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Summary. Numerical simulations of tubulent flows produce both vector and tensor fields
that exhibit complex structural behavior. The topological study of these datasets dramatically
reduces the amount of information required for analysis. However, the presence of many fea-
tures of small scale creates a cluttered depiction that confuses interpretation. In this paper,
we extend previous work dealing with vector fields to symmetric, second-order tensor fields.
A simplification method is presented that removes degenerate points from the topology pair-
wise, driven by arbitrary criteria measuring their importance in the overall structure. It is
based on an important property of piecewise linear tensor fields that we prove in the paper.
Grid and interpolation scheme are preserved since the method uses small local changes of
the given discrete tensor values to achieve simplification. The resulting topology is clarified
significantly though structurally consistent with the original one. The basic idea behind this
technique leads back to the theory of bifurcations and suggests and interpretation as a contin-
uous simplification process.

1 Introduction

Tensors are essential mathematical objects involved in the description of a wide
range of scientific and technical fields. They are used for instance in fluid flow, fluid
mechanics, civil engineering and medical imaging. Consequently, scientists and en-
gineers need methods to extract essential information from very large tensor datasets
that are provided by modern numerical simulations. This explains the increasing in-
terest in tensor field visualization during the last decade. The first topology-based
visualization of symmetric, second-order, planar tensor fields was presented by Del-
marcelle [2]. Basically, one focuses on one of the two eigenvector fields correspond-
ing to the minor or major eigenvalue. This permits the computation of so-called
tensor lines that extend the traditional notion of stream line. The foundations of
this technique have been laid down by the work of Helman and Hesselink on vec-
tor fields [6]. The theoretical background is provided by the qualitative theory of
dynamical systems [1] and differential geometry [9]. The visualization results in
a graph representation, where the edges are special tensor lines called separatrices
and the nodes are singularities (called degenerate points) of the tensor field, i.e. lo-
cations where both eigenvalues are equal. This technique proved suitable for tensor
fields with simple structure because the extracted topology contains few degener-
ate points and separatrices, leading to a clear structure description. Nevertheless,
turbulent flows provided by Computational Fluid Dynamics (CFD) simulations or
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experimental measurements create cluttered depictions that are of little help for in-
terpretation. Indeed, the topology of such flows is characterized by the presence of
a large number of features of very small scale that greatly complicate the global
picture of the data. This shortcoming induces a need for simplification methods that
prune insignificant features, driven by qualitative and quantitative criteria specific
to the considered application. Several techniques have been presented in the past for
the simplification of vector fields [5, 8]. The issue of vector field topology simplifi-
cation was first addressed by de Leeuw and van Liere [7] who proposed a method
to prune critical points from the topological graph. However, their approach pro-
vides no vector field consistent with the topology after simplification. In previous
work [10, 11], we presented a scheme that merges close singular points, resulting
in a higher-order singularity that synthesizes the structural impact of several fea-
tures of small scale in the large. This reduces the number of singularities along with
the global complexity of the graph. Nevertheless, this technique has several limita-
tions. First, it implies local grid deformations to simulate the singularities’ merging,
combined with local modifications of the interpolation scheme. Second, it is un-
able to remove singularities completely from a given region since a higher-order
singularity is always introduced afterward. This is a problem if the goal is to filter
out insignificant local features in a given region. Finally, the simplification can only
be driven by geometric criteria (the relative distance of neighboring singularities)
which prevents to take any additional qualitative aspect into account. The present
method extends previous work on vector fields [12] and has been designed to over-
come these drawbacks. The basic principle consists in successively removing pairs
of degenerate points while preserving the consistency of the field structure. Each of
these removals can be interpreted as a forced local deformation that brings a part
of the topology to a simpler, equivalent structure. The mathematical background
is provided by the theory of bifurcations, originally developed within the qualita-
tive analysis of dynamical systems (see e.g. [4], an application to the tensor case is
described in [13]). Practically, the method starts with a planar piecewise linear trian-
gulation. We first compute the topological graph and determine pairs of degenerate
points. We retain those that satisfy both a proximity threshold and some relevance
criteria specified by the user. The pairs are then sorted with respect to their distance
and processed sequentially. For each of them, we determine a cell pad enclosing
both degenerate points and slightly modify the tensor values such that both degen-
erate points disappear. This deformation is controlled by angular constraints on the
new eigenvector values while keeping constant those located on the pad boundary.
After the processing of all pairs, we redraw the simplified topology.

The paper is structured as follows. We review basic notions of tensor field topol-
ogy and briefly present the notion of bifurcation in section 2. The special case of
piecewise linear tensor fields is considered from the topological viewpoint in sec-
tion 3. In particular, an angular property of eigenvectors is proven in this context
that plays a key role in the following. In section 4, we show how we determine
pairs of degenerate points to be removed and sort them in a priority list. Section 5



Topology Simplification of Symmetric, Second-Order 2D Tensor Fields 3

presents the technique used to locally deform the tensor field in order to remove
both singularities of a given pair. Results for a CFD dataset are shown in section 6.

2 Topology of Tensor Fields

The present method deals with a planar triangulation of vertices associated with 2D
symmetric second-order tensor values, i.e. symmetric matrices. The interpolation
scheme is piecewise linear and provides a matrix valued function defined over the
domain. Therefore, we only consider topological features of first order. In this case,
topology is defined as the graph built up of all first-order degenerate points and some
particular tensor lines connecting them, called separatrices. The required definitions
are given next.

2.1 Tensor Lines and Degenerate Points

A real two-dimensional symmetric matrix � has always two (possibly equal) real
eigenvalues �������
	 with associated orthogonal eigenvectors �
� and �� :����������������� �����! "�!#$��� � with ��� �&% ' 	 and ���)( +*-,
Since the multiplication of an eigenvector by any non-zero scalar yields an addi-
tional eigenvector, eigenvectors should be considered without norm nor orientation
which distinguishes them fundamentally from classical vectors. Moreover, the com-
putation of the eigenvectors of � is not affected by its isotropic part defined as�

tr � % 	 �
where tr � is the trace of � (i.e. the sum of its diagonal coefficients) and

% 	 stands
for the identity matrix in

% ' 	/. % ' 	 . Consequently, we restrict our considerations
to the so-called deviator that corresponds to the trace-free part of � . The matrix
valued function that we processed is thus of the form:0214365 �87:9;�=<?>@% ' 	+AB 0C3D5 �E7:9  FHG 3D5 �E7:9�I 365 �87:9I 365 �E7:9KJ G 3D5 �87�9�L � (1)

where
G

and
I

are two scalar functions defined over the considered two-dimensional
domain. One defines a major (resp. minor) eigenvector field at each position of the
domain as the eigenvector related to the major (resp. minor) eigenvalue of the ten-
sor field. For visualization purposes, one restricts the analysis to a single eigenvector
field (either minor or major), using the orthogonality of the eigenvectors to extrapo-
late the topological structure of the other. In an eigenvector field, one defines tensor
lines as curves everywhere tangent to the eigenvectors. It follows from this definition
that these curves have no inherent orientation as opposed to stream lines. Moreover
tensor lines cannot be computed at locations where both eigenvalues are equal since
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Fig. 1. First Order Degenerate Points

every non-zero vector is an eigenvector in this case. At a degenerate point, the de-
viator value is a zero matrix. In linear tensor fields, these singularities exist in two
possible types: Trisector or wedge point (see Fig. 1). Due to orientation indetermi-
nacy of tensor lines, these singularities exhibit structures that would be impossible
in the oriented, vector case (consider for example the flow on each side of the single
line converging toward the singularity in the second type of wedge points). Remark
that more general singularities can be encountered in the piecewise linear case as
already mentioned in [11].

In the neighborhood of a degenerate point, the regions where tensor lines pass
the singularity by in both directions are called hyperbolic. The regions where they
reach the singularity, on the contrary, are called parabolic. The curves that converge
toward a degenerate point and bound a hyperbolic region are called separatrices.
These special tensor lines constitute the edges of the topological graph. Accord-
ing to this definition, a trisector has three hyperbolic sectors and three associated
separatrices while a wedge point has one hyperbolic sector and either one or two
separatrices. In the latter case the separatrices bound a parabolic sector. Refer to
Fig. 1.

2.2 Tensor Index

A major notion for the structural classification of an tensor field is the so-called ten-
sor index. It is computed along a closed non self-intersecting curve as the number of
rotations of the eigenvectors when traveling once along the curve in counterclock-
wise direction. An illustration is shown in Fig. 2. This extends to tensor fields the
essential notion of Poincaré index defined for vector fields. Because of the lack of
orientation of eigenvectors, the tensor index is a multiple of �	 . The index of a re-
gion that contains no degenerate point is zero. If the considered region contains a
first-order degenerate point we get an index

J �	 for a trisector point while a wedge
point has index M �	 . The index of a region containing several degenerate points is
the sum of their individual indices. Remark that in the linear case, since only trisec-
tors and wedges can be encountered, if the index of a closed curve is zero then the
enclosed region contains no degenerate point. This property will prove essential in
the following.
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Fig. 2. Tensor index

2.3 Bifurcations

The definitions introduced previously apply to an instantaneous topological state of
a tensor field. Now, this stable state may evolve into another one by slight changes
of underlying parameters. A typical example is provided by time-dependent tensor
fields, the degenerate points of which may move, appear or vanish over time, lead-
ing to topological changes. These changes preserve structural consistency and the
tensor index acts as a topological invariant. If a topological transition only affects a
small region of the field, it is called a local bifurcation. If, on the contrary, it leads to
a global structural change, it is called a global bifurcation. For our purpose we only
need to consider a particular kind of local bifurcation: It consists of the pairwise
annihilation of a wedge and a trisector point. Since these singularities have global
index 0, they are equivalent to a configuration without degenerate point and there-
fore disappear right after merging. This transition is illustrated in Fig. 3. Additional
information on the topic of tensor bifurcations can be found in [13].

Fig. 3. Pairwise annihilation

Practically, since we want to reduce the number of degenerate points and associ-
ated separatrices while being consistent with the original topology, we locally force



6 Xavier Tricoche and Gerik Scheuermann

pairwise annihilations of a wedge and a trisector. This can be done by small local
changes in the field values as we show in the following.

3 Linear Tensor Fields

For the simplification method to come, we first need to consider an important prop-
erty of linear tensor fields from the topological viewpoint.
As discussed previously, we consider deviator tensor fields written in the form of
equation 1, where

G
and

I
are linear functions of the position

3D5 �E7:9
. The eigenvec-

tor ��NO 3DPRQ�S�T � SEUWVXT 9
identified by its angular coordinate

T
satisfies the relation0 � N . � N  +Y �

where . stands for cross-product. This leads after calculus toG S8UZV � T J[I PRQ�S � T  +Y �
that is \�] V � T  IG ,
Thus, we get the following differential equation^ T  �� G ^_I`J[I-^ GG 	 M I 	 , (2)

If we now consider an arbitrary linear interpolated edge a bdcfe with parametrizationg � a Y �h� e , we can consider the restriction of
0

to this edge. We write
G 3 g 9  Gji M g G �

and
I 3 g 9  I i M g I � . We now compute the angle variation of an eigenvector alonga bKcke by integrating Equation 2 (remark that this angle variation is the same for both

eigenvectors since they are everywhere orthogonal to another):lnmo ^ T  G i I � J G � I i� l �i ^ gp g 	 Mrq g Mts
where p , q and s are functions of

G ihu � and
I ivu � . Furthermore, the discriminant wx q 	 J�y p s is negative. Therefore it follows (after calculus)lnmo ^ T  S8UZz�V-3 G i I � J G � I i 9� 3 ]{\|] V�} � J ]{\|] V:} i 9

where
} i

and
} � are two real scalars that depend on

G ivu � and
I ivu � . Since the function

atan maps
% '

onto the open set
3 J�~ 	 ��~ 	 9 , we finally obtain����� l mo ^ T �����/��� � , (3)
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Thus the angle variation of an eigenvector along a linear interpolated edge is al-
ways smaller than

~ 	 .

We use this property now to compute the index of a linear tensor field along
the edges of a triangle. Since the field is linear, it is determined by the three tensor
values at the vertices of the triangle. We denote by

T i
,
T � , T 	 the corresponding

angle coordinates of one of both eigenvector fields at these positions, enumerated
in counterclockwise order. Because eigenvectors have neither norm nor orientation
these angle values are defined modulo � (denoted a � e in the following). We set by
convention

T{��1  T i , so we have

index  �� �#Z� i w 36T # � T #Z� � 9 , (4)

By Equation 3 and using the notation ��#- T #Z� � a � e J T #Ea � e , it comesw 36T # � T #W� � 9  2� # if � � # � � ~ 	� # M � if � # � J4~ 	�h# J � if �v#�� ~ 	 ,
4 Selective Pairing of Degenerate Points

As mentioned before, we aim at annihilating pairs of degenerate points of opposite
indices. Moreover, the corresponding topology simplification must take geometric
and any additional criteria into account to fit the considered interpretation of the ten-
sor field. Our geometric criterion is the proximity of the singularities to be removed
pairwise. This choice is motivated by two major reasons. First, close singularities re-
sult in small features that clutter the global topology depiction since they can hardly
be differentiated and induce many separatrices. Second, piecewise linear interpola-
tion is likely to produce topological artifacts consisting of numerous close first-order
singularities, especially if numerical noise is an issue. Therefore, based on a prox-
imity threshold, we determine all possible pairs of wedges and trisectors satisfying
the geometric criterion and sort them in increasing distance. Additional criteria may
be provided to restrict the range of the considered singularities to those that are little
relevant for interpretation. Practically, a quantity is provided that characterizes the
relevance of each degenerate point and one retains for simplification only those with
a value under a user-prescribed threshold. Thus, if a given singularity is considered
important for interpretation, it will be included in no pair and therefore will not be
removed from the topology. Remark that compared to the pairing strategy used in
previous work for the vector case [12], the connection of both singularities in a pair
through a separatrix is not used as criterion. This is because every degenerate point
exhibits at least one hyperbolic region which entails that separatrices emanating
from a singularity often do not reach any other one.
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5 Local Topology Simplification

Once a pair of degenerate points has been identified that fulfills our criteria, it must
be removed. To do this, we start a local deformation of the tensor field in a small area
around the considered singular points. Practically, we only modify tensor values at
the vertices of the triangulation and do not modify the interpolation scheme which
obviously ensures continuity over the grid after modification. In the following, we
detail first how vertices to be modified are determined and then how new values are
set at those vertices to ensure the absence of remaining singularities in their incident
cells after processing.

5.1 Cell-wise Connection

The method used here is the same as the one in [12] since the task is the same as in
the vector case: Determine well-shaped cell groups that link two singularities over
the grid. Consider the situation shown in Fig. 4. We first compute the intersections
of the straight line connecting the first degenerate point to the second with the edges
of the triangulation. For each intersection point, we insert the grid vertex closest
to the second degenerate point (see vertices surrounded by a circle) in a temporary
list. After this, we compute the bounding box of all vertices in the list and include
all grid vertices contained in this box. Thus, every vertex marked in the former
step is included. The use of a bounding box is intended to ensure a well shaped

P0

P1

� � �� � �� � �� � � � � �� � �� � �� � � � � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �
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Fig. 4. Cell-wise connection

deformation domain, especially useful if many cells separate both singular points.
This configuration occurs if the distance threshold has been assigned a large value to
obtain a high simplification rate. The vertices concerned with modification are called
internal vertices and are shown surrounded by squares. Since the modification of a
vertex tensor value has an incidence on the indices of all triangle cells it belongs
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to, we include every cell incident to one of the selected vertices in a cell group.
These cells are colored in gray. Further processing will have to associate the internal
vertices with tensor values that ensure the absence of any singular point in the cell
group with respect to the tensor values defined at the boundary vertices (marked by
black dots in Fig. 4) that will not be changed. The connection may fail if one of the
included cells contains a degenerate point that does not belong to the current pair:
In this case, the global index of the cell group is no longer zero. If it occurs, we
interrupt the processing of this pair. Nevertheless, such cases can be mostly avoided
since we simplify pairs of increasing distance.

5.2 Angular Constraints

The basic principle of our simplification technique can be better understood when
considering a single internal vertex together with its incident triangles, see Fig. 5.
Suppose that every position marked black is associated with a constant tensor value
and that the global index of the triangle stencil is zero. The problem consists in
determining a new tensor value at the internal vertex (marked white) such that no
incident cell contains a degenerate point. This is equivalent to a situation where
every incident triangle has index 0 according to what preceedes.

index = 0
Ã Ã Ã ÃÃ Ã Ã ÃÄ Ä Ä ÄÄ Ä Ä Ä
Å Å Å ÅÅ Å Å ÅÆ Æ Æ ÆÆ Æ Æ Æ Ç Ç Ç Ç ÇÇ Ç Ç Ç ÇÈ È È ÈÈ È È È É É É ÉÉ É É ÉÊ Ê Ê ÊÊ Ê Ê Ê Ë Ë Ë Ë ËË Ë Ë Ë ËÌ Ì Ì ÌÌ Ì Ì Ì

Í Í Í ÍÍ Í Í ÍÎ Î Î ÎÎ Î Î ÎÏ Ï Ï Ï ÏÏ Ï Ï Ï ÏÐ Ð Ð ÐÐ Ð Ð ÐÑ Ñ Ñ ÑÑ Ñ Ñ ÑÒ Ò Ò ÒÒ Ò Ò Ò
index = 0

Fig. 5. Configuration with single internal vertex and incident cells

Now, in each triangle the angle coordinates of the eigenvectors defined at the
black vertices (say

T i
and

T � ) induce an angular constraint for the new eigenvector:
in equation 3, w 3DT i � T � 9 is already set to a value that is strictly smaller than

~ 	 . The
two missing terms must induce a global angle change strictly smaller than � (for the
index of a linear degenerate point is a multiple of �	 ). This condition holds if and
only if the new eigenvector value has angle coordinate in

36T � M ~ 	 � T i M ~ 	 9 (modulo� ), with a T i � T � e being an interval with width smaller than
~ 	 , i.e. the actual angle

change along a linear edge from
T i

to
T � (see Fig. 6).

This provides a constraint on the new value for a single triangle. Intersecting
the intervals imposed by all incident triangles, one is eventually able to determine
an interval that fulfills all the constraints. Note that this interval may be empty. In
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Fig. 6. Angular constraint in a triangle cell

this case, the simplification is (at least temporarily) impossible. Once a satisfactory
angle interval has been found for the new eigenvector, we must provide the vertex
with a corresponding tensor value. If

T
is an angle in the interval then the following

tensor value will be solution:0�Ó_ÔÖÕ  F PRQ�S � T×S8UZV � TSEUWV � T J PhQ�S � T L ,
5.3 Iterative Solution

For each internal vertex (see Fig. 4) we must now find a new tensor value that ful-
fills all the angle constraints induced by the edges connecting the incident vertices.
These incident vertices are of two types: internal or boundary vertices. Edges link-
ing boundary vertices are considered constant and induce fixed angular constraints.
Internal vertices still must be provided a final tensor value and introduce flexibil-
ity in the simplification scheme. Practically, the problem to solve can be seen as
an optimization problem. The quantity to minimize for each internal vertex is the
distance of its current angle value to the interval of admissible angles induced by its
neighbors. This distance is considered zero if the angle lies within the interval. Ini-
tially, the angle values of the internal vertices are undefined. During a first iteration,
boundary vertices create angular constraints on the adjacent internal vertices. These
constraints are then propagated iteratively to their neighbors in the next steps. If the
current angle values of the surrounding vertices correspond to an empty interval,
their mean value is used as predictor for the next iteration. Consequently, the whole
processing can be interpreted as a local constrained smoothing of the tensor field.

The pseudo-code is as follows.

// initialization
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for each (internal vertex)
interval = fixed constraints
if (interval is empty)

exit
end if
if (no fixed constraints)

interval = [0, PI[
end if

end for each

// iterations
nb_iterations = 0
repeat

succeeded = true
nb_iterations++
for each internal vertex

compute mean_angle of processed incident vertices
if (interval not empty)

if (mean_angle in interval)
current_angle = mean_angle

else
current_angle =

best approximation of mean_angle in interval
end if

else
succeeded = false
if (mean_angle in fixed

constraints)
current_angle = mean_angle

else
current_angle =

best approximation of mean_angle in interval
end if

end for each
until (succeeded or

nb_iterations > MAX_NB_ITERATIONS)

If one of the internal vertices has incompatible fixed constraints, our scheme will
fail. Therefore, we interrupt the process during initialization and move to the next
pair. If the iterative process failed at determining compatible angular constraints for
all internal vertices, we maintain the current pair and move to the next as well.

6 Results

The dataset used to test our method stems from a CFD simulation. This is the sym-
metric part of the rate of deformation (i.e. first-order derivative) tensor field of a
vortex breakdown simulation that was provided by Wolfgang Kollmann from UC
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Davis. Vortex breakdown is a phenomenon observed in a variety of flows ranging
from tornadoes to wing tip vortices, pipe flows, and swirling jets. The latter flows
are important to combustion applications where they are able to create recirculation
zones with sufficient residence time for the reactions to approach completion. This
is a typical case of turbulent global structural behavior. The topology exhibits 67
singularities and 140 separatrices as shown in Fig. 7. The rectilinear grid has 123 x
100 cells. Each rectangular cell is split to result in a triangulation containing about
25000 cells. To simplify this topology we only consider the euclidean distance be-

Fig. 7. Initial topology with grid

tween degenerate points as a criterion. Remember however that the method does not
impose any restriction on the choice of additional qualitative or quantitative criteria
characterizing the importance of a singularity or of a given region of the graph. The
first simplified topology is obtained with a tiny distance threshold corresponding
to 0.2% of the grid diagonal. Every pair consisting of degeneracies that could not
be graphically differentiated has disappeared. There are 59 remaining singularities.
The modified areas are indicated by rectangular boxes. See Fig. 8.

Increasing the threshold up to a value of 2% of the grid diagonal, one obtains a
topology with 35 remaining singularities as shown in Fig. 9. A noticeably clarified
graph can be obtained in this case while global strutural properties of tensor field
have been preserved. The highest simplification rate is obtained with a threshold of
5% of the grid diagonal. The corresponding topology is shown in Fig. 10. The fact
that this topology cannot be simplified further (even with a very large geometrical
threshold) is explained by the presence of incompatible fixed angle constraints on
the boundaries of the cell pads containing the remaining pairs. The local deforma-
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Fig. 8. Simplified topology: distance threshold = 0.2%

Fig. 9. Simplified topology: distance threshold = 2%

tion corresponding to the simplified topologies shown so far is illustrated in Fig. 11.
The topology is displayed together with the underlying cell structure and the eigen-
vectors.
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Fig. 10. Simplified topology: distance threshold = 5%

7 Conclusion

We have presented a method that simplifies the topology of turbulent planar, sym-
metric, second-order tensor fields while preserving structural consistency with the
original data. The simplification is achieved by means of successive local deforma-
tions of the field that entail the pruning of pairs of degenerate points of opposite
indices. The pairing strategy can take geometrical as well as any additional crite-
ria into account to fit the domain of application. The theoretical background of this
technique is provided by the notion of bifurcation since the disappearance of a pair
of singularities corresponds to the pairwise annihilation of a wedge point and a tri-
sector. The method has been tested on a CFD simulation of a vortex breakdown
because this kind of datasets exhibit many complex features that clutter the global
depiction. The results demonstrate the ability of the method to remove structural fea-
tures of small scale while letting the rest of the topology unchanged. This clarifies
noticeably the depiction and eases interpretation.
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Fig. 11. Local topology simplification: initial graph and simplifications with 0.2%, 2% and
5% as thresholds
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