i) = 1$ da mindestens 1 Disjunkt auf wahr gesetzt wird. Somit $B(\phi) = 1$ was die Erfüllbarkeit von ϕ bezeugt.

Entscheidungsprobleme für Preferred Semantics

- Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?
- Scept_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap pr(F)$?
- **③** Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?
- Exists_{pr}: Gegeben F = (A, R). Gilt $pr(F) \neq \emptyset$?

Welche Probleme sind trivial bzw. auf jeden Fall in P?

Entscheidungsprobleme für Preferred Semantics

- Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?
- Scept_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap pr(F)$?
- **③** Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?
- Exists_{pr}: Gegeben F = (A, R). Gilt $pr(F) \neq \emptyset$?

Welche Probleme sind trivial bzw. auf jeden Fall in P?

 \Rightarrow Exists_{pr} ist trivial, da $pr(F) \neq \emptyset$ für jedes F (VL3)

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Verpr, d.h.

 $\overline{\mathrm{Ver}_{pr}}$: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \notin pr(F)$?

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Ver_{pr}, d.h.

 $\overline{\text{Ver}_{pr}}$: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \notin pr(F)$?

• Benutze dafür folgenden guess-and-check Algorithmus:

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Ver_{pr}, d.h.

$$\overline{\mathrm{Ver}_{pr}}$$
: Gegeben $F = (A, R)$ und $E \subseteq A$. Gilt $E \notin pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Überprüfe ob $E \in ad(F)$ (Ver_{ad} $\in P$)

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Verpr, d.h.

$$\overline{\mathrm{Ver}_{pr}}$$
: Gegeben $F = (A, R)$ und $E \subseteq A$. Gilt $E \notin pr(F)$?

Benutze dafür folgenden guess-and-check Algorithmus:

- Überprüfe ob E ∈ ad(F) (Ver_{ad} ∈ P)
 Rate nun E' mit A ⊇ E' ⊃ E (Echte Obermenge)
- Überprüfe ob $E' \in ad(F)$ (Ver_{ad} \in P)

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Ver_{pr}, d.h.

$$\overline{\mathrm{Ver}_{pr}}$$
: Gegeben $F = (A, R)$ und $E \subseteq A$. Gilt $E \notin pr(F)$?

Benutze dafür folgenden guess-and-check Algorithmus:

- Überprüfe ob E ∈ ad(F) (Ver_{ad} ∈ P)
 Rate nun E' mit A ⊇ E' ⊃ E (Echte Obermenge)
- Überprüfe ob $E' \in ad(F)$ (Ver_{ad} \in P)
- Somit $\overline{\text{Ver}_{pr}} \in \text{NP}$ und damit $\text{Ver}_{pr} \in \text{coNP}$

Ver_{pr}: Gegeben F = (A, R) und $E \subseteq A$. Gilt $E \in pr(F)$?

• Wir betrachten das komplementäre Problem Ver_{pr}, d.h.

$$\overline{\mathrm{Ver}_{pr}}$$
: Gegeben $F = (A, R)$ und $E \subseteq A$. Gilt $E \notin pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Überprüfe ob E ∈ ad(F)

 $(Ver_{ad} \in P)$

• Rate nun E' mit $A \supseteq E' \supset E$

(Echte Obermenge)

Überprüfe ob E' ∈ ad(F)

 $(Ver_{ad} \in P)$

- Somit $\overline{\text{Ver}_{pr}} \in \text{NP}$ und damit $\text{Ver}_{pr} \in \text{coNP}$
- Es gilt sogar Ver_{pr} ist coNP-schwer und somit coNP-vollständig

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

• Benutze dafür folgenden guess-and-check Algorithmus:

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$

 $(Ver_{pr} \in coNP)$

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$

 $(Ver_{pr} \in coNP)$

• Somit Cred_{pr} \in NP^{coNP} = NP^{NP} = \sum_{2}^{p}

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$ (Ver_{pr} \in coNP)
- Somit Cred_{pr} \in NP^{coNP} = NP^{NP} = \sum_{2}^{p}

Geht es auch besser? (siehe Übung 3)

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$ (Ver_{pr} \in coNP)
- Somit Cred_{pr} \in NP^{coNP} = NP^{NP} = \sum_{2}^{p}

Geht es auch besser? (siehe Übung 3)

Scept_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap pr(F)$?

• Wir betrachten das komplementäre Problem $\overline{\text{Scept}_{pr}}$, d.h.

 $\overline{\text{Scept}_{pr}}$: Gegeben F = (A, R) und $a \in A$. Gilt $a \notin \bigcap pr(F)$?

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$ (Ver_{pr} \in coNP)
- Somit Cred_{pr} $\in NP^{coNP} = NP^{NP} = \sum_{2}^{p}$

Geht es auch besser? (siehe Übung 3)

Scept_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap pr(F)$?

• Wir betrachten das komplementäre Problem $\overline{\text{Scept}_{pr}}$, d.h.

$$\overline{\text{Scept}_{pr}}$$
: Gegeben $F = (A, R)$ und $a \in A$. Gilt $a \notin \bigcap pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \in pr(F)$ (Ver_{pr} \in coNP)

Cred_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcup pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \cup \{a\} \in pr(F)$ (Ver_{pr} \in coNP)
- Somit Cred_{pr} \in NP^{coNP} = NP^{NP} = \sum_{2}^{p}

Geht es auch besser? (siehe Übung 3)

Scept_{pr}: Gegeben F = (A, R) und $a \in A$. Gilt $a \in \bigcap pr(F)$?

• Wir betrachten das komplementäre Problem $\overline{\text{Scept}_{pr}}$, d.h.

$$\overline{\text{Scept}_{pr}}$$
: Gegeben $F = (A, R)$ und $a \in A$. Gilt $a \notin \bigcap pr(F)$?

- Benutze dafür folgenden guess-and-check Algorithmus:
 - Rate *E* ⊆ *A* \ {*a*}
 - Überprüfe ob $E \in pr(F)$ (Ver_{pr} \in coNP)
- Somit $\overline{\text{Scept}_{pr}} \in \mathsf{NP^{coNP}} = \mathsf{NP^{NP}} = \sum_{2}^{p}$. Also $\mathsf{Scept}_{pr} \in \prod_{2}^{p}$.

Vorlesung "Formale Argumentation"

6. Komplexität von typischen Entscheidungsproblemen

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

16. Mai 2024 Leipzig

