Diskrete Strukturen Vorlesung 1: Aussagenlogik

16. Oktober 2018

Team & Sprechstunden

- Hausaufgabenkontrolle:
 - ► Igor Dimitrov
 - ► Tarik Havighorst
 - ► Emanuel Krämer
- Hörsaalübung: Mirko Schulze

Team & Sprechstunden

- Hausaufgabenkontrolle:
 - ► Igor Dimitrov
 - ► Tarik Havighorst
 - ► Emanuel Krämer
- Hörsaalübung: Mirko Schulze
- Sprechstunden:

```
    Martin Bonm
    Doreen Götze
    Andreas Maletti
    Erik Paul

    Tobias Rosenkranz
```

donnerstags, 13:15–14:15 Uhr nach Vereinbarung mittwochs, 11:00–13:00 Uhr mittwochs, 15:15–16:15 Uhr freitags, 12:00–13:00 Uhr nach Vereinbarung

Vorlesungsstruktur

- Mathematische Grundlagen
 - Aussagen- und Prädikatenlogik
 - Naive Mengenlehre
 - Relationen und Funktionen

- ② Diskrete Strukturen
 - Algebraische Strukturen
 - Bäume und Graphen
 - Arithmetik

Nächste Termine — Modul "Diskrete Strukturen"

Hörsaalübung (Mo. 9:15)	Vorlesung (Di. 17:15)		
15.10.	16.10.		
	Aussagenlogik		
	(Publikation 1. Übungsblatt)		
22.10.	23.10.		
_	Prädikatenlogik		
1. Übungswoche			
29.10.	30.10.		
	Mengenlehre		
	(1. Abgabe + 2. Übungsblatt)		
5.11.	6.11.		
Hörsaalübung	Relationen		
2. Übungswoche			
12.11.	13.11.		
	Funktionen		
	(2. Abgabe + 3. Übungsblatt)		
19.11.	20.11.		
Hörsaalübung	Auswahlaxiom		
3. Übungsw. (Feiertag 21.11.)			
26.11.	27.11.		
	Ordnungsrelationen		
	(3. Abgabe + 4. Übungsblatt)		
3.12.	4.12.		
dies academicus	Kardinalitäten		
4. Übungswoche			
10.12.	11.12.		
Hörsaalübung	Verbände		
	(4. Abgabe + 5. Übungsblatt)		

Hörsaalübung (Mo. 9:15)	Vorlesung (Di. 17:15)		
17.12.	18.12.		
Hörsaalübung	Boolesche Algebren		
5. Übungswoche			
24.12.	25.12.		
31.12.	1.1.		
7.1.	8.1.		
	Körper		
	(5. Abgabe + 6. Übungsblatt)		
14.1.	15.1.		
Hörsaalübung	Graphen und Bäume		
6. Übungswoche			
21.1.	22.1.		
	Planarität von Graphen		
	(6. Abgabe + 7. Übungsblatt)		
28.1.	29.1.		
Hörsaalübung	Färbbarkeit von Graphen		
7. Übungswoche			
4.2.	5.2.		
Tutorium	Arithmetik		
(Klausurvorbereitung)			
11.2.	12.2.		

Vorlesungsziele

- Standardnotation lesen und schreiben
- Einführung mathematisches Denken
- Beweise lesen und analysieren
- (formale) Beweise führen

Vorlesungsmaterialien

- Folien, Übungs- und Hausaufgaben, Ankündigungen im AlmaWeb
- Literatur für Selbststudium und Vertiefung: (in der Bibliothek als Buch und E-Buch verfügbar)
 - Christoph Meinel, Martin Mundhenk

 Mathematische Grundlagen der Informatik
 - Vieweg+Teubner, 5. Auflage, 2011
 - Angelika Steger

 Diskrete Strukturen Band 1: Kombinatorik, Graphentheorie, Algebra

Springer-Verlag, 2. Auflage, 2007

Vorlesung:

• dienstags, 17:15–18:45 Uhr, AudiMax

Vorlesung:

dienstags, 17:15–18:45 Uhr, AudiMax

Prüfung:

- Modul- und Veranstaltungsanmeldung im AlmaWeb
 Anmeldefrist: 22. Oktober 2018 (Montag)
- Abmeldungen noch bis zum 12. Januar 2019, Mitternacht möglich

Vorlesung:

dienstags, 17:15–18:45 Uhr, AudiMax

Prüfung:

- Modul- und Veranstaltungsanmeldung im AlmaWeb
 Anmeldefrist: 22. Oktober 2018 (Montag)
- Abmeldungen noch bis zum 12. Januar 2019, Mitternacht möglich

Übungen (jede A-Woche):

- Hörsaalübung montags, 9:15–10:45 Uhr, Hs. 7
 (Alternativtermin für 3.12.: Montag, der 10.12., 9:15–10:45 Uhr, Hs. 7)
- indiv. Übungsgruppen (entfallen Mittwoch, den 21.11.
 - bitte Alternativtermin in der gleichen Woche wählen)

Übungstermine:

Wochentag	Zeit	Raum	Übungsleiter
montags	9:15-10:45	Hs. 7	► Mirko Schulze
mittwochs	7:30-9:00	SG 3-11	➤ Doreen Götze
mittwochs	13:15-14:45	SG 3-11	▶ Martin Böhm
mittwochs	13:15-14:45	SG 3-13	► Erik Paul
donnerstags	7:30-9:00	SG 3-13	► Doreen Götze
donnerstags	11:15-12:45	SG 3-13	► Doreen Götze
donnerstags	11:15-12:45	SG 3-11	► Martin Böhm
freitags	9:15-10:45	SG 3-13	► Doreen Götze
freitags	9:15-10:45	SG 3-11	► Erik Paul
freitags	13:15-14:45	SG 3-13	► Erik Paul
freitags	13:15-14:45	SG 3-11	► Tobias Rosenkranz
freitags	15:15-16:45	SG 3-11	► Erik Paul

Hausaufgaben

- jede B-Woche neue Übungsserie; jeweils 2 Wochen Bearbeitungszeit
- Abgabe der Hausaufgaben vor der Vorlesung (Abgabedatum steht auf dem Aufgabenblatt)

Hausaufgaben

- jede B-Woche neue Übungsserie; jeweils 2 Wochen Bearbeitungszeit
- Abgabe der Hausaufgaben vor der Vorlesung (Abgabedatum steht auf dem Aufgabenblatt)
- Prüfungsvorleistung: Übungsschein erteilt bei mind. 60 Punkten (50%) der 6 Serien

Punkte	Konsequenz
≤ 59	Prüfungsteilnahme ausgeschlossen
60-69	Prüfungsteilnahme möglich
70-79	+1 Bonuspunkt ($pprox$ 1,7%) für die Prüfung
80-89	+2 Bonuspunkte ($pprox 3,3\%$) für die Prüfung
90-99	+3 Bonuspunkte ($pprox 5,0\%$) für die Prüfung
100-109	+4 Bonuspunkte (≈ 6,7%) für die Prüfung
110-119	+5 Bonuspunkte ($pprox 8,3\%$) für die Prüfung
≥ 120	+6 Bonuspunkte (\approx 10,0%) für die Prüfung

Vorlesungsstruktur

- Mathematische Grundlagen
 - Aussagen- und Prädikatenlogik
 - Naive Mengenlehre
 - Relationen und Funktionen
- Diskrete Strukturen
 - Kombinatorik und Stochastik
 - Algebraische Strukturen
 - Bäume und Graphen
 - Arithmetik

Heutige Vorlesung

- Einführung Aussagenlogik
- Äquivalenz von komplexen Aussagen
- Tautologien und Unerfüllbarkeit

Bitte Fragen direkt stellen!

StGB § 211 — Mord

- Der Mörder wird mit lebenslanger Freiheitsstrafe bestraft.
- 2 Mörder ist, wer
 - aus Mordlust, zur Befriedigung des Geschlechtstriebs, aus Habgier oder sonst aus niedrigen Beweggründen,
 - heimtückisch oder grausam oder mit gemeingefährlichen Mitteln oder
 - um eine andere Straftat zu ermöglichen oder zu verdecken,

einen Menschen tötet.

Wir nehmen eine Person 'Alice' an und beziehen uns auf sie

Gesetz enthält Aussagen

Alice-ist-Mörder

Alice-bekommt-lebenslang

Alice-tötet-aus-Habgier

Alice-tötet-heimtückisch

Wir nehmen eine Person 'Alice' an und beziehen uns auf sie

Gesetz enthält Aussagen

```
Alice-ist-Mörder Alice-tötet-aus-Habgier
Alice-bekommt-lebenslang Alice-tötet-heimtückisch
```

Aussagen werden kombiniert

```
Alice-tötet-aus-Habgier oder Alice-tötet-heimtückisch wenn Alice-ist-Mörder dann Alice-bekommt-lebenslang
```

Wir nehmen eine Person 'Alice' an und beziehen uns auf sie

Gesetz enthält Aussagen

```
Alice-ist-Mörder Alice-tötet-aus-Habgier
Alice-bekommt-lebenslang Alice-tötet-heimtückisch
```

Aussagen werden kombiniert

```
Alice-tötet-aus-Habgier oder Alice-tötet-heimtückisch
wenn Alice-ist-Mörder dann Alice-bekommt-lebenslang
```

Erlaubt Folgerungen

```
wenn Alice-tötet-aus-Habgier dann Alice-ist-Mörder
```

StVO I, § 30(3) — Sonn- und Feiertagsfahrverbot [editiert]

An Sonn- und Feiertagen dürfen in der Zeit 0.00–22.00 Uhr Lastkraftwagen mit einer zulässigen Gesamtmasse über 7,5 t sowie Anhänger hinter Lastkraftwagen nicht verkehren. Dies gilt nicht für

- **1** [...]
- 2 die Beförderung von
 - o frischer Milch und frischen Milcherzeugnissen,
 - 6 frischem Fleisch und frischen Fleischerzeugnissen,
 - frischen Fischen, lebenden Fischen und frischen Fischerzeugn.,
 - (d) leicht verderblichem Obst und Gemüse,
- 3 Leerfahrten im Zusammenhang mit Fahrten nach 2,
- 4 [...]

StVO I, § 30(3) — Sonn- und Feiertagsfahrverbot [editiert]

An Sonn- und Feiertagen dürfen in der Zeit 0.00–22.00 Uhr Lastkraftwagen mit einer zulässigen Gesamtmasse über 7,5 t sowie Anhänger hinter Lastkraftwagen nicht verkehren. Dies gilt nicht für

1 [...]

und/oder

- 4 die Beförderung von
 - o frischer Milch und frischen Milcherzeugnissen,
 - 6 frischem Fleisch und frischen Fleischerzeugnissen,
 - of frischen Fischen, lebenden Fischen und frischen Fischerzeugn.,
 - inschen rischen, lebenden rischen und inschen rischerzeugn.,
 - Ieicht verderblichem Obst und Gemüse,
 und/oder
- 3 Leerfahrten im Zusammenhang mit Fahrten nach 2,

und/oder

4 [...]

StVO I, § 30(3) — Sonn- und Feiertagsfahrverbot [editiert]

An Sonn- und Feiertagen dürfen in der Zeit 0.00–22.00 Uhr Lastkraftwagen mit einer zulässigen Gesamtmasse über 7,5 t sowie Anhänger hinter Lastkraftwagen nicht verkehren. Dies gilt nicht für

① [...]

und/oder

- 4 die Beförderung von
 - frischer Milch und frischen Milcherzeugnissen,
 - 6 frischem Fleisch und frischen Fleischerzeugnissen,
 - of frischen Fischen, lebenden Fischen und frischen Fischerzeugn.,
 - leicht verderblichem Obst und Gemüse,
 - 3 Leerfahrten im Zusammenhang mit Fahrten nach Q,

und/oder

und/oder

4 [...]

§1.1 Definition (Aussage)

Aussage ist eine Repräsentation eines Satzes, der entweder wahr (1) oder falsch (0) ist

- Aussage hat also genau einen Wahrheitswert
- der Wahrheitswert kann unbekannt (oder auch nicht feststellbar) sein

§1.1 Definition (Aussage)

Aussage ist eine Repräsentation eines Satzes, der entweder wahr (1) oder falsch (0) ist

- Aussage hat also genau einen Wahrheitswert
- der Wahrheitswert kann unbekannt (oder auch nicht feststellbar) sein

Beispiele

- "L befördert frische Milch" ist eine Aussage für einen geg. Lastkraftwagen L
- "D ist ein Feiertag in Sachsen" ist eine Aussage

für ein geg. Datum D

§1.1 Definition (Aussage)

Aussage ist eine Repräsentation eines Satzes, der entweder wahr (1) oder falsch (0) ist

- Aussage hat also genau einen Wahrheitswert
- der Wahrheitswert kann unbekannt (oder auch nicht feststellbar) sein

Beispiele

- "L befördert frische Milch" ist eine Aussage für einen geg. Lastkraftwagen L
- "D ist ein Feiertag in Sachsen" ist eine Aussage
- für ein geg. Datum *D* "2 ist eine Primzahl" ist eine wahre Aussage
- "2 + 2 = 5" ist eine falsche Aussage

weitere Beispiele

 "Jede gerade natürliche Zahl n > 2 ist die Summe zweier Primzahlen" ist eine Aussage
 Wahrheitswert unbekannt
 (Goldbachs Vermutung, 1742)

Christian Goldbach (* 1690; † 1764)

- studierte Medizin und Jura in Königsberg
- erlernte später Mathematik
- Tutor von Zar Peter II

weitere Beispiele

 "Jede gerade natürliche Zahl n > 2 ist die Summe zweier Primzahlen" ist eine Aussage
 Wahrheitswert unbekannt
 (Goldbachs Vermutung, 1742)

"Dieser Satz ist falsch" ist keine Aussage
 kann semantisch weder wahr noch falsch sein — Selbstreferenz

Christian Goldbach (* 1690; † 1764)

- studierte Medizin und Jura in Königsberg
- erlernte später Mathematik
- Tutor von Zar Peter II

Gegenstand der Logik:

- nicht die Wahrheitsbestimmung von Basis-Aussagen (dies ist Aufgabe der Fachgebiete)
- Formalisierung von (komplexen) Aussagenverknüpfungen
- Bewertung von Aussagenverknüpfungen basierend auf Wahrheitswerten der Teilaussagen
- Schlussregeln

Gegenstand der Logik:

- nicht die Wahrheitsbestimmung von Basis-Aussagen
 - (dies ist Aufgabe der Fachgebiete)
- Formalisierung von (komplexen) Aussagenverknüpfungen
- Bewertung von Aussagenverknüpfungen basierend auf Wahrheitswerten der Teilaussagen
- Schlussregeln

Notation (Junktoren)

- (Basis-)Aussagen A, B, C, ... aber auch "hatFisch"
- Negation $\neg A$
- Konjunktion A ∧ B
 - A und B
- Disjunktion $A \vee B$
- A oder B • Implikation $A \rightarrow B$ wenn A. dann B
- A genau dann, wenn B • beidseitige Implikation $A \leftrightarrow B$

nicht A

Erklärungsversuch Notation

• Konjunktion $A \wedge B$ (unten offen)

- A <u>u</u>nd B
- entspricht $A \cap B$; Elemente von $A \cap B$ müssen in A und B liegen
- Disjunktion $A \vee B$ (oben offen)

A oder B

• entspricht $A \cup B$; Elemente von $A \cup B$ müssen in A oder B liegen

§1.2 Definition (Interpretation)

- Jede Aussage und jede Aussagenverknüpfung ist entweder wahr (1) oder falsch (0)
- Wahrheit von Aussagenverknüpfungen ergibt sich aus Wahrheit der Teilaussagen gemäß folgender Tabelle

§1.2 Definition (Interpretation)

- Jede Aussage und jede Aussagenverknüpfung ist entweder wahr (1) oder falsch (0)
- Wahrheit von Aussagenverknüpfungen ergibt sich aus Wahrheit der Teilaussagen gemäß folgender Tabelle

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Schwierigkeit: Implikation

- $A \rightarrow B$ besteht aus Vorbedingung A und Folgerung B
- $A \rightarrow B$ ist genau dann falsch, wenn die Vorbedingung A wahr ist, aber die Folgerung B nicht

Schwierigkeit: Implikation

- $A \rightarrow B$ besteht aus Vorbedingung A und Folgerung B
- A → B ist genau dann falsch, wenn die Vorbedingung A wahr ist, aber die Folgerung B nicht

Beispiel

- "Wenn es regnet, dann nehme ich den Schirm mit." ist eine Aussage
- ullet Formalisierung als Regen o Schirm

Schwierigkeit: Implikation

- $A \rightarrow B$ besteht aus Vorbedingung A und Folgerung B
- A → B ist genau dann falsch, wenn die Vorbedingung A wahr ist, aber die Folgerung B nicht

Beispiel

- "Wenn es regnet, dann nehme ich den Schirm mit." ist eine Aussage
- Formalisierung als Regen → Schirm
- Die Aussage ist wahr, wenn es nicht regnet (Vorbedingung falsch) (Ich kann den Schirm mitnehmen oder daheim lassen)

Schwierigkeit: Implikation

- $A \rightarrow B$ besteht aus Vorbedingung A und Folgerung B
- A → B ist genau dann falsch, wenn die Vorbedingung A wahr ist, aber die Folgerung B nicht

Beispiel

- "Wenn es regnet, dann nehme ich den Schirm mit." ist eine Aussage
- Formalisierung als Regen → Schirm
- Die Aussage ist wahr, wenn es nicht regnet (Vorbedingung falsch)
 (Ich kann den Schirm mitnehmen oder daheim lassen)
- Die Aussage ist falsch, wenn es regnet und ich den Schirm nicht mitnehme (Folgerung falsch)

Aussagenlogik — Syntax und Semantik

§1.3 Definition (Atome und Formeln)

- (aussagenlogische) Atome = primitive Aussagen wie A, B
- (aussagenlogische) Formeln = Aussagen inkl. Verknüpfungen

Bermerkungen:

- Wahrheit eines Atoms abhängig von fachlicher "Aussage"
- Wahrheit einer Formel nur abh. von Wahrheit ihrer Atome

- wir sind an wahren Aussagen (Theoremen) interessiert
- ightarrow Erkenntnisgewinn und Verständnis der Welt

- wir sind an wahren Aussagen (Theoremen) interessiert
- → Erkenntnisgewinn und Verständnis der Welt
 - die Wahrheit einer Aussage muss jedoch nachgewiesen werden
- → Beweis

- wir sind an wahren Aussagen (Theoremen) interessiert
- → Erkenntnisgewinn und Verständnis der Welt
 - die Wahrheit einer Aussage muss jedoch nachgewiesen werden
- → Beweis
 - einfachste Beweismethode ist die Wahrheitswertetabelle
- → Nachweis der Wahrheit der Aussage unabh. von der Wahrheit ihrer Atome durch tabellarische Auflistung aller Möglichkeiten
 - funktioniert evtl. nicht bei Abhängigkeiten zw. Atomen

Aufstellung der Wahrheitswertetabelle:

1 Identifikation aller vorkommenden Atome A_1, \ldots, A_n

Aufstellung der Wahrheitswertetabelle:

- **1** Identifikation aller vorkommenden Atome A_1, \ldots, A_n
- ② Auflistung aller 2^n Wahrheitswertbelegungen für A_1, \ldots, A_n

		A_{n-1}		
0	0	 0	0	
0	0	 0	1	
0	0	 1	0	
1	1	 1	1	

- ▶ beginnend mit $\frac{0}{1}$ in der letzten Spalte A_n wechseln sich $\frac{0}{1}$ und $\frac{1}{1}$ ab
- ▶ in der vorherigen Spalte wechseln 0 und 1 nur halb so oft (Wechsel alle zwei Zeilen in Spalte A_{n-1} , alle vier Zeilen in A_{n-2} , etc.)

Aufstellung der Wahrheitswertetabelle:

- **1** Identifikation aller vorkommenden Atome A_1, \ldots, A_n
- ② Auflistung aller 2^n Wahrheitswertbelegungen für A_1, \ldots, A_n

		A_{n-1}		
0	0	 0	0	
0	0	 0	1	
0	0	 1	0	
1	1	 1	1	

- ▶ beginnend mit $\frac{0}{1}$ in der letzten Spalte A_n wechseln sich $\frac{0}{1}$ und $\frac{1}{1}$ ab
- ▶ in der vorherigen Spalte wechseln $\frac{0}{1}$ und $\frac{1}{1}$ nur halb so oft (Wechsel alle zwei Zeilen in Spalte A_{n-1} , alle vier Zeilen in A_{n-2} , etc.)
- Berechnung der Wahrheitswerte der Teilformeln

§1.4 Beispiel

• "Wenn A und B gelten, dann gilt A." (dabei können A und B beliebig komplexe Aussagen sein)

§1.4 Beispiel

- "Wenn A und B gelten, dann gilt A." (dabei können A und B beliebig komplexe Aussagen sein)
- Formalisierung: $(A \land B) \rightarrow A$

§1.4 Beispiel

- "Wenn A und B gelten, dann gilt A."
 (dabei können A und B beliebig komplexe Aussagen sein)
- Formalisierung: $(A \land B) \rightarrow A$

Α	В	$A \wedge B$	$(A \wedge B) \rightarrow A$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

§1.4 Beispiel

- "Wenn A und B gelten, dann gilt A."
 (dabei können A und B beliebig komplexe Aussagen sein)
- Formalisierung: $(A \land B) \rightarrow A$

Α	В	$A \wedge B$	$(A \wedge B) \rightarrow A$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$

Beweisversuch mit Wahrheitswertetabelle (ohne Fachwissen).

U	G	$\neg U$	$\neg U \rightarrow G$
0	0	1	0
0	1	1	1
-1	0	0	1
1	1	0	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$

Beweisversuch mit Wahrheitswertetabelle (ohne Fachwissen).

U	G	$\neg U$	$\neg U \rightarrow G$
0	0	1	0
0	1	1	1
1	0	0	1
1	1	0	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$
- Fachwissen: "Jede natürliche Zahl ist gerade oder ungerade."
- neue Formalisierung: $(U \lor G) \to (\neg U \to G)$

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$
- Fachwissen: "Jede natürliche Zahl ist gerade oder ungerade."
- neue Formalisierung: $(U \lor G) \to (\neg U \to G)$

U	G	$U \vee G$	$\neg U$	$\neg U \rightarrow G$	$(U \vee G) \to (\neg U \to G)$
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	1	1	0	1	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$
- Fachwissen: "Jede natürliche Zahl ist gerade oder ungerade."
- neue Formalisierung: $(U \lor G) \to (\neg U \to G)$

U	G	$U \vee G$	$\neg U$	$\neg U \rightarrow G$	$(U \vee G) \to (\neg U \to G)$
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	1	1	0	1	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$
- Fachwissen: "Jede natürliche Zahl ist gerade oder ungerade."
- neue Formalisierung: $(U \lor G) \to (\neg U \to G)$

U	G	$U \vee G$	$\neg U$	$\neg U \rightarrow G$	$(U \vee G) \to (\neg U \to G)$
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	1	1	0	1	1

§1.5 Beispiel

- "Eine natürliche Zahl, die nicht ungerade ist, ist gerade."
- Formalisierung: $\neg U \rightarrow G$
- Fachwissen: "Jede natürliche Zahl ist gerade oder ungerade."
- neue Formalisierung: $(U \lor G) \to (\neg U \to G)$

U	G	$U \vee G$	$\neg U$	$\neg U \rightarrow G$	$(U \vee G) \rightarrow (\neg U \rightarrow G)$
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	1	1	0	1	1

Aussagenlogik — Formalisierung

StVO I, § 30(3) — Sonn- und Feiertagsfahrverbot [editiert]

- [...] Dies gilt nicht für
 - **1** [...]
 - 2 die Beförderung von
 - o frischer Milch und frischen Milcherzeugnissen,
 - 6 frischem Fleisch und frischen Fleischerzeugnissen,
 - of frischen Fischen, lebenden Fischen und frischen Fischerzeugn.
 - d leicht verderblichem Obst und Gemüse,

[...]

Formalisierung:

- \neg ((hatMilch \land hatMilchE) \land (hatFleisch \land hatFleischE) $\land \cdots$)
- \neg ((hatMilch \lor hatMilchE) \land (hatFleisch \lor hatFleischE) $\land \cdots$)
- $\quad \neg ((\mathsf{hatMilch} \land \mathsf{hatMilchE}) \lor (\mathsf{hatFleisch} \land \mathsf{hatFleischE}) \lor \cdots) \\$
- $\quad \neg ((\mathsf{hatMilch} \lor \mathsf{hatMilchE}) \lor (\mathsf{hatFleisch} \lor \mathsf{hatFleischE}) \lor \cdots) \\$

Aussagenlogik — Formalisierung

StVO I, § 30(3) — Sonn- und Feiertagsfahrverbot [editiert]

- [...] Dies gilt nicht für
 - **1** [...]
 - 2 die Beförderung von
 - o frischer Milch und frischen Milcherzeugnissen,
 - 6 frischem Fleisch und frischen Fleischerzeugnissen,
 - 6 frischen Fischen, lebenden Fischen und frischen Fischerzeugn.,
 - d leicht verderblichem Obst und Gemüse,

[...]

Formalisierung:

- \neg ((hatMilch \land hatMilchE) \land (hatFleisch \land hatFleischE) $\land \cdots$)
- \neg ((hatMilch \lor hatMilchE) \land (hatFleisch \lor hatFleischE) $\land \cdots$)
- $\quad \neg ((\mathsf{hatMilch} \land \mathsf{hatMilchE}) \lor (\mathsf{hatFleisch} \land \mathsf{hatFleischE}) \lor \cdots) \\$
- $\quad \neg ((\mathsf{hatMilch} \lor \mathsf{hatMilchE}) \lor (\mathsf{hatFleisch} \lor \mathsf{hatFleischE}) \lor \cdots) \\$

Aussagenlogik — Formalisierung

hM	hME	hF	hFE	hM ∧ hME	hF ∧ hFE	$hM \lor hME$	hF ∨ hFE
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	- 1	1	0	1	0	1
0	1	0	0	0	0	1	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	1	1
0	1	1	1	0	1	1	1
1	0	0	0	0	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	0	0	1	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	1	1
1	1	1	1	1	1	1	1

Aussagenlogik — Beweistechniken

Frage

Welche (weiteren) Beweistechniken kennen Sie?

Aussagenlogik — Beweistechniken

Frage

Welche (weiteren) Beweistechniken kennen Sie?

Mögliche Antworten:

- beidseitige Implikationen
- Implikationskette
- Ringschluss
- indirekter Beweis
- Kontraposition
- vollständige Induktion
- ...

§1.6 Definition (Äquivalenz)

Zwei Aussagen sind <mark>äquivalent</mark>, genau dann wenn (gdw.) deren Wahrheitswerte für alle Belegungen der Atome übereinstimmen

§1.6 Definition (Äquivalenz)

Zwei Aussagen sind äquivalent, genau dann wenn (gdw.) deren Wahrheitswerte für alle Belegungen der Atome übereinstimmen

<u>Beispiele</u>

• $U \lor G$ und $\neg U \to G$ sind äquivalent

(siehe §1.5)

ullet $A \lor B$ und $A \to B$ sind nicht äquivalent

(siehe §1.2)

äquival	ente Formeln	Bezeichnung
$A \wedge B$	$B \wedge A$	Kommutativität von ∧
$A \vee B$	$B \lor A$	Kommutativität von \lor
$(A \wedge B) \wedge C$	$A \wedge (B \wedge C)$	Assoziativität von \wedge
$(A \lor B) \lor C$	$A \lor (B \lor C)$	Assoziativität von \lor
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributivität von \wedge
$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$	Distributivität von \lor
$A \wedge A$	Α	$Idempotenz\ von\ \land$
$A \lor A$	A	Idempotenz von \lor
$\neg \neg A$	A	Involution \neg
$\neg (A \wedge B)$	$(\neg A) \lor (\neg B)$	deMorgan-Gesetz für ∧
$\neg(A \lor B)$	$(\neg A) \wedge (\neg B)$	deMorgan-Gesetz für ∨
$A \wedge (A \vee B)$	Α	Absorptionsgesetz für ∧
$A \vee (A \wedge B)$	Α	Absorptionsgesetz für ∨

§1.7 Distributivität von ∨

$$F_1 = A \lor (B \land C)$$
 und $F_2 = (A \lor B) \land (A \lor C)$ sind äquivalent

§1.7 Distributivität von ∨

$$F_1 = A \lor (B \land C)$$
 und $F_2 = (A \lor B) \land (A \lor C)$ sind äquivalent

Α	В	С	$B \wedge C$	F_1	$A \vee B$	$A \lor C$	F_2
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	-1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

§1.7 Distributivität von ∨

$$F_1 = A \lor (B \land C)$$
 und $F_2 = (A \lor B) \land (A \lor C)$ sind äquivalent

Α	В	С	$B \wedge C$	F ₁	$A \vee B$	$A \lor C$	<i>F</i> ₂
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	-1	1	1	1
-1	0	0	0	-1	1	1	1
1	0	1	0	-1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

§1.7 Distributivität von ∨

$$F_1 = A \lor (B \land C)$$
 und $F_2 = (A \lor B) \land (A \lor C)$ sind äquivalent

A	В	C	$B \wedge C$	F_1	$A \lor B$	$A \lor C$	F_2
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

§1.7 Distributivität von ∨

$$F_1 = A \lor (B \land C)$$
 und $F_2 = (A \lor B) \land (A \lor C)$ sind äquivalent

Α	В	С	$B \wedge C$	F ₁	$A \vee B$	$A \lor C$	F_2
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	-1	1	1	1	1	1
-1	0	0	0	1	1	1	1
-1	0	-1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

§1.7 Distributivität von ∨

$$F_1 = A \vee (B \wedge C)$$
 und $F_2 = (A \vee B) \wedge (A \vee C)$ sind äquivalent

A	В	C	$B \wedge C$	F_1	$A \vee B$	$A \lor C$	F_2
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	-1
1	0	0	0	1	1	1	-1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

§1.7 Distributivität von ∨

$$F_1 = A \vee (B \wedge C)$$
 und $F_2 = (A \vee B) \wedge (A \vee C)$ sind äquivalent

A	В	C	$B \wedge C$	Fı	$A \vee B$	$A \vee C$	F_2
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	-1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Zusammenfassung

- Aussagenlogische Formeln
- Interpretation
- Äquivalenz

Erstes Übungs- und Hausaufgabenblatt steht demnächst im AlmaWeb.