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Abstract

Experimental data derived from two classes of superior colliculus neurons*deep layer
neurons (DLNs) and super"cial layer neurons (SLNs)*have been used to study the in#uence of
dendritic anatomy on synaptic input processing. Anatomical measures of dendrites were "rst
determined. Compartmental neuron models (3 of each class) were built to estimate passive
membrane parameters and to calculate functional characteristics of synaptic input (attenuation,
delay and time window). The two cell classes show distinct di!erences both in morphological
and functional characteristics. While the functional parameters derived on SLNs are compat-
ible with time-critical functions, DLNs in contrast show integrator traits.. � 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The superior colliculus (SC) is a part of the mammalian midbrain involved in
sensory-motor control. In dependence on neuron localization within the SC, their
dendrites show distinct branching patterns in the deep and super"cial layers, respec-
tively (Fig. 1). These structural di!erences are correlated with distinct functions in
information processing: deep layer neurons (DLNs) obtain multimodal a!erences
whereas super"cial layer neurons (SLNs) receive exclusively visual input.
Basic to the present study are correlated morphological and electrophysiological

data on di!erent classes of SC neurons previously published [2,3,6,7]. These neurons
have been used as a model system to study the interplay of dendritic anatomy and

0925-2312/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 ( 0 1 ) 0 0 4 1 7 - 9



Fig. 1. Dendritic rami"cation pattern of superior colliculus neurons. Displayed are camera lucida drawings
of one super"cial (cell �

�
, left) and one deep layer neuron (cell pb1, right) each, together with Sholl diagrams

of one dendrite (arrows).

signal processing. Dendritic trees are known as a source of time delays and attenu-
ation in single neurons. In a "rst step, we investigated their morphological features.
Then we built compartmental models of each SC cell. These models were used in two
ways: to solve the `inverse problema and to do `forward computationsa [5]. To
determine (passive) membrane parameters, data from current injection experiments
are compared with the simulation responses of the compartmental models (inverse
problem). In the forward computations, the estimated parameters are employed to
compute functional characteristics such as attenuation, delay and time window of
synaptic input signals. In this way, we tried to get clues for the potential function of
SLNs and DLNs as integrators or coincidence detectors.

2. Theoretical basis

Agmon-Snir [1] introduced a new approach for analyzing dendritic transients, in
particular time delays and attenuation. In this method, the various moments of
a transient signal are used to characterize the signal properties. The following
de"nitions are all based on the moments of signals:

kth moment of a signal f (t): m
���

:"��
��

t� ) f (t) dt,

Strength of a signal f (t): s�
�
:"��

��
f (t) dt"m

���
,
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Fig. 2. Illustration of delay types. A current J
�
of �-function shape is injected at point x, and the voltage

reponses <
�
and <

�
at x and at another location y are shown. Strengths of signals are indicated by hat-

ched area; vertical lines correspond to centroids. Delays are de"ned as follows: local delay
¸D(x) :"t

�

�
(x)!t
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�
(x), propagation delay PD(x, y) :"t
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Time window of a signal f (t):
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Let x be the site of current input and y the recording site. Using the above
de"nitions, relations for signal attenuation and time delay can be derived, as illus-
trated in Fig. 2.

3. Methods

All data were obtained from neurons recorded intracellularly and stained with
HRP as described in [2,3]. The sample of cells selected for analysis comprised three
SLNS and three DLNs. In addition, data from another sample of electrophysiologi-
cally examined SC cells were used.
The morphological features of SC neurons were investigated as di!erentiated into

metrical and topological ones. The simulation package NEURON was used to built
compartmental models of the six SC cells. To determine the passive membrane
parameters, data from current injection experiments were compared with the simu-
lation responses of the compartmental models. Systematic parameter variations
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Table 1
Results of parameter search for SLNs (	

�
, �
�
, �
�
) and DLNs (af, pb1, pb2)�

Cell no. A


(�10� �m�) A

�
/A



l
��	


(�m) d
��	


(�m)

4/1 40.1 20.9 660 0.8
4/6 83.8 23.9 936 1.2
7/4 22.4 15.5 484 0.5
af 151.7 7.8 351 3.7
pb1 186.3 17.6 440 2.6
pb2 79.5 10.7 313 2.3

�A



&total neuron surface area, A
�
/A



&dendrite-to-soma surface area ratio, l

��	

&mean dendritic

path length, d
��	


&mean dendritic branch diameter.

revealed several regions of parameter space in which the SC neuron models "t the
data. We resolved this non-uniqueness by applying constraints from independent
studies on realistic values of membrane capacitance, internal resistivity and somatic
shunt. Using our matrix-moment method [4], we computed the functional character-
istics signal attenuation, delay and time window.

4. Results

4.1. Morphology

The two cell classes show distinct di!erences in their morphology, as exempli"ed by
Fig. 1. In the mean, total surface areaA



and volume of DLNs exceed that of SLNs by

a factor of 4 and 2.8, respectively. The ratio of dendritic to somatic surface areaA
�
/A



in SLNs is almost twice that of DLNs. For similar electrical properties this would
mean that in DLNs the soma represents a stronger electrical load as compared with
SLNs. Mean dendritic path lengths l

��	

of SLNs are larger, and dendritic branch

diameters d
��	


are smaller than those of DLNs (Table 1).
With respect to topology (branching pattern) we have the following "ndings: (i) the

number of stem dendrites is 3}6 and 7}10, (ii) the maximal branching order is 10}12
and 6}9 in SLNs and DLNs, respectively, (iii) the mean number of terminal segments
is about 110 in both SLNs and DLNs. For all cells of the two classes the mean of
branching exponents is near 1.5 (for details, see [8]).

4.2. Parameter search

For each of the 6 cells the input resistance R


is known from experiments. Time

constants were estimated from another sample of collicular neurons. The average of
time constants �

�
is 4.1 ms (range 2.4}8.0 ms) and 4.5 ms (range 3.0}5.8 ms) in SLNs

and DLNs, respectively. From these known parameters we computed the 3 or
4 unknown parameters membrane capacity C

�
, membrane resistance R

�
(uniform or

nonuniform) and axial resistivity R
�
. We found several admissible combinations of
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Table 2
Results of parameter search for SLNs (�

�
, �
�
, 	
�
) and DLNs (af, pb1, pb2)

Cell no. R


(M�) �

�
(ms) Shunt factor r

�����	
(k� cm�) r

��
�


(k� cm�) r

�
(� cm) c

�
(�F/cm�)

2.4 10 352 3521 318 1.3
4/1 15.2 2.4 20 298 6258 370 1.0

4.1 50 267 13599 371 1.9

2.4 1 2407 2407 245 1.2
4/6 15.0 4.1 10 658 6579 422 1.9

4.1 20 570 11981 406 1.4

2.4 20 207 4340 311 1.3
7/4 14.6 2.4 30 194 6018 348 1.1

2.4 40 188 7697 363 1.0

3.0 1 1990 1990 208 1.6
af 1.9 3.0 20 358 7525 385 1.0

4.5 50 305 15557 454 1.6

3.0 1 1935 1935 191 1.7
pb1 1.7 3.0 30 202 6261 396 1.1

4.5 50 181 9224 365 1.7

3.0 1 1912 1912 207 1.7
pb2 3.6 3.0 10 382 3816 310 1.3

4.5 60 232 14209 458 1.6

parameters which "tted the experimental data equally well. From these sets we
selected regions of parameter combinations which could be considered reasonable:
1 �F/cm�)C

�
)2 �F/cm�, 100 � cm)R

�
)500 � cm. This yielded at least three

admissible combinations for each SLN and DLN (Table 2).

4.3. Forward calculations

In order to estimate the impact which a speci"c set of model parameters might have
on the functional characteristics derived, forward calculations were performed with
each set of admissible parameter combinations. A particular parameter combination
is uniquely identi"ed by the corresponding resistivity value R

�
. Thus, in Tables 3 and

4 simulations are distinguished by cell number, followed by the corresponding
resistivity value R

�
. We used as input an �-shaped current (duration: 2 ms,

g
���

"0.1 S).
Attenuation. The attenuation values of all dendritic input locations are not normally

distributed, and for both somatopetal and somatofugal attenuations the distribution
functions are di!erent for the 2 cell groups. Attenuation in SLNs is generally larger if
compared with DLNs. Somatopetal signals from dendritic tips are heavily diminished
at the soma.

A. Schierwagen, C. Claus / Neurocomputing 38}40 (2001) 343}350 347



Table 3
Transfer delay (mean and SD) to soma in SLNs (left) and DLNs (right)

Cell ID Mean (ms) SD (ms) Cell ID Mean (ms) SD (ms)

41}318 10.9 5.7 af}208 3.8 0.8
41}370 10.4 5.5 af}385 4.0 1.2
41}371 34.5 18.6 af}454 7.6 2.6
46}245 7.5 3.2 pb1}191 4.0 1.0
46}422 22.9 11.0 pb1}396 4.4 1.4
46}406 22.5 10.9 pb1}365 8.0 2.6
74}311 7.5 5.2 pb2}207 3.7 0.9
74}348 7.3 5.3 pb2}310 3.8 1.2
74}363 7.1 5.1 pb2}458 7.2 2.8

Delays. Delays are shorter in the mean for DLNs. The lowest delays were obtained
with parameter combinations for the uniform case (shunt factor"1). If R

�� ���	
is

raised to the dendritic valueR
�� 
�



for cases with shunt factors'1, mean local delay
increases distinctly, since local delay at soma and stem dendrites is incremented. The
higher the shunt factor, the higher were the local delays (LDs). The largest LDs were
determined in SLNs with very small dendritic diameters (diameter of terminals
(1 �m) and high values of R

�� 
�


. The mean calculated transfer delay (TD) in SLNs

is up to 5 times higher than in DLNs (Table 3).
Time window. On the average, time windows (2��

�
) at soma are somewhat greater in

SLNs while they agree on dendrites for both groups. More distinct di!erences
are uncovered if time windows and signal delays are compared. For SLNs, the
ratio of time window at soma to transfer delay is about 1 : 2, but for DLNs it is 1 : 1
(Tables 3 and 4).
This means, in relation to their transfer delays to soma, SLNs have short time

windows at soma. Hence, incoming signals went already down at soma when soon
thereafter other signals arrive. For DLNs, transfer delays to soma and time windows
at soma are of the same order of magnitude in the mean. That is, at any time
a substantial number of incoming signals may be expected to sum up at soma.

5. Conclusion

We studied the question to what extent DLNs and SLNs can be treated as
integrators summing up a number of small synaptic inputs over some characteristic
period, or as coincidence detectors which "re when a few synaptic inputs arrive at the
trigger zone within that period. Our simulations showed that a complex relationship
between dendritic branching pattern and neuron function exists.
Attenuation of signals is generally larger in SLNs. Nonlinear ampli"cation mecha-

nisms in the dendrites must be operating, or localized integration of postsynaptic
signals in clusters must take place, if the soma or initial segment of the neuron should
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Table 4
Time window is SLNs and DLNs. Displayed are means of 2��

�
and standard deviation SD at soma and at

dendritic sites

Cell ID Time window at soma (ms) Dendritic time window (ms)

Mean SD Max Mean SD Max

41}318 5.6 1.4 9.6 3.5 0.5 4.4
41}370 5.9 1.5 10.4 3.8 0.6 4.9
41}371 20.5 5.7 34.3 12.9 2.8 19.4

46}245 4.2 0.8 6.3 2.6 0.3 3.5
46}422 12.5 3.2 21.2 7.4 1.3 9.5
46}406 14.0 3.5 23.9 8.9 1.8 12.2

74}311 4.9 1.7 9.3 3.5 0.8 4.9
74}348 5.1 1.8 9.9 3.7 1.0 5.3
74}363 5.1 1.8 9.8 3.8 1.0 5.5

af}208 3.6 0.2 4.3 2.1 0.3 3.3
af}385 3.9 0.4 5.6 2.4 0.4 3.8
af}454 7.1 1.0 11.6 4.0 1.2 8.5

pb1}191 3.7 0.2 4.9 2.1 0.3 3.5
pb1}396 4.1 0.5 5.6 2.6 0.5 4.4
pb1}365 7.3 1.0 10.5 4.1 1.1 8.1

pb2}207 3.6 0.2 4.1 2.3 0.4 3.3
pb2}310 3.7 0.4 4.6 2.4 0.4 3.3
pb2}458 7.2 1.1 10.1 4.3 1.3 7.7

be a!ected. The "ndings on time windows and transfer delays suggest that only
temporally at soma coinciding signals will in#uence it.
For DLNs, attenuation of signals is much less. The relation of time windows and

transfer delays is such that incoming signals can be summed up over a period of the
order of time constant. Hence, an integrator function in DLNs seems plausible.
These "ndings hold for the various sets of admissible parameter combinations used

in this study. While the order of magnitude of the results depends on the set of
parameters used in the forward computations, their relation within a cell group is
barely a!ected. The di!erences revealed between the two groups, however, are even
ampli"ed in some cases.
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